JPS63110416A - Optical image element - Google Patents

Optical image element

Info

Publication number
JPS63110416A
JPS63110416A JP61257177A JP25717786A JPS63110416A JP S63110416 A JPS63110416 A JP S63110416A JP 61257177 A JP61257177 A JP 61257177A JP 25717786 A JP25717786 A JP 25717786A JP S63110416 A JPS63110416 A JP S63110416A
Authority
JP
Japan
Prior art keywords
bismuth
single crystal
crystal plate
insulating layers
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61257177A
Other languages
Japanese (ja)
Inventor
Yasuo Namikawa
靖生 並川
Koji Tada
多田 紘二
Masami Tatsumi
雅美 龍見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61257177A priority Critical patent/JPS63110416A/en
Publication of JPS63110416A publication Critical patent/JPS63110416A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0338Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect structurally associated with a photoconductive layer or having photo-refractive properties

Abstract

PURPOSE:To improve the contrast ratio of the output image of an optical image element by constituting insulating layers of bismuth-orthosilicate or bismuth- orthogermanate. CONSTITUTION:This element is provided with a single crystal plate 1 having an electrooptic effect and optical transmission effect, the insulating layers 2, 2' which are provided on at least one side face of the plate 1 and consist of the bismuth-orthosilicate (Bi4Si3O12) or bismuth-orthogermanate (Bi4Ge3O12), and transparent electrodes 3, 3' which apply electric fields to the insulating layers 2, 2' and the plate 1. The lower setting of the voltage of a power supply 4 is thus permitted by constituting the insulating layers 2, 2' of the bismuth- orthosilicate or bismuth-orthogermanate. The image contrast ratio is improved to a greater extent in the case of the same power source voltage.

Description

【発明の詳細な説明】 本発明は、電気光学効果と光伝導効果を有する単結晶板
ヲ用い、画像のインコヒーレント−コヒーレント変換や
画像の一時記憶等を行なう光画像素子の改良に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an optical image device that uses a single crystal plate having an electro-optic effect and a photoconductive effect to perform incoherent-coherent conversion of images, temporary storage of images, etc. .

例えば第1図に示すように、ビスマス−シリコンオキサ
イF (BiH3iO2o)ヤビスマスーゲルマニウム
、オキサイド(Bi 12GeOgo )等の電気光学
効果と波長依存性の光伝導効果を有する単結晶板lと、
その両側面に設けられた絶縁層2,2′と、絶縁層2.
2′と単結晶板1とに電界を加える透明電極3゜3′と
から構成された光画像素子が従来より知られている。こ
の光画像素子は、例えばインコヒーレント光の画像をコ
ヒーレント光の画像に変換したり、或は画像を一時的に
記憶したりする場合に使用するものであり、例えば次の
ように動作するものである。
For example, as shown in FIG. 1, a single crystal plate l having an electro-optic effect and a wavelength-dependent photoconductive effect, such as bismuth-silicon oxide F (BiH3iO2o), yabismuth-germanium, oxide (Bi 12 GeOgo ),
Insulating layers 2, 2' provided on both sides of the insulating layer 2.
2' and a transparent electrode 3.3' for applying an electric field to the single crystal plate 1. An optical image element is conventionally known. This optical image element is used, for example, to convert an image of incoherent light into an image of coherent light, or to temporarily store an image. For example, it operates as follows. be.

まず、透明電極3,3′に接続された電源4により単結
晶板1と絶縁層2,2′とに電圧を印加すると、定常状
態に於いては、電源4の電圧Vにより単結晶板1及び絶
縁層2,2′の厚さとその誘電率で定まる一定の電位分
布が、光画像素子内部に発生する。この状態に於いて、
単結晶板1が光伝導効果を呈する波長(たとえばHg 
 ランプの紫〜青色光)のインコヒーレントな書込み画
像5を単結晶板1に結像させると、単結晶板lは光伝導
効果を有するので、その照射領域に於いては書込み画像
5に対応した電位分布が形成される。即ち、光伝導効果
により像の空間的な光強度分布に応じて電子−正孔対が
発生し、この電子−正孔対が各々の極性に応じて各透明
電極3,3′に移動して、絶縁層2,2′と単結晶板1
との界面にトラップされ電位分布、が形成されることに
なる。
First, when a voltage is applied to the single crystal plate 1 and the insulating layers 2, 2' by the power source 4 connected to the transparent electrodes 3, 3', in a steady state, the voltage V of the power source 4 causes the single crystal plate 1 to A certain potential distribution determined by the thickness of the insulating layers 2 and 2' and their dielectric constants is generated inside the optical image element. In this state,
The wavelength at which the single crystal plate 1 exhibits a photoconductive effect (for example, Hg
When an incoherent written image 5 of violet to blue light from a lamp is focused on the single crystal plate 1, since the single crystal plate 1 has a photoconductive effect, the irradiated area corresponds to the written image 5. A potential distribution is formed. That is, due to the photoconductive effect, electron-hole pairs are generated according to the spatial light intensity distribution of the image, and these electron-hole pairs move to each transparent electrode 3, 3' according to their respective polarities. , insulating layers 2, 2' and single crystal plate 1
This results in the formation of a potential distribution trapped at the interface.

単結晶板1は電気光学効果を有するので、上記電位分布
に応じてその屈折率が変化し、結局、書込み画像5に対
応した屈折率分布が形成されることになる。単結晶板1
として前記ビスマス−シリコン、オキサイド等を使用す
る場合には、この結晶板は高抵抗(約10140−儒)
である為、前述した電子−正孔対はトラップされた状態
で残存し、従って書込み画像5が光画像素子に蓄積され
ることになる。
Since the single crystal plate 1 has an electro-optical effect, its refractive index changes according to the above-mentioned potential distribution, and eventually a refractive index distribution corresponding to the written image 5 is formed. Single crystal plate 1
When using bismuth-silicon, oxide, etc., this crystal plate has a high resistance (approximately 10140-F)
Therefore, the electron-hole pairs described above remain in a trapped state, and the written image 5 is therefore accumulated in the optical image element.

このように単結晶板lに書込み画像5が屈折率分布とし
て形成蓄積されたのち、単結晶板1の光伝導効果がほと
んど生じない波長のコヒーレント光(たとえばHe−N
eレーザーの633肌光)を読出し光6として、これを
偏光子7で直線偏波とし単結晶板1に入射させると、単
結晶板1を透過した光8は、単結晶板1の屈折率分布に
応じた光学的位相差Fを受けるものとなる。従ってこの
透過光8を検光子9で検出して得た出力光10は、再び
光学的な強度分布を有するものとなり、結局インコヒー
レントな書込み画像がコヒーレントな画像に変換された
ことになる。
After the written image 5 is formed and accumulated as a refractive index distribution on the single crystal plate 1 in this way, coherent light (for example, He-N
When the readout light 6 (633 skin light of the e-laser) is linearly polarized by a polarizer 7 and incident on the single crystal plate 1, the light 8 transmitted through the single crystal plate 1 has a refractive index of the single crystal plate 1. It is subjected to an optical phase difference F depending on the distribution. Therefore, the output light 10 obtained by detecting the transmitted light 8 with the analyzer 9 has an optical intensity distribution again, and the incoherent written image is finally converted into a coherent image.

ところで、前述の絶縁層2,2′は、前述したように単
結晶板1内部で発生したキャリアが電源4゜へ流出する
のを防ぐものであるから、絶縁抵抗値が高いことが必要
であり、また光を透過するのであるから当然光学的に均
質な透明薄膜であることが要求される。従って絶縁層2
,2′の材料としては、絶縁抵抗値が高く、光学的に均
質な透明薄膜が容易に形成可能であることが必要である
。更に以下に述べる理由により、耐破壊電圧値及び誘電
率が大きいことが必要となる。
By the way, the above-mentioned insulating layers 2 and 2' are required to have a high insulation resistance value because they prevent the carriers generated inside the single-crystal plate 1 from flowing out to the power supply 4° as described above. Also, since it transmits light, it is naturally required to be an optically homogeneous transparent thin film. Therefore, insulating layer 2
, 2' need to have a high insulation resistance value and be able to easily form an optically homogeneous transparent thin film. Furthermore, for the reasons described below, it is necessary that the breakdown voltage value and dielectric constant be large.

一般に、光画像素子の出射光強度■と単結晶板1の印加
電圧■1  との間には次式に示すような関係がある。
Generally, there is a relationship as shown in the following equation between the intensity of light emitted from the optical image element (2) and the voltage (1) applied to the single crystal plate 1.

ただし、(1)式に於いてVπ は半波長電圧であり、
次式で決定される定数である。
However, in equation (1), Vπ is the half-wave voltage,
It is a constant determined by the following formula.

λ0 ;自由空間における光波長 no;屈折率 γ41;電気光学係数 (1)式から明らかなように、出力画像のコントラスト
比は、印加電圧Vl  により決定されるものとなり、
v1=vπのとき最大のコントラスト比が得られる。従
って、光画像素子を使用するに当っては、通常単結晶板
1にVπの印加電圧が加わるように電源4が設定されて
いる。
λ0; optical wavelength no in free space; refractive index γ41; electro-optic coefficient As is clear from equation (1), the contrast ratio of the output image is determined by the applied voltage Vl,
The maximum contrast ratio is obtained when v1=vπ. Therefore, when using the optical image element, the power source 4 is normally set so that an applied voltage of Vπ is applied to the single crystal plate 1.

単結晶板1にVπの電圧を印加するには、第1図のよう
な構造では、電源4の電圧はVπ より大きくしなくて
はならないことは明白である。いま単結晶板1の厚さ及
び誘電率をdl、ε1、絶縁層2゜2′の厚さ及び誘電
率をd2.ε2とすると、単結晶板1に加わる電圧■1
  は次式に示すものとなり、電従って、電源4の電圧
Vを低く押えて、単結晶板1に所定の印加電圧を加える
には、単結晶板1の厚さdlと誘電率ε1が一定とする
と、絶縁層2゜2′の厚さdilは小さく、その誘電率
ε2は大きい方が望ましい。厚さd2は、絶縁層2,2
′の耐破壊電圧値により制限され、あまり小さくすると
電気的このように絶縁層2,2′は、上記の諸条件を満
たすものである必要があり、従来よりポリバラキシリレ
ン、マイカ板、シリコン絶縁油等の各種の材料が提案さ
れている。しかし、これら従来の絶縁材料は、絶縁抵抗
値、耐破壊電圧値及び光学的に均質で透明な薄膜を容易
に形成することでは、はぼ満足した結果が得られるが、
誘電率が比較的小さい為に、電源4の電圧Vを高くしな
ければならない欠点があった。例えば、ポリパラキシリ
レン6一 を使用した場合、その誘電率ε2は3.0であるから、
ε】= 56 、 d1= 2001tm のビスマス
、シリコン。
It is clear that in order to apply a voltage of Vπ to the single crystal plate 1, the voltage of the power source 4 must be greater than Vπ in the structure shown in FIG. Now, let the thickness and dielectric constant of the single crystal plate 1 be dl and ε1, and the thickness and dielectric constant of the insulating layer 2°2' be d2. If ε2, the voltage applied to the single crystal plate 1 is 1
is shown in the following equation. Therefore, in order to keep the voltage V of the power source 4 low and apply a predetermined voltage to the single crystal plate 1, it is necessary to keep the thickness dl and dielectric constant ε1 of the single crystal plate 1 constant. Then, it is desirable that the thickness dil of the insulating layer 2.degree. 2' is small and its dielectric constant .epsilon.2 is large. The thickness d2 is the insulating layer 2, 2
The insulating layers 2, 2' must satisfy the above conditions, and conventionally polyvaraxylylene, mica plate, silicon insulating Various materials such as oil have been proposed. However, with these conventional insulating materials, although satisfactory results can be obtained in terms of insulation resistance, breakdown voltage, and optically homogeneous and transparent thin films that can be easily formed,
Since the dielectric constant is relatively small, there is a drawback that the voltage V of the power source 4 must be increased. For example, when polyparaxylylene 6- is used, its dielectric constant ε2 is 3.0, so
ε]=56, d1=2001tm bismuth, silicon.

オキサイードにdB−5μmの厚さに絶縁層2,2′を
形成すると、電源4の電圧Vの約1/2が絶縁層に印加
される結果になる。従って、ビスマス−シリコン−オキ
サイド単結晶の半波長電圧Vyr”&9KV(ただし、
(2)式に於いて、λ。−688nm、n□=2.54
γ41=5×l0−12m/V  とする)を加える為
には、その約2倍の7.5KV  の電源電圧が必要と
なり、各種の困難性が生じるものであった。
Forming the insulating layers 2, 2' on the oxide with a thickness of dB-5 μm results in approximately 1/2 of the voltage V of the power source 4 being applied to the insulating layers. Therefore, the half-wave voltage of bismuth-silicon-oxide single crystal Vyr''&9KV (however,
In equation (2), λ. -688nm, n□=2.54
In order to add γ41=5×l0-12 m/V), a power supply voltage of 7.5 KV, which is about twice that amount, is required, which causes various difficulties.

本発明は、この電源電圧の低減化を図ることを目的とす
るものである。以下実施例について詳細に説明する。
The present invention aims to reduce this power supply voltage. Examples will be described in detail below.

本発明の光画像素子の構造は、第1図に示した従来の光
画像素子と同一であり、相違する点は、絶i層2.2’
としてビスマス・オルソシリケイト(Bi+5isOt
2)、又はビスマスーオルソゲルマネイ) (Bi +
Ges 012)を使用することである。本発明者は、
前述の如き問題を解決せんが為に、各種の絶縁材料につ
いて、その特性を実験し検討した結果、ビスマス・オル
ソシリケイト及びビスマスーオルソゲルマネイトが、従
来のポリバラキシリレン等に比して優れた絶縁材料であ
ることを発見し、本発明を完成させたものである。
The structure of the optical image element of the present invention is the same as that of the conventional optical image element shown in FIG.
as bismuth orthosilicate (Bi+5isOt
2), or bismuth-orthogermane) (Bi +
Ges 012). The inventor is
In order to solve the above-mentioned problems, we conducted experiments and studied the properties of various insulating materials, and found that bismuth orthosilicate and bismuth-orthogermanate are superior to conventional polyvaraxylylene, etc. They discovered that it is an insulating material and completed the present invention.

一般に無機材料の中でも酸化物は、高い絶縁抵抗値を示
すものが多いが、本発明に関わる光画像素子に利用する
ためには、既に述べたように誘電率が高いとともに耐破
壊電圧が高い(数μmで数100V−1000V)必要
がある。更に光画像素子がコヒーレントな光で像の読み
出しを行うため、光学的に均一な薄膜が得られることが
必要不可欠である。
Generally, among inorganic materials, many oxides exhibit high insulation resistance values, but in order to be used in the optical image device related to the present invention, they must have a high dielectric constant and a high breakdown voltage ( (several 100V to 1000V) is required for several micrometers. Furthermore, since the optical image element reads out images using coherent light, it is essential that an optically uniform thin film can be obtained.

ビスマス−シリコン−オキサイド基板及びビスマスーゲ
ルマニュウムーオキサイド基板上に蒸着法モジくはスパ
ッタ法によって、ビスマス・オルソシリケイトまたはビ
スマスーオルソゲルマネイトを1μm〜3μmの厚みに
付着したところ、膜の均一性、膜の密着性とも良好であ
った。また、ビスマス・オルソシリケイト及びビスマス
ーオルソゲルマネイトは絶縁抵抗値(体積抵抗率)は約
1Q1B−IQ]4Ω、傷、耐破壊電圧は200〜40
0 KV/rran、といずれも実用上問題なく、更に
誘電率が16とポリバラキシリレンの3,0 と比べて
著しく高い。
When bismuth orthosilicate or bismuth-orthogermanate was deposited to a thickness of 1 μm to 3 μm on a bismuth-silicon-oxide substrate and a bismuth-germanium oxide substrate by vapor deposition or sputtering, the film showed uniformity, The adhesion of the film was also good. In addition, the insulation resistance value (volume resistivity) of bismuth orthosilicate and bismuth-orthogermanite is approximately 1Q1B-IQ]4Ω, and the scratch and breakdown voltage is 200 to 40.
0 KV/rran, which poses no practical problem, and furthermore, the dielectric constant is 16, which is significantly higher than 3,0 for polyvaraxylylene.

従って、ビスマス・オルソシリケイトもしくはビスマス
ーオルソゲルマネイトにより絶縁層2゜2′を構成する
ことにより、電源4の電圧を低く設定することが可能と
なり、同一電源電圧の場合には、従来より大幅に画像コ
ントラスト比が向上すε1= 56.6t = 200
μm のビスマス−シリコン−オキサイドを使用し、こ
の単結晶板の両側面に電子ヒーム蒸着法により3′μm
のビスマス、オルソ汐υ 当する1、 8 KV が単結晶板に印荷され、画像コ
ントラスト比は約40 dBと、従来のポリパラキシリ
レン膜を用いた場合の約2’OdB に対し大幅に向上
した。
Therefore, by forming the insulating layer 2゜2' with bismuth orthosilicate or bismuth-orthogermanate, it is possible to set the voltage of the power supply 4 lower, and when the power supply voltage is the same, the voltage is significantly lower than before. Image contrast ratio improves ε1 = 56.6t = 200
A bismuth-silicon oxide layer with a thickness of 3'μm was used, and a thickness of 3'μm was deposited on both sides of this single-crystal plate by electron beam evaporation.
1.8 KV, equivalent to bismuth, ortho-υ, is applied to the single crystal plate, and the image contrast ratio is approximately 40 dB, which is significantly lower than approximately 2'OdB when using a conventional polyparaxylylene film. Improved.

以上説明した如く、本発明は、絶縁層2,2′をビスマ
ス・オルソシリケイトもしくはビスマスーオルソゲルマ
ネイトにより構成するものであり、この無機絶縁材料は
比較的誘電率が大きいから、電源電圧を従来に比して低
く設定することができる利点がある。従って、同一電源
電圧値で使用する場合には、単結晶板1への印加電圧が
従来に比べて大となるから、光画像素子の出力画像コン
トラスト比が向上するものである。
As explained above, in the present invention, the insulating layers 2 and 2' are made of bismuth orthosilicate or bismuth-orthogermanate, and since this inorganic insulating material has a relatively high dielectric constant, the power supply voltage can be adjusted to a level lower than that of the conventional one. It has the advantage that it can be set lower than . Therefore, when used at the same power supply voltage value, the voltage applied to the single crystal plate 1 is higher than in the conventional case, and the output image contrast ratio of the optical image element is improved.

なお、以上の効果はビスマス、ゲルマニュウム。The above effects are due to bismuth and germanium.

オキサイドに対しても同様であることを確認した。It was confirmed that the same holds true for oxides.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光画像素子の構造説明図である。 1は単結晶板、2,2′は絶縁層、8,3′は透明電極
、4は電源、7は偏光子、9は検光子である。 −1〇−
FIG. 1 is an explanatory diagram of the structure of an optical image element. 1 is a single crystal plate, 2 and 2' are insulating layers, 8 and 3' are transparent electrodes, 4 is a power source, 7 is a polarizer, and 9 is an analyzer. -1〇-

Claims (1)

【特許請求の範囲】[Claims] (1)電気光学効果と光伝導効果を有する単結晶板、該
単結晶板の少なくとも一側面に設けられたビスマス・オ
ルソシリケイト(Bi_4Si_3O_1_2)、又は
ビスマス・オルソゲルマネイト(Bi_4Ge_3O_
1_2)から成る絶縁層、該絶縁層と前記単結晶板とに
電界を加える透明電極を具備したことを特徴とする光画
像素子。
(1) A single crystal plate having an electro-optic effect and a photoconductive effect, bismuth orthosilicate (Bi_4Si_3O_1_2) or bismuth orthogermanate (Bi_4Ge_3O_) provided on at least one side of the single crystal plate.
1_2); and a transparent electrode for applying an electric field to the insulating layer and the single crystal plate.
JP61257177A 1986-10-28 1986-10-28 Optical image element Pending JPS63110416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61257177A JPS63110416A (en) 1986-10-28 1986-10-28 Optical image element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61257177A JPS63110416A (en) 1986-10-28 1986-10-28 Optical image element

Publications (1)

Publication Number Publication Date
JPS63110416A true JPS63110416A (en) 1988-05-14

Family

ID=17302751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61257177A Pending JPS63110416A (en) 1986-10-28 1986-10-28 Optical image element

Country Status (1)

Country Link
JP (1) JPS63110416A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02244117A (en) * 1989-03-17 1990-09-28 Ngk Insulators Ltd Optical image converting element
US5085503A (en) * 1989-09-19 1992-02-04 Ngk Insulators, Ltd. Spatial light modulating element using uniaxial single crystal of oxide as insulating layer
US5227902A (en) * 1990-05-16 1993-07-13 Victor Company Of Japan, Ltd. Spatial light modulator with a photoconductor on each side of a light modulation layer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02244117A (en) * 1989-03-17 1990-09-28 Ngk Insulators Ltd Optical image converting element
US5085503A (en) * 1989-09-19 1992-02-04 Ngk Insulators, Ltd. Spatial light modulating element using uniaxial single crystal of oxide as insulating layer
US5227902A (en) * 1990-05-16 1993-07-13 Victor Company Of Japan, Ltd. Spatial light modulator with a photoconductor on each side of a light modulation layer

Similar Documents

Publication Publication Date Title
US4012119A (en) Direct current liquid crystal display with highly reflecting dielectric mirror
US4786128A (en) Device for modulating and reflecting electromagnetic radiation employing electro-optic layer having a variable index of refraction
US4037932A (en) Electrooptic-photoconductor sandwich using actinic readout light
US4093357A (en) Cermet interface for electro-optical devices
US3317266A (en) Electrochromic light valve
JPS6212894B2 (en)
US4206979A (en) Electro-optic modulator
JPS63110416A (en) Optical image element
Salvo Solid-state light valve
US3726585A (en) Electrically modulated radiation filters
US4390246A (en) Electrochromic device by oblique evaporation to improve the response of coloration and bleaching
US3904272A (en) Mosaic light valve and method of fabricating same
JPS63116119A (en) Optical image element
US3813144A (en) Method and device for color modulation
JPS6212488B2 (en)
US5085503A (en) Spatial light modulating element using uniaxial single crystal of oxide as insulating layer
JPS6159483B2 (en)
JPS607766B2 (en) image conversion element
JP2848741B2 (en) Liquid crystal spatial light modulator
JPH0367218A (en) Optical modulator
JPH03217825A (en) Space optical modulating element
JPH04226427A (en) Space optical modulator using light transmitting polymer as base
TW202309557A (en) Filter
RU2184988C2 (en) Liquid-crystal spatial-time light modulator based on polyimide fuleren-containing for holographic information recording
JPS62100729A (en) Optical image element