JPH02244117A - Optical image converting element - Google Patents

Optical image converting element

Info

Publication number
JPH02244117A
JPH02244117A JP1065039A JP6503989A JPH02244117A JP H02244117 A JPH02244117 A JP H02244117A JP 1065039 A JP1065039 A JP 1065039A JP 6503989 A JP6503989 A JP 6503989A JP H02244117 A JPH02244117 A JP H02244117A
Authority
JP
Japan
Prior art keywords
single crystal
plate
conversion element
optical
optical image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1065039A
Other languages
Japanese (ja)
Other versions
JP2636037B2 (en
Inventor
Shuhei Toyoda
周平 豊田
Yukihisa Osugi
幸久 大杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP6503989A priority Critical patent/JP2636037B2/en
Publication of JPH02244117A publication Critical patent/JPH02244117A/en
Application granted granted Critical
Publication of JP2636037B2 publication Critical patent/JP2636037B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

PURPOSE:To improve optical and electrical characteristics by optically polishing the adhesive surfaces of a single crystal plate having a photoconductive effect and electrooptical effect and insulating plates and adhering the plates by an optical adhesion (optical contact) method. CONSTITUTION:Side face parts 50a, 50b of the single crystal plate 50 having the photoconductive effect and electrooptical effect, side face parts 52a, 52b, 54a, 54b of the insulating plates 52, 54, and side face parts 56b, 58a of electrode plates 56, 58 which face the insulating plates 52, 54 are respectively optically polished. The dust, dirt, etc., of the side face parts 50a, 50b, 52a, 52b, 54a, 54b and 56b, 58a (side face parts A) as the adhesive surfaces are removed and the side face parts A to be adhered are brought into contact with each other and are so held and tightly adhered that these parts are pressed to stick to each other. The optically polished side face parts A are, therefore, put into the optically adhered (optical contact) state. Since adhesive agent of epoxy resins, etc., are not used at the time of such adhesion, various troubles, such as unequal images, due to the adhesive agents are eliminated.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光伝導効果と電気光学効果とを有する単結晶を
利用した光画像変換素子に関し、層詳細には、前記単結
晶からなる平板の両面あるいは片面に絶縁板を介して電
極を取り付ける際、少なくとも前記単結晶板と絶縁板と
を光学的接着(オプチカルコンタクト)法によって接着
することにより光学的、電気的特性を向上することを可
能とする光画像変換素子に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to an optical image conversion element using a single crystal having a photoconductive effect and an electro-optic effect, and in particular, a layer of a flat plate made of the single crystal. When attaching electrodes to both sides or one side through insulating plates, it is possible to improve optical and electrical characteristics by bonding at least the single crystal plate and the insulating plate by an optical contact method. The present invention relates to an optical image conversion device.

[従来の技術] 光画像変換素子は、F ROM (PockelesR
eadout 0ptical Modulator)
素子とも称され、空間光変調器に属する素子である。す
なわち、空間的な分布を有する入力情報、例えば、画像
等の入力光情報に所定の強度変調を与え、出力光情報を
得るように作用する素子である。
[Prior art] The optical image conversion element is F ROM (Pockeles®
eadout 0ptical Modulator)
It is also called an element and belongs to a spatial light modulator. That is, it is an element that applies a predetermined intensity modulation to input information having a spatial distribution, for example, input optical information such as an image, and operates to obtain output optical information.

さらに具体的に説明すると、光画像変換素子にX線また
は青色光を照射して画像情報を書き込み、記憶させ、読
み出しの際に赤色光を照射することにより記録された情
報に応じて赤色光に変調が加えられて出力画像情報が得
られるものであり、この記録および出力の過程は記録情
報を消去することで何度でも繰り返し実施することが出
来る特性を有する。
To explain more specifically, image information is written and stored by irradiating the optical image conversion element with X-rays or blue light, and red light is converted into red light according to the recorded information by irradiating it with red light during readout. Output image information is obtained by applying modulation, and this recording and output process has the characteristic that it can be repeated any number of times by erasing the recorded information.

従って、このように動作する光画像変換素子の使用用途
としては画像の色変換、X線画像の検出、階調調整、輪
郭強調、ITC変換および並列論理演算等を掲げること
が出来る。すなわち、色変換においては、読出光に均一
な強度分布の光を使うことにより記録画像と同一の画像
が出力される特性を利用して書込光に青色、読出光に赤
色の光を使用することにより、青色から赤色への画像の
色の変換が出来る。また、X線画像の検出としては、前
記したように、書込光にX線を使用することが出来るこ
とから、この記録画像を読み出すことによりX線画像の
検出が出来る。さらに、階調調整、輪郭強調に際しては
記録画像の続出時に適当な操作を実施すると、続出画像
の濃淡の調整、ネガ/ポジの反転、輪郭の強調等の処理
が行なえる。また、ITC変換とは読出光にレーザを用
い、インコヒーレント光からなる画像をコヒーレント光
による画像へ変換出来る処理をいう。この場合、コヒー
レント光による画像はフーリエ変換、ホログラフィ処理
等、様々な光学処理が出来るので、ITC変換による処
理により幅広い有用な用途を持つに至る。また、並列論
理演算とは画像の強度をハイレベルあるいはローレベル
の2値レベルに対応させ、さらにある論理情報を読み出
した画像を読出光とし、続出時に適当な操作を付与する
ことにより記録情報との間に論理積、論理和等の論理演
算を行い、この演算結果を出力画像として取り出すこと
が出来る処理をいう。
Therefore, applications of the optical image conversion element operating in this manner include image color conversion, X-ray image detection, gradation adjustment, edge enhancement, ITC conversion, and parallel logical operations. In other words, in color conversion, blue light is used as the write light and red light is used as the read light, taking advantage of the property that an image identical to the recorded image is output by using light with a uniform intensity distribution as the read light. This allows the color of the image to be converted from blue to red. Furthermore, as described above, since X-rays can be used as the writing light for detecting an X-ray image, the X-ray image can be detected by reading out this recorded image. Furthermore, when adjusting gradation and emphasizing edges, if appropriate operations are performed when recording images are successively produced, processing such as adjusting the shading, reversing negative/positive, emphasizing edges, etc. of successive images can be performed. Further, ITC conversion is a process that uses a laser as a readout light and can convert an image made of incoherent light into an image made of coherent light. In this case, since images produced by coherent light can be subjected to various optical processing such as Fourier transformation and holography processing, the processing by ITC transformation has a wide range of useful applications. Parallel logical operations also involve making the intensity of an image correspond to a binary level of high level or low level, and using an image that has read out certain logical information as the readout light, and applying appropriate operations when successive readings are performed to read out recorded information. It is a process in which logical operations such as AND and OR are performed between the images, and the results of these operations can be extracted as an output image.

この際、光の並列特性を利用して複数のデータを時間的
に並列して処理することが出来ることから高速の論理演
算を実行することが可能となる。
At this time, multiple pieces of data can be processed in parallel in time by utilizing the parallel characteristics of light, making it possible to perform high-speed logical operations.

このように種々の応用分野の存在する光画像変換素子は
ビスマスシリコンオキサイドBI123I020 (以
下、BSOという)等の単結晶の光伝導効果、電気光学
効果を利用した素子である。ここで、光伝導効果とは、
誘電体あるいは半導体中に光が入射すると、入射光に比
例したキャリヤ電荷が生成され抵抗率が下がり、電圧を
印加することにより光電流を流すことが出来る効果をい
う。例えば、単結晶がBSOである場合には、X線、青
色光でこの効果が大きく、逆に赤色光では殆ど生じない
As described above, optical image conversion elements that have various application fields are elements that utilize the photoconductive effect and electro-optic effect of single crystals such as bismuth silicon oxide BI123I020 (hereinafter referred to as BSO). Here, the photoconductive effect is
When light enters a dielectric or semiconductor, carrier charges proportional to the incident light are generated, the resistivity decreases, and photocurrent can be caused to flow by applying a voltage. For example, when the single crystal is BSO, this effect is large with X-rays and blue light, and conversely, it hardly occurs with red light.

一方、電気光学効果とはここではポッケルス効果を意味
し、単結晶中に電界が印加されると当該単結晶の屈折率
が電界の大きさに応じて複屈折性を示す効果をいい、単
結晶がBSOの場合には電界に垂直な方向にn、 、n
、軸が出来る。従って、電界に平行に入射した直線偏光
は電界の大きさに応じた楕円率をもつ楕円偏光になって
透過される。
On the other hand, the electro-optic effect here refers to the Pockels effect, which is an effect in which when an electric field is applied to a single crystal, the refractive index of the single crystal exhibits birefringence depending on the magnitude of the electric field. When is BSO, n, , n in the direction perpendicular to the electric field
, an axis is created. Therefore, linearly polarized light incident parallel to the electric field is transmitted as elliptically polarized light having an ellipticity corresponding to the magnitude of the electric field.

このような属性を有する光画像変換素子の原理的な構成
を第1図に示す。図において、参照符号2で示される光
画像変換素子は光伝導効果と電気光学効果を有する単結
晶板、例えば、BS○S○晶4を含み、当該BSO単結
晶4の両面部に絶縁板6を介して透明電極8が取着され
る構成とされる。
FIG. 1 shows the basic structure of an optical image conversion element having such attributes. In the figure, the optical image conversion element indicated by reference numeral 2 includes a single crystal plate having a photoconductive effect and an electro-optic effect, for example, a BS○S○ crystal 4, and an insulating plate 6 is provided on both sides of the BSO single crystal 4. The structure is such that the transparent electrode 8 is attached via.

次に、このように構成される光画像変換素子2の動作・
手順を第2図a乃至eにより説明する。
Next, the operation and operation of the optical image conversion element 2 configured as described above will be explained.
The procedure will be explained with reference to FIGS. 2a to 2e.

先ず、第2図aに示すように、透明電極8間に電圧源1
0を接続し、所定電圧の直流電圧を印加する。この場合
、画像変換素子2内の電位勾配Eh(n=1.2)は、
図aの参照符号E1 に示すように、BSO単結晶4内
では空間的に−様な電界になる。なお、従来技術の理解
を容易にするために電位勾配Eイについて当該BSO単
結晶2の上下部分領域について個別に表示し、その際、
添字nの数字が同一の値である場合には同一の電位勾配
を表すものとする。
First, as shown in FIG. 2a, a voltage source 1 is connected between the transparent electrodes 8.
0 and apply a predetermined DC voltage. In this case, the potential gradient Eh (n=1.2) within the image conversion element 2 is
As shown by reference numeral E1 in Figure a, a spatially -like electric field occurs within the BSO single crystal 4. In order to facilitate understanding of the prior art, the potential gradient E is shown separately for the upper and lower partial regions of the BSO single crystal 2, and in this case,
When the numbers in the subscript n have the same value, they represent the same potential gradient.

そこで、書き込みに際しては、第2図すに示すように、
当該光画像変換素子2の下半分領域2aを遮光し、上半
分領域2bのみに青色光あるいはX線による画像を有す
る光14を入射させる。この場合、前記光14の入射光
量に応じてBS○S○晶4内に符号のまたはeで表す正
負のキャリヤ16.18が発生する。このようにして生
成されたキャリヤ16.18は電圧源10によって生成
された外部電界によるクーロン力でBS○単結単結晶4
靖 板6の存在によってそれ以上の移動は妨げられ、キャリ
ヤ16、18はBSO単結晶4の両端面側に蓄積される
。この分極され蓄積されたキャリア16、18の密度は
書込光の強度の情報に対応する。
Therefore, when writing, as shown in Figure 2,
The lower half region 2a of the optical image conversion element 2 is shielded from light, and the light 14 having an image formed by blue light or X-rays is incident only on the upper half region 2b. In this case, positive and negative carriers 16 and 18, represented by the sign or e, are generated in the BS○S○ crystal 4 according to the amount of incident light 14. The carriers 16 and 18 generated in this way are transferred to the BS○ single crystal 4 by Coulomb force due to the external electric field generated by the voltage source 10.
The presence of the mortar plate 6 prevents further movement, and the carriers 16 and 18 accumulate on both end faces of the BSO single crystal 4. The density of the polarized and accumulated carriers 16, 18 corresponds to information on the intensity of the writing light.

この場合、分極したキャリヤ16、18は外部電界と反
対方向の電界を生成する。従って、結晶に印加される電
界は外部電界とキャリヤ16、18による電界の和とな
る。換言すれば、キャリヤ密度の大きい部分はど結晶内
の電界が小さくなる(電位勾配E2参照)。結局、書込
画像の情報はBSO単結晶4内の電界の強度分布に置き
換えられることになる。この状態で当該光画像変換素子
2を暗所に保持すると、BSO単結晶4は再び絶縁体と
なるため、分極したキャリヤ16、18はそのまま保持
され、画像情報は長時間記録されることになる。
In this case, the polarized carriers 16, 18 generate an electric field in the opposite direction to the external electric field. Therefore, the electric field applied to the crystal is the sum of the external electric field and the electric field due to carriers 16 and 18. In other words, the electric field within the crystal becomes smaller in the portion where the carrier density is high (see potential gradient E2). In the end, the information of the written image is replaced by the electric field intensity distribution within the BSO single crystal 4. If the optical image conversion element 2 is kept in a dark place in this state, the BSO single crystal 4 becomes an insulator again, so the polarized carriers 16 and 18 are retained as they are, and image information is recorded for a long time. .

次に、読み出しするに際して、先ず、ネガ画像を出力す
る場合について説明する。この場合、第2図Cに示すよ
うに、光伝導効果を持たない光20、従って、書込情報
を破壊しない光20、例えば、光強度の小さい赤色光2
0を入射させる。
Next, when reading out, first, a case where a negative image is output will be explained. In this case, as shown in FIG. 2C, light 20 that does not have a photoconductive effect, therefore does not destroy written information, for example, red light 20 with low light intensity.
Inject 0.

そこで、図示しない偏光子を透過した直線偏光はBSO
単結晶4内の電界分布に応じた楕円偏光に変換されて当
該BSO単結晶4を通過する。
Therefore, the linearly polarized light transmitted through a polarizer (not shown) is BSO
The light is converted into elliptically polarized light according to the electric field distribution within the single crystal 4 and passes through the BSO single crystal 4.

次いで、前記偏光子と直交状態に配置された検光子(図
示せず)を透過し電界分布に応じた光強度分布を持つ画
像情報を有する赤色光22が出力される。この画像情報
を有する赤色光22は、原画像に対してネガ画像の情報
を有する。
Next, red light 22 is transmitted through an analyzer (not shown) disposed perpendicular to the polarizer, and is outputted as red light 22 having image information having a light intensity distribution according to the electric field distribution. The red light 22 having this image information has information of a negative image with respect to the original image.

次に、ポジ画像を読み出す際には、第2図dに示すよう
に、続出時に電圧源10を短絡し外部電界を零値とする
ことによりBSO単結晶4内の電界はキャリヤ16、1
8によって生成された電界のみとなる(電位勾配E,参
照)。この状態において、画像情報を有する赤色光22
は原画像に対してポジ画像の情報を有する。
Next, when reading out a positive image, as shown in FIG.
8 (see potential gradient E). In this state, the red light 22 with image information
has information of a positive image with respect to the original image.

次いで、書き込み画像を消去する際には、第2図eに示
すように、透明電極8間を短絡して光強度の大きい赤色
光24を照射すると、分極していたキャリヤ16、18
は再結合して元の状態に戻る。この場合、単結晶には電
圧が印加されていないので零レベル電位勾配E4になる
Next, when erasing the written image, as shown in FIG.
are recombined and return to their original state. In this case, since no voltage is applied to the single crystal, the potential gradient becomes zero level E4.

[発明が解決しようとする課題] 以上のように動作する光画像変換素子は、実際には第3
図に示すように構成される。すなわち、BS○S○晶4
の両側部に絶縁板6および透明電極8を取着する際、エ
ポキシ樹脂等の光学接着剤層32および34を介して取
着される。
[Problem to be solved by the invention] The optical image conversion element that operates as described above is actually a third
It is configured as shown in the figure. In other words, BS○S○ Akira 4
When attaching the insulating plate 6 and the transparent electrode 8 to both sides of the substrate, the insulating plate 6 and the transparent electrode 8 are attached via optical adhesive layers 32 and 34 such as epoxy resin.

然しながら、このような光学接着剤層32、34を介在
することにより、接着剤の厚みを原因として前記BSO
単結晶4に印加される電圧が低下し、画像の形成に必要
な電圧源の電圧を高(しなければならないという不都合
が生ずる。また、光学接着剤層32.34の厚みの不均
一性に起因して続出画像に明暗むらが生じる。さらに、
光学接着剤層32.34の硬化、収縮が発生し、これに
よってBS○単結晶4、絶縁板6、透明電極8が歪み、
結果として、続出画像に歪が発生する。その上、光学接
着剤層32.34中に気泡が混入する場合もあり、この
場合においても続出画像が歪むことになる。その上、さ
らにBSO単結晶4に電圧を印加することによって生ず
る当該BSO単結晶4の圧電効果により結晶が若干歪み
、この歪を原因としてすでに硬化している光学接着剤層
32が歪応力を吸収し切れず、絶縁板6がBSO単結晶
4から剥がれる虞が存在する。さらにまた、接着剤層3
2および34の境界面およびBSO単結晶4内で光の多
重反射・による干渉縞の影響が出易くなり、結果として
、読出画像が劣化するという種々の不都合が存在してい
る。
However, by interposing such optical adhesive layers 32 and 34, the above-mentioned BSO
The voltage applied to the single crystal 4 decreases, causing the inconvenience that the voltage of the voltage source necessary for image formation must be increased.Furthermore, the non-uniformity of the thickness of the optical adhesive layers 32 and 34 As a result, uneven brightness occurs in successive images.Furthermore,
Hardening and shrinkage of the optical adhesive layers 32 and 34 occur, and as a result, the BS○ single crystal 4, the insulating plate 6, and the transparent electrode 8 are distorted.
As a result, distortion occurs in the successive images. Moreover, air bubbles may be mixed into the optical adhesive layer 32, 34, and the subsequent images will also be distorted in this case. Furthermore, the crystal is slightly distorted due to the piezoelectric effect of the BSO single crystal 4 caused by applying a voltage to the BSO single crystal 4, and this distortion causes the optical adhesive layer 32 that has already hardened to absorb the strain stress. There is a possibility that the insulating plate 6 may be peeled off from the BSO single crystal 4 due to the insulating plate 6 not being completely removed. Furthermore, adhesive layer 3
2 and 34 and within the BSO single crystal 4, interference fringes due to multiple reflections of light are likely to occur, resulting in various disadvantages such as deterioration of the readout image.

本発明は前記の不都合を悉(克服するためになされたも
のであって、少なくともBSO等の単結晶と絶縁板との
接合を光学的接着(オプチカルコンタクト)により行う
ことにより、接着剤を介することなく、従って、光学的
歪のない優れた特性の光画像変換素子を提供することを
目的とする。
The present invention has been made in order to overcome the above-mentioned disadvantages, and at least connects a single crystal such as BSO and an insulating plate by optical bonding (optical contact). Therefore, it is an object of the present invention to provide an optical image conversion element with excellent characteristics without optical distortion.

[課題を解決するための手段] 前記の課題を解決するために、本発明は光伝導効果と電
気光学効果を有する単結晶板と、当該単結晶板の少なく
とも一側面に取着される絶縁板と、当該絶縁板を介して
前記単結晶板に電界を印加する電極層とを備えた光画像
変換素子において、少なくとも前記単結晶板と絶縁板と
の対向する面を研磨した後、相互に圧着することにより
当該単結晶板と絶縁板とを光学的接着状態にしたことを
特徴とする。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides a single crystal plate having a photoconductive effect and an electro-optic effect, and an insulating plate attached to at least one side of the single crystal plate. and an electrode layer that applies an electric field to the single crystal plate through the insulating plate, in which at least opposing surfaces of the single crystal plate and the insulating plate are polished, and then they are pressed together. By doing so, the single crystal plate and the insulating plate are brought into an optically bonded state.

また、本発明は光伝導効果と電気光学効果を有する単結
晶板と、当該単結晶板の少な(とも−側面に取着される
絶縁板と、当該絶縁板を介して前記単結晶板に電界を印
加する電極板とを備えた光画像変換素子において、前記
単結晶板と絶縁板および電極板の夫々対向する面を研磨
した後、相互に圧着することにより当該単結晶板と絶縁
板および電極板とを光学的接着状態にしたことを特徴と
する。
The present invention also provides a single-crystal plate having a photoconductive effect and an electro-optic effect, an insulating plate attached to a side surface of the single-crystal plate, and an electric field applied to the single-crystal plate via the insulating plate. In the optical image conversion element, the monocrystalline plate, the insulating plate, and the electrode plate are bonded together after polishing the opposing surfaces of the single crystal plate, the insulating plate, and the electrode plate. It is characterized by being optically bonded to the plate.

[作用コ 光伝導効果と電気光学効果を有する単結晶板と絶縁板と
電極層または電極板とからなる光画像変換素子を作製す
る際、少なくとも単結晶板と絶縁板との接触面を研磨し
、相互に密着させた後、所定の荷重を印加することによ
り光学的接着状態とし、電気的、光学的特性の優れた光
画像変換素子が得られた。
[Operation] When producing an optical image conversion element consisting of a single crystal plate, an insulating plate, and an electrode layer or electrode plate having photoconductive effects and electro-optic effects, at least the contact surface between the single crystal plate and the insulating plate is polished. After bringing them into close contact with each other, a predetermined load was applied to form an optically bonded state, and an optical image conversion element with excellent electrical and optical properties was obtained.

[実施例] 次に、本発明に係る光画像変換素子について好適な実施
例を挙げ、添付の図面を参照しながら以下詳細に説明す
る。
[Example] Next, preferred examples of the optical image conversion element according to the present invention will be described in detail with reference to the accompanying drawings.

第4図において、参照符号50は光伝導効果と電気光学
効果を有する単結晶板を示し、当該単結晶板としては、
B112SiOzo、B 112 G e O20等が
採用される。この単結晶板50の両側面部50a、50
bに離間した状態で絶縁板52.54および金属の酸化
物等からなる透明の電極板56.58が図示しない加工
治具を用いて平行に配設される。
In FIG. 4, reference numeral 50 indicates a single crystal plate having a photoconductive effect and an electro-optic effect, and the single crystal plate includes:
B112SiOzo, B112GeO20, etc. are employed. Both side surfaces 50a, 50 of this single crystal plate 50
Insulating plates 52, 54 and transparent electrode plates 56, 58 made of metal oxide or the like are arranged in parallel with each other while being spaced apart from each other by using a processing jig (not shown).

ここで、絶縁板52.54としては光学ガラスあるいは
単結晶が採用され、光学ガラスとしては、ホウケイ酸ガ
ラス、石英ガラス等が採用され、一方、単結晶としては
、雲母、L i N b O3、L i T a Os
等が採用される。また、前記電極板56.58としては
、その基材として光学ガラス、例えば、ホウケイ酸ガラ
スが採用され、当該電極板56.58の側面部56a、
58bにはその全面にIn*03、S n O2等の金
属酸化物が蒸着され透明電極とされている。
Here, optical glass or single crystal is used as the insulating plates 52 and 54, and borosilicate glass, quartz glass, etc. are used as the optical glass, and on the other hand, as the single crystal, mica, L i N b O3, L i T a Os
etc. will be adopted. Further, as the electrode plate 56.58, optical glass, for example, borosilicate glass is adopted as the base material, and the side surface portion 56a of the electrode plate 56.58,
A metal oxide such as In*03 or SnO2 is vapor-deposited on the entire surface of 58b to form a transparent electrode.

そして、前記単結晶板50、絶縁板52.54の側面部
50a、50b、52a、52b、54a、54bと電
極板56.5Bの絶縁板52.54に対向する側面部5
6b、58aは夫々光学研磨されている。それらの表面
粗さ(中心線平均粗さ:R1)は、0.1μm以下とさ
れ、光散乱を可及的に少なくするということから、好ま
しくは0.02μm以下が望ましい。また、それらの平
面度は2λ(λ=546 nm)以下で可能であるが、
はがれ易い、干渉縞が生じるといった問題が発生するこ
ともあり、好ましくはλ以下、さらに好ましくはλ/2
以下が望ましい。
The side portions 50a, 50b, 52a, 52b, 54a, 54b of the single crystal plate 50, the insulating plates 52.54, and the side portions 5 facing the insulating plates 52.54 of the electrode plates 56.5B
6b and 58a are each optically polished. Their surface roughness (center line average roughness: R1) is 0.1 μm or less, and preferably 0.02 μm or less in order to reduce light scattering as much as possible. In addition, their flatness can be less than 2λ (λ = 546 nm), but
Problems such as easy peeling and interference fringes may occur, so it is preferably less than λ, more preferably λ/2.
The following are desirable.

前記単結晶板50、絶縁板52.54および電極板56
.58の側面部50a、50b、52a、52b、54
a154b、56a、56bおよび58a、58bの大
きさは1〜200mm角であり、好ましくは10〜10
0mm角である。また、前記単結晶板50の厚みは、0
.05〜5mmとされ、好ましくは0.3〜Q、 3m
mとされる。さらに、前言己絶縁板52.54の厚みは
、その材質がガラス、雲母の場合には0.002〜1m
fIlとされ、好ましくは0.01〜0.03mmとさ
れる。また、その材質としてL i N b O3、L
 i Ta O3単結晶を用いる場合は0.01〜5m
mとされ、好ましくは0.1〜1mmとされる。
The single crystal plate 50, the insulating plates 52 and 54, and the electrode plate 56
.. 58 side parts 50a, 50b, 52a, 52b, 54
The size of a154b, 56a, 56b and 58a, 58b is 1 to 200 mm square, preferably 10 to 10 mm square.
It is 0 mm square. Further, the thickness of the single crystal plate 50 is 0.
.. 05~5mm, preferably 0.3~Q, 3m
It is assumed that m. Furthermore, the thickness of the self-insulating plates 52 and 54 is 0.002 to 1 m when the material is glass or mica.
fIl, preferably 0.01 to 0.03 mm. In addition, its materials include L i N b O3, L
i 0.01-5m when using TaO3 single crystal
m, preferably 0.1 to 1 mm.

このような構成において、先ず、接着面としての側面部
50a、50bs 52a、52b、54a。
In such a configuration, first, the side portions 50a, 50bs 52a, 52b, 54a serve as adhesive surfaces.

54bおよび56b、58a(以下、これらを併せて側
面部Aという)のゴミ、はこり等を除去する。
Remove dust, clumps, etc. from 54b, 56b, and 58a (hereinafter collectively referred to as side surface portion A).

次いで、接着する側面部へ同士を接触させ、相互に圧着
するように保持して密着させる。これによって光学研磨
された側面部へ同士が光学的接着(オプチカルコンタク
ト)状態とされる。
Next, the side parts to be bonded are brought into contact with each other, and held so as to be pressed against each other so as to be brought into close contact. As a result, the optically polished side surfaces are brought into an optical bonding state (optical contact).

なお、光学的接着状態に至らしめるための方法として、
純水の中で、接着しようとする板同士を密着させ、次い
で密着した板同士を取り出し、水が分子膜になるまで乾
燥させることで可能となる方法を挙げることが出来る。
In addition, as a method to reach an optically bonded state,
One possible method is to bring the boards to be bonded into close contact with each other in pure water, then take out the stuck boards and dry them until the water becomes a molecular film.

なお、上記の実施例において電極板56.58を省略し
、絶縁板52と54の厚みを増加して当該絶縁板52.
54の側面部52a、54bに前記したIn2O5、S
 n 02等の金属酸化物を蒸着して電極層を形成して
もよいことは言うまでもない。
Note that in the above embodiment, the electrode plates 56 and 58 are omitted, and the thickness of the insulating plates 52 and 54 is increased.
In2O5, S described above on the side parts 52a and 54b of 54
It goes without saying that the electrode layer may be formed by vapor depositing a metal oxide such as n02.

このように作成された光画像変換素子は第2図a乃至e
に示した説明と路間等に作用する。
The optical image conversion device thus created is shown in Figures 2a to 2e.
It acts on the explanation shown in and between the roads.

この場合、本実施例に係る光画像変換素子は接着に際し
エポキシ樹脂等の接着剤を使用しないことから、当該接
着剤に起因する画像むら等の種々の不都合を解消し得る
ことが出来る利点が得られる。
In this case, since the optical image conversion element according to this embodiment does not use an adhesive such as an epoxy resin for bonding, it has the advantage that various inconveniences such as image unevenness caused by the adhesive can be eliminated. It will be done.

以下、具体的な実施例について説明する。Specific examples will be described below.

実施例1 引上げ法により作製したBi、、SiO2゜、単結晶か
ら30mm830mmx 800μm’の(100)面
の単結晶板を切り出し、その両面を平面度λ/4に光学
研磨した。絶縁板として40mm x 40mm x 
30μm’のホウケイ酸ガラスを用い、電極板としては
40mm x 40mm x 4 mm’の平面度λ/
4に光学研磨されたホウケイ酸ガラスに金属の酸化膜で
あるITO膜を付けたものを使用とした。
Example 1 A 30 mm x 830 mm x 800 μm' (100)-plane single crystal plate was cut out from a Bi, SiO2° single crystal produced by a pulling method, and both sides of the plate were optically polished to a flatness of λ/4. 40mm x 40mm x as insulation board
Using 30 μm' borosilicate glass, the electrode plate was 40 mm x 40 mm x 4 mm' with a flatness of λ/
4. Optically polished borosilicate glass with an ITO film, which is a metal oxide film, was used.

上記単結晶板の両面に絶縁板を密着させ相互に圧着する
ようにして光学的接着(オプチカルコンタクト)法で接
着した後、電極板をその両側にさらに密着させ相互に圧
着するようにして光学的接着法で接着し光画像変換素子
を作製した。
After the insulating plates are brought into close contact with both sides of the single crystal board and adhered to each other by optical contact, electrode plates are further brought into close contact with both sides of the single crystal board and pressed together to form an optical contact. An optical image conversion element was produced by adhering using an adhesive method.

一方、比較のために単結晶板と絶縁板とを光学接着剤で
接着した後、電極板をその両側に光学接着剤で接着した
従来技術に係る光画像変換素子を作製した。
On the other hand, for comparison, an optical image conversion element according to the prior art was fabricated by bonding a single crystal plate and an insulating plate with an optical adhesive, and then bonding electrode plates to both sides with an optical adhesive.

本漬で作製した素子にHe−Neレーザを透過させ、透
過波面の観察および空間周波数スペクトルの観察を行っ
たところ、接着剤を用いた素子に比べ、波面収差のない
良好な特性となった。その特性を表1に表に示す。
When a He-Ne laser was transmitted through the element fabricated by Honzuke and the transmitted wavefront and spatial frequency spectrum were observed, it was found that the element had better characteristics with no wavefront aberration than the element using adhesive. Its characteristics are shown in Table 1.

表1 なお、表1において、半波長電圧とは画像書込用電圧に
対応する電圧であり、解像度(lp/w)とはl s幅
中の確認し得る白黒の線対(line pair)数を
表す。
Table 1 In Table 1, the half-wave voltage is the voltage corresponding to the image writing voltage, and the resolution (lp/w) is the number of black and white line pairs that can be confirmed in the l s width. represents.

また、本実施例に係る光画像変換素子の熱衝撃性等の耐
久性についても接着剤を用いた従来法に比較して著しく
向上した。
Furthermore, the durability such as thermal shock resistance of the optical image conversion element according to this example was significantly improved compared to the conventional method using an adhesive.

実施例2 引上げ法により作製したB ll 25 r 02゜単
結晶から30mm x 30mm x 800 μm 
tの(100)面の板を切り出し、その両面を平面度λ
/4に光学研磨した。絶縁板として40mm x 40
mm X 10μm’の雲母板を用い、電極板としては
4Qmm X4Qmm X 4 mmtの平面度λ/4
に光学研磨されたホウケイ酸ガラスの片面側面部にIT
O膜を付けたものを使用した。
Example 2 30 mm x 30 mm x 800 μm from B ll 25 r 02° single crystal produced by pulling method
Cut out a (100) plane plate of t, and have both sides with flatness λ
Optically polished to /4. 40mm x 40 as an insulation board
A mica plate of mm x 10 μm' is used, and the flatness of the electrode plate is 4Q mm
IT on one side of optically polished borosilicate glass
One with an O film was used.

上記単結晶板の両面に絶縁板を密着させ光学的接着(オ
プチカルコンタクト)法で接着した後、電極板をその両
側に密着させて光学的接着(オプチカルコンタクト)法
で接着し画像変換素子を作製した。その特性は表1にお
ける素子と路間等であった。
After insulating plates were brought into close contact with both sides of the single crystal plate and adhered by optical contact method, electrode plates were brought into close contact with both sides and adhered by optical contact method to fabricate an image conversion element. did. Its characteristics were as shown in Table 1, such as between the element and the path.

実施例3 引上げ法により作製したB 112 S i O2゜、
単結晶より30mm x 3Qmm x 300 p 
m ’の(100)面の単結晶板を切り出し、その両面
を平面度λ/4に光学研磨した。絶縁板として40mm
 X 40mm X300 μm’のL r N b 
Ozを用い、電極板としては4Qmm X4Q+nm 
x 4 +r+m’の平面度λ/4に光学研磨されたホ
ウケイ酸ガラスにITO膜を付けたものを使用した。
Example 3 B 112 S i O2° produced by the pulling method,
30mm x 3Qmm x 300p from single crystal
A single crystal plate of the (100) plane of m' was cut out, and both sides thereof were optically polished to a flatness of λ/4. 40mm as an insulating plate
L r N b of X 40 mm X 300 μm'
Using Oz, the electrode plate is 4Qmm X4Q+nm
Borosilicate glass optically polished to a flatness of x 4 +r+m' of λ/4 with an ITO film attached thereto was used.

上記単結晶板の一側面に絶縁板を密着させ光学的接着(
オプチカルコンタクト)法で接着した後、電極板をその
両側に密着させて光学的接着(オプチカルコンタクト)
法で接着し画像変換素子を作製した。
An insulating plate is closely attached to one side of the single crystal plate and optical bonding (
After bonding using the optical contact method, electrode plates are attached to both sides of the electrode plates to create an optical bond.
An image conversion element was fabricated by adhering the two using a method.

なお、以上の実施例においてホウケイ酸ガラスとしては
パイレックスガラス(コーニング社の商品名)あるいは
BK7ガラスを用いることが出来る。
In the above embodiments, Pyrex glass (trade name of Corning Corporation) or BK7 glass can be used as the borosilicate glass.

[発明の効果コ 以上のように、本発明によれば、光画像変換素子を作製
する際、光伝導効果と電気光学効果を有する単結晶板と
絶縁板との接着面を光学研磨し、光学的接着(オプチカ
ルコンタクト)法により接着している。このため、接着
に際し接着剤を使用しないことから、接着剤に起因して
発生する当該光画像変換素子を使用する際の続出画像の
歪、あるいは干渉縞等の影響が完全に排除され、さらに
、接着剤の厚みに起因する単結晶に印加される電圧の低
下をもたらすことなく画像の検出に必要な供給電源の電
圧が低く出来、光学的電気的特性の極めて向上した光画
像変換素子が得られる。
[Effects of the Invention] As described above, according to the present invention, when producing an optical image conversion element, the bonding surface between the single crystal plate having the photoconductive effect and the electro-optic effect and the insulating plate is optically polished, and the optical Adhesive using optical contact method. Therefore, since no adhesive is used for bonding, the effects of distortion of subsequent images or interference fringes caused by adhesive when using the optical image conversion element are completely eliminated, and furthermore, The voltage of the power supply required for image detection can be lowered without causing a drop in the voltage applied to the single crystal due to the thickness of the adhesive, and an optical image conversion element with extremely improved optical and electrical properties can be obtained. .

以上、本発明について好適な実施例を挙げて説明したが
、本発明はこの実施例に限定されるものではなく、本発
明の要旨を逸脱しない範囲において種々の改良並びに設
計の変更が可能なことは勿論である。
Although the present invention has been described above with reference to preferred embodiments, the present invention is not limited to these embodiments, and various improvements and changes in design can be made without departing from the gist of the present invention. Of course.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は光画像変換素子の原理を説明するための構成図
、 第2図a乃至eは当該光画像変換素子の作用を説明する
図、 第3図は従来技術に係る光画像変換素子の詳細構成図、 第4図は本発明に係る光画像変換素子の分解構成説明図
、 第5図は本発明に係る光学的接着状態とされた光画像変
換素子の構成説明図である。 50・・・単結晶板     52.54・・・絶縁板
56.58・・・電極板
Fig. 1 is a configuration diagram for explaining the principle of the optical image conversion element, Fig. 2 a to e are diagrams for explaining the operation of the optical image conversion element, and Fig. 3 is a diagram of the optical image conversion element according to the prior art. 4 is an explanatory diagram of the exploded configuration of the optical image conversion element according to the present invention; and FIG. 5 is an explanatory diagram of the configuration of the optical image conversion element in an optically bonded state according to the present invention. 50... Single crystal plate 52.54... Insulating plate 56.58... Electrode plate

Claims (8)

【特許請求の範囲】[Claims] (1)光伝導効果と電気光学効果を有する単結晶板と、
当該単結晶板の少なくとも一側面に取着される絶縁板と
、当該絶縁板を介して前記単結晶板に電界を印加する電
極層とを備えた光画像変換素子において、少なくとも前
記単結晶板と絶縁板との対向する面を研磨した後、相互
に圧着することにより当該単結晶板と絶縁板とを光学的
接着状態にしたことを特徴とする光画像変換素子。
(1) A single crystal plate having a photoconductive effect and an electro-optic effect,
An optical image conversion element comprising an insulating plate attached to at least one side of the single crystal plate, and an electrode layer for applying an electric field to the single crystal plate via the insulating plate, which includes at least the single crystal plate. An optical image conversion element characterized in that the single crystal plate and the insulating plate are brought into an optically bonded state by polishing the surface facing the insulating plate and then press-bonding the single crystal plate and the insulating plate to each other.
(2)請求項1記載の光画像変換素子において、単結晶
板および絶縁板の接触面の表面粗さ(R_a)は0.1
μm以下であり、且つ平面度が2λ以下であることを特
徴とする光画像変換素子。
(2) In the optical image conversion element according to claim 1, the surface roughness (R_a) of the contact surface between the single crystal plate and the insulating plate is 0.1.
An optical image conversion element characterized by having a flatness of μm or less and a flatness of 2λ or less.
(3)請求項1または2記載の光画像変換素子において
、絶縁板の材質は光学ガラスとすることを特徴とする光
画像変換素子。
(3) The optical image conversion element according to claim 1 or 2, wherein the material of the insulating plate is optical glass.
(4)請求項1または2記載の光画像変換素子において
、絶縁板の材質は単結晶とすることを特徴とする光画像
変換素子。
(4) The optical image conversion element according to claim 1 or 2, wherein the material of the insulating plate is a single crystal.
(5)光伝導効果と電気光学効果を有する単結晶板と、
当該単結晶板の少なくとも一側面に取着される絶縁板と
、当該絶縁板を介して前記単結晶板に電界を印加する電
極板とを備えた光画像変換素子において、前記単結晶板
と絶縁板および電極板の夫々対向する面を研磨した後、
相互に圧着することにより当該単結晶板と絶縁板および
電極板とを光学的接着状態にしたことを特徴とする光画
像変換素子。
(5) A single crystal plate having a photoconductive effect and an electro-optic effect,
An optical image conversion element comprising an insulating plate attached to at least one side of the single crystal plate, and an electrode plate for applying an electric field to the single crystal plate via the insulating plate, which is insulated from the single crystal plate. After polishing the opposing surfaces of the plate and electrode plate,
1. An optical image conversion element characterized in that the single crystal plate, an insulating plate, and an electrode plate are brought into an optically bonded state by being pressure-bonded to each other.
(6)請求項5記載の光画像変換素子において、単結晶
板と絶縁板および電極板の接触面の表面粗さ(R_a)
は0.1μm以下であり、且つ平面度が2λ以下である
ことを特徴とする光画像変換素子。
(6) In the optical image conversion element according to claim 5, surface roughness (R_a) of the contact surfaces of the single crystal plate, the insulating plate, and the electrode plate.
is 0.1 μm or less, and the flatness is 2λ or less.
(7)請求項5または6記載の光画像変換素子において
、絶縁板の材質は光学ガラスとすることを特徴とする光
画像変換素子。
(7) The optical image conversion element according to claim 5 or 6, wherein the material of the insulating plate is optical glass.
(8)請求項5または6記載の光画像変換素子において
、絶縁板の材質は単結晶とすることを特徴とする光画像
変換素子。
(8) The optical image conversion element according to claim 5 or 6, wherein the material of the insulating plate is a single crystal.
JP6503989A 1989-03-17 1989-03-17 Optical image conversion device Expired - Lifetime JP2636037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6503989A JP2636037B2 (en) 1989-03-17 1989-03-17 Optical image conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6503989A JP2636037B2 (en) 1989-03-17 1989-03-17 Optical image conversion device

Publications (2)

Publication Number Publication Date
JPH02244117A true JPH02244117A (en) 1990-09-28
JP2636037B2 JP2636037B2 (en) 1997-07-30

Family

ID=13275420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6503989A Expired - Lifetime JP2636037B2 (en) 1989-03-17 1989-03-17 Optical image conversion device

Country Status (1)

Country Link
JP (1) JP2636037B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54128358A (en) * 1978-03-28 1979-10-04 Sumitomo Electric Ind Ltd Production of image converting element
JPS59166916A (en) * 1983-03-11 1984-09-20 Hamamatsu Photonics Kk Manufacture of space optical modulation tube
JPS63110416A (en) * 1986-10-28 1988-05-14 Sumitomo Electric Ind Ltd Optical image element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54128358A (en) * 1978-03-28 1979-10-04 Sumitomo Electric Ind Ltd Production of image converting element
JPS59166916A (en) * 1983-03-11 1984-09-20 Hamamatsu Photonics Kk Manufacture of space optical modulation tube
JPS63110416A (en) * 1986-10-28 1988-05-14 Sumitomo Electric Ind Ltd Optical image element

Also Published As

Publication number Publication date
JP2636037B2 (en) 1997-07-30

Similar Documents

Publication Publication Date Title
Maldonado et al. Strain-biased ferroelectric-photoconductor image storage and display devices
Jaeger et al. Integrated optics Pockels cell high-voltage sensor
US2766659A (en) Device for controlling light intensity
US3653743A (en) Electro-optic devices with acousto-optic effect suppression
CA1278421C (en) Nonlinear optical materials and devices
Darracq et al. Stable photorefractive memory effect in sol-gel materials
JPH027574A (en) Multigate electro-optical modulator
JPH0769526B2 (en) Electro-optical mode converter
JPH0317620A (en) Reading element for charge image information
JPH02244117A (en) Optical image converting element
US5085503A (en) Spatial light modulating element using uniaxial single crystal of oxide as insulating layer
US4678286A (en) Spatial light modulator
JPS5911086B2 (en) light modulator
JP2731220B2 (en) Image conversion element and X-ray image detection method using the same
JPS607766B2 (en) image conversion element
Umegaki et al. Optical bistability using a magneto‐optic modulator
JPH0651341A (en) Spatial optical modulation element
JPH0421819A (en) Light-light converting element
RU1775710C (en) Temperature-compensated two-dimensional optic modulator
JPH0283535A (en) Image information converting element
JP2003177370A (en) Image converting element and its manufacturing method
JP2000258465A (en) Photovoltage sensor
JPH0222621A (en) Optical element and optical parts using this element
JP2599832B2 (en) Manufacturing method of spatial light modulator
JPH04296716A (en) Special optical modulator