JPS62100729A - Optical image element - Google Patents

Optical image element

Info

Publication number
JPS62100729A
JPS62100729A JP24233385A JP24233385A JPS62100729A JP S62100729 A JPS62100729 A JP S62100729A JP 24233385 A JP24233385 A JP 24233385A JP 24233385 A JP24233385 A JP 24233385A JP S62100729 A JPS62100729 A JP S62100729A
Authority
JP
Japan
Prior art keywords
single crystal
crystal plate
films
optical image
image element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24233385A
Other languages
Japanese (ja)
Inventor
Koji Tada
多田 紘二
Masami Tatsumi
雅美 龍見
Yasuo Namikawa
靖生 並川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP24233385A priority Critical patent/JPS62100729A/en
Publication of JPS62100729A publication Critical patent/JPS62100729A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0338Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect structurally associated with a photoconductive layer or having photo-refractive properties

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To improve the contrast ratio of the output image of an optical image element by constituting said element of a composite insulating layer consisting of a single crystal plate and amorphous diamond films and transparent electrodes. CONSTITUTION:Thin films consisting of oxide such as silicon dioxide, zirconia, alumina or yttrium oxide are formed as protective films on the surfaces of the single crystal 1 and thereafter amorphous diamond films which are insulating layers 2,2' are deposited thereon. The transparent electrodes 3, 3' are provided on the surfaces of such thin films. The amorphous diamond films are formed by a plasma CVD method in gaseous methane flow. Since the substrate temp. is low in this case, the optically uniform films are obtd. without the oxygen deficiency on the surface of the single crystal by the dissipation of oxygen from bismuth silicon oxide which is the substrate or the generation of the exfoliation and cracking of the films by the difference in the coefft. of thermal expansion. Then contrast ratio of output image of the optical image element is thus improved.

Description

【発明の詳細な説明】 本発明は、電気光学効果と光伝導効果を有する単結晶板
を用いて画像のインコヒーレント・コヒーレント変換や
画像の一時記憶等を行なう光画像素子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical image device that performs incoherent-coherent conversion of images, temporary storage of images, etc. using a single crystal plate having an electro-optic effect and a photoconductive effect.

第1図は光画像素子の構造を示す図である。単結晶板1
、絶縁層2.2’、透明電極3.3′  及び電源4か
ら構成されている。単結晶板1はビスマス・シリコン拳
オキサイド(BiuSiO2o)やビスマス・ゲルマニ
ウム・オキサイド(Bi+gGeO2o)等の電気光学
効果と波長依存性の光伝導効果を有する単結晶であり、
透明電極3.3′  により絶縁層2.2′を介して電
界が印加される。7は偏光子、9は検光子である。この
光画像素子は、例えばインコヒーレント光の画像をコヒ
ーレント光の画像に変換したり、あるいは画像を一時的
に記憶したりする場合に使用するものであり、例えば次
のように動作するものである。
FIG. 1 is a diagram showing the structure of an optical image element. Single crystal plate 1
, an insulating layer 2.2', a transparent electrode 3.3' and a power source 4. The single crystal plate 1 is a single crystal having an electro-optical effect and a wavelength-dependent photoconductive effect, such as bismuth silicon oxide (BiuSiO2o) or bismuth germanium oxide (Bi+gGeO2o),
An electric field is applied via the insulating layer 2.2' by means of the transparent electrode 3.3'. 7 is a polarizer, and 9 is an analyzer. This optical image element is used, for example, to convert an image of incoherent light into an image of coherent light, or to temporarily store an image. For example, it operates as follows. .

電源4の電圧Vが透明電極3.3′により単結晶板1と
絶縁層2.2′とに印加されると、定常状態においては
単結晶板1及び絶縁層2.2′の厚さとそれぞれの誘電
率で定まる一定の電位分布が光画像素子内部に発生する
。この状態において、単結晶板1が光伝導効果を呈する
波長のインコヒーレン)2書込み画像5を単結晶板1に
結像させると、その照射領域に書込み画像5に対応した
電位分布が形成される。即ち、単結晶板lの光伝導効果
により像の空間的な光強度分布に応じて電子・正孔対が
発生し、この電子・正孔対が各々の極性に応じて各透明
電極3.3′  に移動して、絶縁層2.2′  と単
結晶板1との界面にトラップされ電位分布が形成される
ことになる。
When the voltage V of the power supply 4 is applied to the single crystal plate 1 and the insulating layer 2.2' by the transparent electrode 3.3', in a steady state, the thickness of the single crystal plate 1 and the insulating layer 2.2', respectively A constant potential distribution determined by the dielectric constant of is generated inside the optical image element. In this state, when an incoherent) 2 written image 5 of a wavelength at which the single crystal plate 1 exhibits a photoconductive effect is focused on the single crystal plate 1, a potential distribution corresponding to the written image 5 is formed in the irradiated area. . That is, due to the photoconductive effect of the single crystal plate 1, electron-hole pairs are generated according to the spatial light intensity distribution of the image, and these electron-hole pairs are connected to each transparent electrode 3.3 according to the polarity of each. ', and is trapped at the interface between the insulating layer 2.2' and the single crystal plate 1, forming a potential distribution.

単結晶板1は電気光学効果を有するので、上記電位分布
に応じてその屈折率が変化し、結局、書込み画像5に対
応した屈折率分布が形成される。
Since the single crystal plate 1 has an electro-optical effect, its refractive index changes according to the above-mentioned potential distribution, and eventually a refractive index distribution corresponding to the written image 5 is formed.

前結晶板1として前記ビスマス・シリコン・オキサイド
等を使用する場合には、この結晶板は高抵抗(約101
7Ω・am)  であるため、前述した電子・正孔対は
トラップされた状態で残存し書込み画像5が光画像素子
に蓄積されることになる。
When using the aforementioned bismuth silicon oxide as the pre-crystal plate 1, this crystal plate has a high resistance (approximately 101
7Ω·am), the aforementioned electron-hole pairs remain in a trapped state, and the written image 5 is accumulated in the optical image element.

書込み画像5が単結晶板lに屈折率分布として形成蓄積
された後、単結晶板lの光伝導効果がほとんど生じない
波長のコヒーレント光を読出し光6として偏光子7で直
線偏波して単結晶板1に入射させると、単結晶板1を透
過した光8は単結晶板lの屈折率分布に応じた光学的位
相差を受けている。従って、この透過光8を検光子9で
検出して得た出力光10は再び光学的な強度分布を有す
る光となり、結局インコヒーレントな書込み画像がコヒ
ーレントな画像に変換されたことになる。
After the written image 5 is formed and stored as a refractive index distribution on the single crystal plate l, coherent light of a wavelength that causes almost no photoconductive effect in the single crystal plate l is read out as read light 6, and is linearly polarized by a polarizer 7 to form a single When the light 8 is incident on the crystal plate 1, the light 8 transmitted through the single crystal plate 1 is subjected to an optical phase difference according to the refractive index distribution of the single crystal plate 1. Therefore, the output light 10 obtained by detecting the transmitted light 8 with the analyzer 9 becomes light having an optical intensity distribution again, and as a result, the incoherent written image is converted into a coherent image.

光画像素子において絶縁層2.2′は単結晶板1内部で
発生したキャリアが電源4へ流出するのを防ぐものであ
るから、絶縁抵抗値が高いことが必要であり、また光を
透過するのであるから当然光学的に均質な透明薄膜であ
ることが要求される。
In the optical image element, the insulating layer 2.2' is to prevent carriers generated inside the single crystal plate 1 from flowing out to the power source 4, so it needs to have a high insulation resistance value and also be transparent to light. Therefore, it is naturally required that the film be an optically homogeneous transparent thin film.

従って、絶縁層2.2′の材料としては、絶縁抵抗値が
高く、光学的に均質な透明薄膜が容易に形成可能である
ことが必要である。更に以下に述べる理由により、耐破
壊電圧値及び誘電率が大きいことが必要となる。
Therefore, the material for the insulating layer 2.2' must have a high insulation resistance value and be able to easily form an optically homogeneous transparent thin film. Furthermore, for the reasons described below, it is necessary that the breakdown voltage value and dielectric constant be large.

一般に、光画像素子の出射光強度Tと単結晶板lの印加
電圧Vl  との間には次式に示すような関係亦ある。
Generally, there is a relationship as shown in the following equation between the output light intensity T of the optical image element and the applied voltage Vl of the single crystal plate l.

ただし、vx  は半波長電圧であり、次式で決定され
る定数である。
However, vx is a half-wave voltage and is a constant determined by the following equation.

λ。λ.

・・・(2) X2no”γ4、 λ0; 自由空間における光波長 no: 屈折率 と4□:電気光学係数 (1)式から明らかなように、出方画像のコントラスト
比は印加電圧v1  により決定されるものとなり、V
1=vXのとき最大のコントラスト比が得られる。従っ
て、光画像素子を使用するに当っては通常単結晶板lに
VXQ印加電圧が加わるように電源4が設定されている
...(2) V
The maximum contrast ratio is obtained when 1=vX. Therefore, when using the optical image device, the power source 4 is normally set so that the VXQ applied voltage is applied to the single crystal plate 1.

単結晶板1にVxの電圧を印加するには、第1図のよう
な構造では、電源4の電圧はvx より大きくシナ<て
はならない。いま単結晶板lの厚さ及び誘電率をdi、
ε1、絶縁層2.2′の厚さ及び誘電率をd2.ε2 
とすると、単結晶板1に加わる電圧v1  は次式のよ
うになる。
In order to apply a voltage of Vx to the single crystal plate 1, in the structure shown in FIG. 1, the voltage of the power source 4 must not be greater than vx. Now, the thickness and dielectric constant of the single crystal plate l are di,
ε1, the thickness and dielectric constant of the insulating layer 2.2' are d2. ε2
Then, the voltage v1 applied to the single crystal plate 1 is given by the following equation.

になる。従って、電源4の電圧Vを低く押えて、単結晶
板1に所定の印加電圧を加えるには、単結晶板1の厚さ
dl  と誘電率ε1が一定とすると、絶縁層2.2′
  の厚さd2 は小さくその誘電率ε2は大きい方が
望ましい。厚さd2 は絶縁層2.2′の耐破壊電圧値
により制限され、あまり小さくすると電気的破壊を起こ
すので、結局誘電率ε2の大きなものほど絶縁層2.2
′  に適することになる。
become. Therefore, in order to keep the voltage V of the power source 4 low and apply a predetermined voltage to the single crystal plate 1, if the thickness dl of the single crystal plate 1 and the dielectric constant ε1 are constant, then the insulating layer 2.2'
It is desirable that the thickness d2 is small and the dielectric constant ε2 is large. The thickness d2 is limited by the breakdown voltage value of the insulating layer 2.2', and if it is made too small, electrical breakdown will occur, so the larger the dielectric constant ε2 is, the more the insulating layer 2.2
′.

このように絶縁層2.2′  は上記の諸条件を満たす
必要があり、従来よりポリパラキシリレン、マイカ板、
シリコン絶縁油等の各種の材料が提案されている。しか
し、これら従来の絶縁材料は絶縁抵抗値、耐破壊電圧値
及び光学的に均質で透明な薄膜を容易に形成する点では
ほぼ満足した結果が得られるが、誘電率が比較的小さい
ために電源4の電圧Vを高くしなければならない欠点が
あった。
In this way, the insulating layer 2.2' needs to satisfy the above conditions, and conventionally it is made of polyparaxylylene, mica plate,
Various materials such as silicone insulating oil have been proposed. However, although these conventional insulating materials can provide nearly satisfactory results in terms of insulation resistance, breakdown voltage, and the ability to easily form optically homogeneous and transparent thin films, their relatively low dielectric constant There was a drawback that the voltage V of No. 4 had to be increased.

例えば、ポリパラキシリレンを使用した場合、その誘電
率ε2は3.0であるからε1=56 、 d1=20
0μm のビスマス書シリコン・オキサイドにd2−5
μmの厚さに絶縁層2.2′  を形成すると、電源・
1の電圧Vの約1/2 が絶縁層に印加される結果にな
る。従って、ビスマス−シリコン・オキサイド単結晶の
半波長電圧Vx=3.9KV(ただし、(2)式におい
て、λ。=633μm、no=2.54.γ、1=5X
 10 ” m/V  とする)を加えるためには、そ
の約2倍の7.5KVもの電圧を印加する必要があった
。このような高電圧を繰り返し印加することにより、高
分子膜が劣化し電気特性が著しく低下することがあった
。また、高分子膜が大気中の水分を吸収し絶縁特性が低
くなり素子特性を劣化させる欠点もあった。
For example, when polyparaxylylene is used, its dielectric constant ε2 is 3.0, so ε1=56, d1=20
d2-5 on 0μm bismuth silicon oxide
When the insulating layer 2.2' is formed with a thickness of μm, the power supply and
This results in approximately 1/2 of a voltage V of 1 being applied to the insulating layer. Therefore, half-wave voltage Vx of bismuth-silicon oxide single crystal = 3.9KV (however, in equation (2), λ = 633μm, no = 2.54.γ, 1 = 5X
10" m/V), it was necessary to apply a voltage of 7.5 KV, which is approximately twice that voltage. Repeated application of such high voltage deteriorates the polymer membrane. Electrical characteristics sometimes deteriorated significantly.Also, there was a drawback that the polymer film absorbed moisture in the atmosphere, resulting in lower insulation characteristics and deterioration of device characteristics.

本発明の目的は、前述の欠点を解決し特性を著しく向上
した光画像素子を提供することにある。
An object of the present invention is to provide an optical image element that solves the above-mentioned drawbacks and has significantly improved characteristics.

以下に図面を参照して本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

第1図は本発明の光画像素子の実施例全示す図である。FIG. 1 is a diagram showing all embodiments of the optical image device of the present invention.

本発明の光画像素子が従来の光画像素子と相違する点は
、絶縁層2.2′  として優れた特性を持つアモルフ
ァスダイヤモンドを使用すること、及びビスマス−シリ
コン・オキサイド単結晶1とアモルファスダイヤモンド
からなる絶縁層2.2′との間の一方あるいは両方に該
単結晶1の保護膜として高い固有抵抗と誘電率をもった
二酸化ケイ素、ジルコニア、アルミナ、酸化イツトリウ
ム等の酸化物薄膜を施すことである。
The optical image element of the present invention is different from conventional optical image elements in that amorphous diamond, which has excellent properties, is used as the insulating layer 2.2', and that bismuth-silicon oxide single crystal 1 and amorphous diamond are used. By applying a thin film of an oxide such as silicon dioxide, zirconia, alumina, or yttrium oxide, which has a high specific resistance and dielectric constant, as a protective film for the single crystal 1 on one or both of the insulating layers 2 and 2'. be.

アモルファスダイヤモンド膜は、絶縁抵抗値(体積抵抗
率)が109〜1010Ω・cmと比較的高く誘電率が
4〜5と従来のポリバラキシリレンあるいはシリコン絶
縁油に比べて高く、また、膜の均一性、緻密さにおいて
も優れた性質を有する絶縁膜である。
Amorphous diamond film has a relatively high insulation resistance value (volume resistivity) of 109 to 1010 Ω・cm, and a dielectric constant of 4 to 5, which is higher than conventional polyvaraxylylene or silicone insulating oil, and the film is highly uniform. This is an insulating film that has excellent properties in terms of density.

アモルファスダイヤモンド膜は、メタンガスフロー中で
、プラズマCVD (Chemical vapour
 dep。
Amorphous diamond film is produced by plasma CVD (Chemical vapor deposition) in a methane gas flow.
dep.

5ition)法により形成することができる。この場
合、基板温度は約100°Cと低いため、基板であある
ビスマス・シリコン・オキサイドからの酸素逃散による
単結晶表面の酸素欠損、あるいは、熱膨張率の違いによ
る膜の剥離やひび割れの発生もなく、光学的に均一を膜
を得ることができる。
5ition) method. In this case, since the substrate temperature is as low as approximately 100°C, oxygen vacancies may occur on the single crystal surface due to oxygen escaping from the bismuth silicon oxide substrate, or film peeling or cracking may occur due to differences in thermal expansion coefficients. It is possible to obtain a film that is optically uniform without any problems.

しかし、一方、アモルファス・ダイヤモンド膜は、メタ
ンガスをプラズマCVD法で解離、蒸着させることによ
り形成されるため、メタンガスの解離により水素ガスH
2が生成する。したがってビスマス・シリコン・オキサ
イド単結晶基板は、RF印荷、高温(100°C)、水
素ガス雰囲気という著しい還元性雰囲気におかれること
になり、単結晶表面より酸素欠損が生じる。
However, on the other hand, an amorphous diamond film is formed by dissociating and depositing methane gas using the plasma CVD method.
2 is generated. Therefore, the bismuth silicon oxide single crystal substrate is placed in a highly reducing atmosphere of RF impression, high temperature (100° C.), and hydrogen gas atmosphere, and oxygen vacancies occur from the surface of the single crystal.

本発明では、ビスマス・シリコン・オキサイド単結晶l
の酸素欠損の問題を解決するために、該単結晶1の表面
に先ず比較的高抵抗、高誘電率で絶縁膜としてよ(用い
られている二酸化ケイ素、ジルコニア、アルミナ、酸化
イツトリウム等の酸化物の薄膜を保護膜として施した後
に絶縁層22′であるアモルファスダイヤモンド膜を堆
積させて光画像素子を構成したものである。
In the present invention, bismuth silicon oxide single crystal l
In order to solve the problem of oxygen vacancies in the single crystal 1, an insulating film with relatively high resistance and high dielectric constant is first formed on the surface of the single crystal 1 (oxides such as silicon dioxide, zirconia, alumina, and yttrium oxide are used). The optical image element is constructed by applying a thin film of 1 as a protective film and then depositing an amorphous diamond film as an insulating layer 22'.

以下に保護膜として二酸化ケイ素5i02を用いた場合
の本発明の実施例について更に具体的に説明スる。厚さ
300μmのビスマス・シリコン・オキサイド単結晶板
の両側面に蒸着法、CVD法、スパック法、あるいはス
ピンナー法により厚さ約1000A  の二酸化ケイ素
膜を形成させた後、約500′Cで熱処理を行い膜を緻
密化する。しかる後にプラズマCVDによりアモルファ
スダイヤモンド膜を形成させる。基板温度は約100°
C1約I X 10 ’rorrのメタンガス中での気
相成長により約1μmのアモルファスダイヤモンド膜が
得られた。このアモルファスダイヤモンド膜は膜厚の均
一性が±5%以下であり、ひび割れや剥離のない良好な
膜であった。この薄膜の表面に透明電極を設けて電源4
により電圧Vを印加したところ印加電圧■の94%が単
結晶板に印加され画像コントラスト比は約40dB  
と従来のポリパラキシリレン膜を用いた場合の約20 
d13に対し大幅に向上した。また、保護膜としてジル
コニア、アルミナ、酸化イツトリウムを施した場合も前
記と同様な特性が確認された。
Examples of the present invention in which silicon dioxide 5i02 is used as the protective film will be described in more detail below. After forming a silicon dioxide film with a thickness of about 1000A on both sides of a bismuth silicon oxide single crystal plate with a thickness of 300μm by vapor deposition, CVD, sprocketing, or spinner method, heat treatment was performed at about 500'C. to densify the film. Thereafter, an amorphous diamond film is formed by plasma CVD. Substrate temperature is approximately 100°
An amorphous diamond film of about 1 μm was obtained by vapor phase growth in methane gas of C1 about I×10′ rorr. This amorphous diamond film had a film thickness uniformity of ±5% or less, and was a good film with no cracks or peeling. A transparent electrode is provided on the surface of this thin film, and a power source 4
When voltage V was applied, 94% of the applied voltage ■ was applied to the single crystal plate, and the image contrast ratio was approximately 40 dB.
and about 20 when using a conventional polyparaxylylene membrane.
Significant improvement over d13. Furthermore, similar characteristics to those described above were confirmed when zirconia, alumina, or yttrium oxide was applied as a protective film.

以上説明した如く、本発明の光画像素子は絶縁膜2.2
′  がプラズマCVDにより作成したアモルファスダ
イヤモンド膜ト、ビスマス拳シリコン・オキサイド単結
晶の保護膜として二酸化ケイ素、ジルコニア、アルミナ
、酸化イツトリウム等の酸化物の薄膜とにより構成され
ておりこの無機膜が比較的誘電率が大きいので、電源電
圧が従来の電圧値に比して低く設定することができる利
点がある。従って、従来と同一の電源電圧値で使用する
場合には、本発明では単結晶板1への印加電圧が従来に
比べて大となるので、光画像素子の出力画像コントラス
ト比が向上される利点がある。
As explained above, the optical image element of the present invention has an insulating film 2.2.
' is composed of an amorphous diamond film created by plasma CVD and a thin film of oxides such as silicon dioxide, zirconia, alumina, and yttrium oxide as a protective film for bismuth silicon oxide single crystal. Since the dielectric constant is large, there is an advantage that the power supply voltage can be set lower than the conventional voltage value. Therefore, when used with the same power supply voltage value as the conventional one, the present invention has the advantage that the voltage applied to the single crystal plate 1 is higher than that of the conventional one, so that the output image contrast ratio of the optical image element is improved. There is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は光画像素子の構造を示す図である。 1:単結晶板    2.2’:絶縁層3.3’:透明
電極   4:電 源 5:書き込み光   6:読み出し光(入射光)7:偏
光子     8:読み出し光(透過光)9:検光子 
   10:出力光 V:電源電圧    dl:単結晶板厚さd、:絶縁層
厚さ
FIG. 1 is a diagram showing the structure of an optical image element. 1: Single crystal plate 2.2': Insulating layer 3.3': Transparent electrode 4: Power source 5: Writing light 6: Readout light (incident light) 7: Polarizer 8: Readout light (transmitted light) 9: Detection photon
10: Output light V: Power supply voltage dl: Single crystal plate thickness d,: Insulating layer thickness

Claims (2)

【特許請求の範囲】[Claims] (1)電気光学効果と光伝導効果とを有する単結晶板と
、該単結晶板の一側面あるいは両側面に設けられたアモ
ルファスダイヤモンド膜とよりなる複合絶縁層と、該複
合絶縁層と前記単結晶板とに電界を印加する透明電極と
から成ることを特徴とする光画像素子。
(1) A composite insulating layer consisting of a single crystal plate having an electro-optic effect and a photoconductive effect, an amorphous diamond film provided on one side or both sides of the single crystal plate, and the composite insulating layer and the single crystal plate. An optical image device comprising: a crystal plate; and a transparent electrode that applies an electric field to the crystal plate.
(2)特許請求の範囲第1項記載の光画像素子において
、前記保護層が二酸化ケイ素、ジルコニア、アルミナ、
酸化イットリウム等の酸化物から成ることを特徴とする
光画像素子。
(2) The optical image element according to claim 1, wherein the protective layer comprises silicon dioxide, zirconia, alumina,
An optical image element characterized by being made of an oxide such as yttrium oxide.
JP24233385A 1985-10-28 1985-10-28 Optical image element Pending JPS62100729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24233385A JPS62100729A (en) 1985-10-28 1985-10-28 Optical image element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24233385A JPS62100729A (en) 1985-10-28 1985-10-28 Optical image element

Publications (1)

Publication Number Publication Date
JPS62100729A true JPS62100729A (en) 1987-05-11

Family

ID=17087633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24233385A Pending JPS62100729A (en) 1985-10-28 1985-10-28 Optical image element

Country Status (1)

Country Link
JP (1) JPS62100729A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198263A (en) * 1991-03-15 1993-03-30 The United States Of America As Represented By The United States Department Of Energy High rate chemical vapor deposition of carbon films using fluorinated gases

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198263A (en) * 1991-03-15 1993-03-30 The United States Of America As Represented By The United States Department Of Energy High rate chemical vapor deposition of carbon films using fluorinated gases

Similar Documents

Publication Publication Date Title
CN104049426B (en) Bandwidth adjustable liquid crystal terahertz wave plate based on porous graphene transparent electrode
Dharmadhikari et al. Photovoltaic properties of ferroelectric BaTiO3 thin films rf sputter deposited on silicon
US4730903A (en) Ferroelectric crystal display panel and manufacturing method thereof
Yuan et al. Strong electro-optic effect in Mg incorporated ZnO thin films
JPS62100729A (en) Optical image element
US5220445A (en) Optical image processor
Abraham et al. Heat flow in interference filters
JP2658747B2 (en) Dielectric mirror and method of manufacturing the same
JPS6210410B2 (en)
Sato et al. Crystal orientation dependence of the electro-optic effect in epitaxial lanthanum-modified lead zirconate titanate films
JPS5820415B2 (en) AC driven LCD light valve
Helsten et al. Pockels response in calcium barium niobate thin films
US5085503A (en) Spatial light modulating element using uniaxial single crystal of oxide as insulating layer
Qiu et al. Bulk photovoltaic and photoconductivity effects in two-dimensional ferroelectric CuInP2S6 based heterojunctions
JPH0367247B2 (en)
JPS63116119A (en) Optical image element
JPS6212488B2 (en)
JP2695708B2 (en) Photoconductive liquid crystal light valve
JP2535271B2 (en) Method for manufacturing optical information recording medium
JPH04301819A (en) Space optical modulating element
JP2731220B2 (en) Image conversion element and X-ray image detection method using the same
JPS63110416A (en) Optical image element
JPS6159483B2 (en)
JP2986933B2 (en) Thin film stacking device
JPH03221924A (en) Space optical modulator