JPS63108158A - Underground heat exchanger - Google Patents

Underground heat exchanger

Info

Publication number
JPS63108158A
JPS63108158A JP62128051A JP12805187A JPS63108158A JP S63108158 A JPS63108158 A JP S63108158A JP 62128051 A JP62128051 A JP 62128051A JP 12805187 A JP12805187 A JP 12805187A JP S63108158 A JPS63108158 A JP S63108158A
Authority
JP
Japan
Prior art keywords
heat
pipe
heat exchange
underground
natural
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62128051A
Other languages
Japanese (ja)
Inventor
Kazuo Kuroiwa
一男 黒岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JPS63108158A publication Critical patent/JPS63108158A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To utilize a limitless amount of thermal source by a method wherein a first pipe having a natural thermal accumulation pipe and a metering pipe, a second pipe capable of performing an efficient radiation down to a deep layer with a slight pressure force with liquified gas being applied as liquid at its upper part are inserted into the underground hole to form a high efficient underground heat exchanger device. CONSTITUTION:Liquified gas is forcibly circulated under its decreased pressure within forced thermal accumulation pipes 1-4. Liquified gas in a going pipe 2 and a return pipe 3 is sucked out, and interior parts of the pipes are reduced in pressure, resulting in that the liquified gas within the going pipe 1 acting as a metering pipe takes a gasification heat within the going pipe 2 and evaporates. Then, it is overheated within the return pipe 3 of which pressure is lower and then goes out. Liquified gas in the natural thermal accumulation pipe 5 may take a gasification heat, discharge its condensation heat, show a natural circulation and carry heat from lower part to upper part. Liquified gas within a second pipe 9 to 11 flows with a steam of hot temperature and high pressure and into a pipe 10 having a heat exchanging feature, resulting in that heat of the thermal accumulative material around the pipe is collected by the first pipe and its temperature is kept low, so that its condensation heat is discharged to form liquified gas. Temperature of the condensed liquified gas is gradually decreased while being circulated within the heat exchanging pipe 10. The liquified gas of which temperature is than of the underground area passes insulatingly within the non-heat exchanging pipe 11 and flows out.

Description

【発明の詳細な説明】 「技術分野」 本発明は、地熱、地中の膨大な熱容晴と恒温性および大
地の保温性を十分に活用するため、深い地中を簡単かつ
有効に利用できる地中熱交換装置を提案するもので、例
えば給湯、暖房、冷房および冷凍を行うための地中熱交
換装置に関する。
[Detailed Description of the Invention] "Technical Field" The present invention makes full use of geothermal heat, the vast heat capacity and constant temperature of the earth, and the heat retention ability of the earth, making it possible to utilize deep underground easily and effectively. The present invention proposes an underground heat exchange device, and relates to an underground heat exchange device for, for example, hot water supply, heating, cooling, and refrigeration.

「従来技術およびその問題点」 深い地中の温度は、気温には殆ど影響されず、季節を通
じて安定していて、地下凡そ6〜7メートルで一定にな
り、それより深い浅層て段々高くなる。もっと深い深層
では内部からの地熱によりさらに増大する。大地の表層
の温度は気温の変化に伴って変動するが、地下数七メー
トルの浅層には、気温とは逆に夏より冬の方が高い所が
ある。
"Prior art and its problems" The temperature deep underground is almost unaffected by air temperature and is stable throughout the seasons, remaining constant at about 6 to 7 meters underground and gradually rising in shallower layers. . In deeper layers, it increases further due to geothermal heat from within. The surface temperature of the earth fluctuates with changes in air temperature, but there are places in the shallow layer several seven meters underground that, contrary to the temperature, are higher in winter than in summer.

これは大地の熱伝導が非常にゆっくりしているためで、
地中の膨大な熱容lI′tと大地の保温性によるもので
あろうすなわち、大地の表層が夏期に熱せられると、冬
期に渡って徐々に浅層ら暖められ、冬期に表層が冷やさ
れろと、夏期に渡って徐々に浅層ら冷やされる。この熱
伝導のタイムラッグによって、夏より冬の方が高くなる
ものである。また、深い地中の熱は取っても取っても集
まってくる。これは地中の恒温性のためで、太陽熱や地
熱を蓄えている地中の膨大な熱容h1と大地の保温性に
よるものである。地中には地下水があり、地下水によっ
て地中の熱容Mが大きくなるとともに、熱交換が速やか
に行われろ。
This is because the earth conducts heat very slowly.
This is probably due to the vast heat capacity of the earth and the heat retention properties of the earth. In other words, when the surface layer of the earth is heated in the summer, it gradually warms up from the shallower layers in the winter, and the surface layer cools down in the winter. The shallow layers gradually cool down over the summer. Due to this time lag in heat conduction, it is higher in winter than in summer. Also, heat deep underground gathers no matter how much heat you take away. This is due to the constant temperature of the earth, and is due to the vast heat capacity h1 of the earth, which stores solar heat and geothermal heat, and the heat retention ability of the earth. There is groundwater underground, and the heat capacity M of the ground increases due to groundwater, and heat exchange takes place quickly.

ところが、従来技術で地中の深い所まで利用しようとし
ても、熱交換媒体循環のための摩擦圧力損失が大きく、
過大な動力を必要として、著しく効率が低下するととも
に、管路が太くなって、穿孔も大きくなり、装置が大型
化して、設置作業が大掛かりになるため、コストの節約
にならず、豊かな自然の能力を生かした、地中深く到達
できる地中熱交換装置は実現していない。
However, even if we try to use the conventional technology deep underground, the frictional pressure loss due to the circulation of the heat exchange medium is large.
This requires excessive power, significantly reducing efficiency, making the pipes thicker, making the perforations larger, making the equipment larger, and requiring more extensive installation work. A geothermal heat exchange device that can reach deep underground and take advantage of this ability has not yet been realized.

「発明の目的−1 本発明は、従来の問題点を解決して、簡単に地中の深層
まで有効に利用できる、高効率で能力の大きな地中熱交
換装置を得ろことにより、地中に眠っている豊富な熱資
源を十分に活用しようとするものである。
"Objective of the Invention - 1 The present invention solves the conventional problems and provides a highly efficient and large-capacity underground heat exchange device that can be easily and effectively used deep underground. This aims to fully utilize the abundant dormant heat resources.

「発明の概要」 本発明は、この[1的を達成するため、気温の変化に伴
って地温の変動する、大地の表層4部分は対象とせず、
地下凡そ6〜7メ一トル以深の浅層から深層を対象とす
る。したがって、本装置の達する深さは、地下数十メー
トルから数千メートル以1一にも皮ぶ。本発明は、地中
の深層まて有効に利用ずろ方法として、採熱サイクルと
放熱サイクルを別系統とし、採熱サイクルには、いくら
深くても、下部から上部に無償で熱を運ぶ第一管を設け
ている。これは、温度差により自動的に作動して液化ガ
スが自然循環する、ランニングコストの全くかからない
採熱管である。したがって、動力による採熱は常に」一
部から行えばよいので、強制採熱管を地ヒに置くことも
できろようになり、管内の摩擦圧力損失が少なく、効率
よく細い管で大量の熱交換ができる。また、放熱サイク
ルは、第二管を上記採熱サイクルと共に設け、強制採熱
管部分等上部で高l詰高圧蒸気を冷却液化できるため、
上部で比重量が大きくなり、」二部て循環速度の減少と
液体液化ガスの重量バランスが得られ、僅かな圧力で効
率よく地中深く放熱することができるととらに、上部で
体猜が縮小されるので、細い管で大量の熱交換ができる
"Summary of the Invention" In order to achieve the first objective, the present invention does not target the four surface layers of the earth where the soil temperature fluctuates as the temperature changes;
Targets shallow to deep layers approximately 6 to 7 meters underground. Therefore, the depth that this device can reach ranges from several tens of meters underground to several thousand meters. As a method for effectively utilizing the deep underground, the present invention separates the heat collection cycle and the heat radiation cycle into separate systems, and the heat collection cycle includes a primary system that carries heat from the bottom to the top free of charge, no matter how deep A tube is installed. This is a heat collection tube that automatically operates based on temperature differences, allowing liquefied gas to circulate naturally, and requiring no running costs. Therefore, heat extraction by power only needs to be done from one part at all times, making it possible to place forced heat collection tubes in the ground, reducing frictional pressure loss inside the tubes, and efficiently exchanging a large amount of heat with thin tubes. Can be done. In addition, in the heat radiation cycle, a second pipe is provided together with the heat collection cycle, and the high-liter packed high-pressure steam can be cooled and liquefied at the upper part of the forced heat collection pipe, etc.
The specific weight increases in the upper part, which reduces the circulation speed and balances the weight of the liquid liquefied gas, making it possible to efficiently dissipate heat deep into the earth with a small pressure. Because it is reduced in size, a large amount of heat can be exchanged in a thin tube.

減圧によって管底で分溜滞留する潤滑油が、強制採熱管
内を循環しない場合には、受液自然採熱管を使用するこ
とにより、強制採熱管をさらに短くして圧力損失を少な
くすることができろ。
If the lubricating oil that fractionates and accumulates at the bottom of the tube due to depressurization does not circulate within the forced heat collection tube, it is possible to further shorten the forced heat collection tube and reduce pressure loss by using a liquid receiving natural heat collection tube. You can do it.

その他、本発明の特徴として、強制採熱管の往管を絞り
管とし、往管内の液化ガスを液体のままで循環させて往
管を細い管にしている。また、第一管の熱交換部分には
、液滞留伝熱体を設けて、適量の液体液化ガスを適度に
滞留させ、放熱凝縮や吸熱蒸発が能率的に行われるよう
にしている。
Another feature of the present invention is that the outgoing tube of the forced heat collection tube is a constricted tube, and the liquefied gas in the outgoing tube is circulated as a liquid to make the outgoing tube a thin tube. Further, a liquid retention heat transfer body is provided in the heat exchange portion of the first pipe to appropriately retain an appropriate amount of liquid liquefied gas so that heat radiation condensation and endothermic evaporation can be performed efficiently.

特に、受液自然採熱管は、自然採熱管の役目だけでなく
、受液器の役目もしていて、そこで液体と蒸気を分離し
て、余剰液体が管路を塞ぐのを防止し、蒸気の円滑な流
動を妨げないようにするとともに、本装置内の液化ガス
循環量も自動的に調節して本装置の始動と高速運転を容
易にしている。
In particular, natural heat collection pipes serve not only as natural heat collection pipes, but also as liquid receivers, where they separate liquid and steam, prevent excess liquid from clogging the pipes, and prevent steam from clogging the pipes. In addition to ensuring smooth flow is not disturbed, the amount of liquefied gas circulating within the device is automatically adjusted to facilitate startup and high-speed operation of the device.

以上のように、本発明は、簡単なポーリング穿孔を利用
して、いくら深くても深さに関係なく、管路の圧力損失
を少なくして動力を節約し、高い効率の高速熱交換を可
能にし、装置を構成する管を細くして、容易に高い圧力
に耐え、容易に曲げられろ装置とし、容易に地中深く到
達できる地中熱交換装置を提供するものである。
As described above, the present invention utilizes simple poling holes to reduce pressure loss in the pipeline, save power, and enable high-speed heat exchange with high efficiency, regardless of the depth. To provide an underground heat exchange device that can easily reach deep underground by making the pipes constituting the device thinner so that the device can easily withstand high pressure and be easily bent.

本発明は、地熱を直接利用するだけでなく、太陽熱、水
中・大気中から得られる熱、あるいは冷房・冷凍によっ
て得られる熱で給湯や暖房をし、余った熱を地中に蓄え
、その熱でまた給湯や暖房有するための地中熱交換装置
である。給湯や暖房で使用済みの熱は、排水中や大気中
に放散され、地中にも返還される。このように熱が循環
するだけで物質は消費されない。
The present invention not only uses geothermal heat directly, but also uses solar heat, heat obtained from water or the atmosphere, or heat obtained from air conditioning or refrigeration to supply hot water or space heaters, and stores the excess heat underground. There is also underground heat exchange equipment for hot water supply and space heating. The heat used for hot water supply and space heating is dissipated into wastewater, the atmosphere, and returned underground. In this way, only heat is circulated and no material is consumed.

従来、物を冷やすために熱を捨て、暑さを凌ぐために熱
を捨ててきた。一方、湯を沸かすために燃料を消費し、
寒さを凌ぐために燃料を消費してきた。このように熱を
無駄にしている事実は、新たな必要性を教えている。こ
こで、本発明は、大地の保温性を利用し、地中を大きな
蓄熱体として利用して、熱の過不足を調節し、あるいは
地熱を直接利用して、眠っている無尽蔵の熱資源を活用
した地中熱交換装置を提案するものである。
Traditionally, we have used heat to cool things down, and heat to beat the heat. On the other hand, fuel is consumed to boil water,
We have been consuming fuel to survive the cold. The fact that we are wasting heat in this way teaches us a new need. Here, the present invention takes advantage of the heat retention properties of the earth, uses the underground as a large heat storage body to adjust the excess or deficiency of heat, or directly utilizes geothermal heat to utilize the dormant inexhaustible heat resources. This paper proposes a geothermal heat exchange device that utilizes the ground heat exchange system.

「発明の実施例」 以下図示実施例について、本発明を説明する。“Embodiments of the invention” The invention will now be described with reference to the illustrated embodiments.

本発明において、「表層」とは地温か気温の変化に伴っ
て変動する範囲を、「浅層」とは動力だけで採熱できる
範囲を、「深層」とは液化ガスの自然循環によって、管
路の摩擦圧力損失を少なくして採熱できる範囲を意味す
るものとする。
In the present invention, the "surface layer" refers to the range that fluctuates due to changes in ground temperature, the "shallow layer" refers to the range where heat can be collected using only power, and the "deep layer" refers to the area where heat can be collected through natural circulation of liquefied gas. This refers to the range in which heat can be collected while minimizing frictional pressure loss in the road.

第1図、第8図、第9図、第1O図、第14図および第
15図は、それぞれ本発明の実施例であり、第15図の
強制採熱管は縦断面を示す。第2図〜第7図および第1
1図〜第13図は、その主要な部分の断面図である。同
図において、第一管1〜8および第二管9〜11は、地
中のポーリング穿孔[3H内に挿入されていて、管内を
液化ガスが循環する。液化ガスにはアンモニア、および
上空で分解してオゾンと反応しないフロンを使用してい
る。これらの管のまわりには砂、砂利等の埋戻材12が
充填されていて、地下水の移動を容易にし、本装置のも
交換効率を高めるとともに、穿孔B Hの崩れを防1■
−シながら、これらの管が地下水による浮力で浮き上が
るのを防いでいる。これらの管は必ずしも同−穿孔内に
挿入される必要はなく、互いに熱交換できる位置にあれ
ばよい。
1, 8, 9, 10, 14, and 15 each show an embodiment of the present invention, and the forced heat collection tube in FIG. 15 shows a longitudinal section. Figures 2 to 7 and 1
1 to 13 are cross-sectional views of the main parts thereof. In the figure, first pipes 1 to 8 and second pipes 9 to 11 are inserted into underground poling holes [3H, and liquefied gas circulates inside the pipes. The liquefied gases used are ammonia and fluorocarbons, which decompose in the air and do not react with ozone. A backfilling material 12 such as sand or gravel is filled around these pipes to facilitate the movement of groundwater, increase the exchange efficiency of this device, and prevent collapse of the borehole BH.
However, the buoyancy of groundwater prevents these pipes from floating up. These tubes do not necessarily have to be inserted into the same borehole, but only need to be positioned so that they can exchange heat with each other.

第1図、第8図、第9図、第10図、第14図および第
15図において、強制採熱管1〜4は、動力により保熱
する管であり、装置の外部に対して非熱交換性の往管に
熱交換部分が連通し、この熱交換部分に装置の外部に対
して非熱交換性の復管が連通していて、圧縮機を含む強
制循環管路系を成している。この往復管1〜・1は、減
圧循環する部分の管が太くて短い程、摩擦圧力損失を少
なくすることができる。したがって、自然採熱管5〜7
および受液自然採熱管8により、できるだけ」;部に自
然採熱すれば、動力を節約することができろとともに、
本装置を小型化するとかできる。
In Figures 1, 8, 9, 10, 14, and 15, forced heat collection tubes 1 to 4 are tubes that retain heat by power, and do not provide heat to the outside of the device. A heat exchange section communicates with the exchangeable outgoing pipe, and a non-heat exchange return pipe communicates with the outside of the device, forming a forced circulation pipe system including the compressor. There is. In the reciprocating pipes 1 to 1, the thicker and shorter the pipe in the reduced-pressure circulating section is, the more the frictional pressure loss can be reduced. Therefore, natural heat collecting pipes 5 to 7
If natural heat is collected as much as possible by the liquid receiving natural heat collection pipe 8, power can be saved.
This device can be made smaller.

第1図、第8図、第9図、第14図および第15図の往
管1、または第10図の往管1,2を絞り管とすれば、
管内の液化ガスを液体として循環できるので、本装置を
さらに小型化できる。
If the outgoing pipe 1 in Fig. 1, Fig. 8, Fig. 9, Fig. 14, and Fig. 15, or the outgoing pipes 1 and 2 in Fig. 10 are used as throttle pipes,
Since the liquefied gas inside the pipe can be circulated as a liquid, the device can be further miniaturized.

強制採熱管、1〜4内を循環する液化ガスに、潤滑油が
含まれていて、減圧によって、この潤滑油が管底で分溜
滞留する場合には、第1図、第9図および第15図」一
段のように、受液自然採土へ管8の無い強制採熱管1〜
4を使用する。この場合、強制循環によって、まわりの
蓄熱部分や自然採熱管5および第二管10との熱交換を
行うので、十分な長さの強制採熱管1〜4が必要である
が、第8図、第10図、第14図および第15図下段の
ような受液自然採熱管8を有する例では、熱交換は受液
自然採熱管8でも行うことができるので、強制採熱管1
〜4を短くすることができる。
If the liquefied gas circulating in the forced heat collection tubes 1 to 4 contains lubricating oil, and this lubricating oil is fractionated and retained at the bottom of the tube due to pressure reduction, Figs. As shown in Figure 15, the forced heat collection pipes 1 to 1 without the pipe 8 to natural soil collection.
Use 4. In this case, forced circulation performs heat exchange with the surrounding heat storage parts, the natural heat collection tube 5, and the second pipe 10, so forced heat collection tubes 1 to 4 of sufficient length are required. In the example shown in FIG. 10, FIG. 14, and the lower part of FIG.
~4 can be shortened.

第1図、第8図、第9図、第10図、第14図および第
15図において、非熱交換性の管1.4は、装置の外部
に対して熱の影響がないようにする断熱管で、被覆管を
使用している。第18図および第19図にその例を示す
。第18図は横断面図、第19図はに縦断面図である。
In Figures 1, 8, 9, 10, 14 and 15, non-heat exchangeable tubes 1.4 ensure that there is no thermal influence on the outside of the device. This is an insulated pipe that uses cladding. Examples are shown in FIGS. 18 and 19. FIG. 18 is a cross-sectional view, and FIG. 19 is a vertical cross-sectional view.

管19は液化ガスに侵されない柔軟な管でつくり、断熱
材20には複層の発泡ポリプロピレン等を用い、被覆材
21には地下水に侵されない材料を使用する。
The pipe 19 is made of a flexible pipe that is not eroded by liquefied gas, the heat insulating material 20 is made of multi-layer foamed polypropylene, etc., and the covering material 21 is made of a material that is not eroded by groundwater.

本装置を構成する管を、容易に曲げられる柔軟な可曲管
とすれば、長い管をコイル状に巻いて扱うことができる
ため、運搬や設置の作業が簡単になろ。
If the tubes that make up this device are flexible tubes that can be easily bent, the long tubes can be coiled and handled, making transportation and installation easier.

第1図、第8図および第9図において、強制採熱管1〜
4のうち、熱交換部分の往管2の外面、および復管3の
外面と内面には表面積増大伝熱体を設け、伝熱面積を大
きくして熱交換効率を高めている。特に、蒸発管である
往管2の内面には表面積を増大した液滞留伝熱体が設け
てあり、適Ii1の液体液化ガスが適度に滞留して、容
易に気化熱を得て吸熱蒸発がしやすいようにしたもので
、蒸気の離脱と液体液化ガスの供給が連続的に行われろ
ようにしている。このような管の例を第20図および第
21図に示す。第20図はこの管の横断面図、第21図
はL縦断面図である。管22は、液化ガスや地下水に侵
されず、熱伝導率の大きい柔軟な材料を使用している。
In Figures 1, 8, and 9, forced heat collection tubes 1 to
4, surface area increasing heat transfer bodies are provided on the outer surface of the outgoing pipe 2 and the outer surface and inner surface of the return pipe 3 in the heat exchange portion to increase the heat transfer area and improve the heat exchange efficiency. In particular, a liquid retention heat transfer body with an increased surface area is provided on the inner surface of the outgoing pipe 2, which is an evaporation pipe, so that the liquid liquefied gas of suitable Ii1 is appropriately retained, easily obtaining vaporization heat, and endothermic evaporation. This makes it easy to remove vapor and supply liquid liquefied gas continuously. Examples of such tubes are shown in FIGS. 20 and 21. FIG. 20 is a cross-sectional view of this tube, and FIG. 21 is an L-longitudinal cross-sectional view. The pipe 22 is made of a flexible material that is not eroded by liquefied gas or underground water and has high thermal conductivity.

これは、外面に表面積を大きくした突起23を有し、内
面の突起24は、表面積が大きくなっているだけでなく
、直管に使用するとき、液化ガスが流れやすく、螺旋管
に使用するとき、液が滞留しやすくなっている。
This has a protrusion 23 on the outer surface with a large surface area, and a protrusion 24 on the inner surface not only has a large surface area, but also makes it easier for liquefied gas to flow when used in a straight pipe, and when used in a spiral pipe. , liquid tends to stagnate.

第1図、第8図および第9図のように、熱交換部分の往
管2を螺旋管とすれば、全体が一定の緩やかな勾配とな
り、液が滞留しやすくなるばかりでなく、同じ深さの装
置でも、伝熱面積を大きくすることができる。また、容
易に曲げられろ装置とすることができるため、運搬や設
置が簡単になる。さらに、この螺旋管2は復管3、自然
採熱管5および第二管10を包んでいて、それらの管と
の熱交換が効果的に行われ、復管3内を流れろ液化ガス
を容易に過熱することができる。
As shown in Figs. 1, 8, and 9, if the outgoing pipe 2 of the heat exchange part is a spiral pipe, the whole will have a constant gentle slope, which will not only make it easier for the liquid to accumulate, but also make it possible to maintain the same depth. Even with a small device, the heat transfer area can be increased. Furthermore, since the device can be easily bent, transportation and installation are simplified. Furthermore, this spiral tube 2 encloses the return tube 3, the natural heat collection tube 5, and the second tube 10, so that heat exchange with these tubes is effectively performed, and the filtrate and liquefied gas flowing through the return tube 3 can be easily filtered. Can overheat.

第8図、第10図、第14図および第15図下段におい
て、強制採熱管1〜4に受液自然採熱管8を設けると、
この受液自然採熱管8が、まわりの蓄熱部分、第二管l
Oおよび自然採熱管5から採熱するので、強制循環管路
を短くでき、摩擦圧力損失を少なくできる。また、往復
管1〜4内を強制循環するとき、受液自然採熱管8の上
部で液体と蒸気が分離され、蒸気の流動が円滑に行われ
るとともに、液化ガスの循環量が自動的に調節され、本
装置の始動と高速運転が容易に行われろ。
In FIG. 8, FIG. 10, FIG. 14, and the lower part of FIG.
This liquid receiving natural heat collection pipe 8 is connected to the surrounding heat storage part, the second pipe l
Since heat is collected from O and the natural heat collection pipe 5, the forced circulation pipe can be shortened and frictional pressure loss can be reduced. In addition, when forced circulation inside the reciprocating tubes 1 to 4, the liquid and steam are separated at the upper part of the liquid receiving natural heat collection tube 8, and the flow of the steam is performed smoothly, and the circulation amount of the liquefied gas is automatically adjusted. This makes it easy to start up and operate the device at high speed.

往復管1〜4内で強制循環をしないときは、往復管1〜
4と受液自然採熱管8が合した合成採熱管内で、液化ガ
スが自然循環して採熱されるが、強制循環有するときは
、この合成採熱管内が減圧されるので、より低い温度で
強制循環と自然循環をしながら採熱される。すなわち、
液体のある液化ガスが減圧されると、液体も蒸気ら、そ
の液化ガスの飽和蒸気圧が、減圧された圧力に等しいと
きの温度になる。
When forced circulation is not performed in reciprocating pipes 1 to 4, reciprocating pipes 1 to 4
The liquefied gas naturally circulates and collects heat in the synthetic heat collecting tube where the liquid receiving natural heat collecting tube 8 and 4 are combined, but when forced circulation is used, the pressure inside this synthetic heat collecting tube is reduced, so the temperature is lower. Heat is collected through forced circulation and natural circulation. That is,
When a liquefied gas with a liquid is depressurized, the liquid also becomes a vapor and reaches the temperature when the saturated vapor pressure of the liquefied gas is equal to the reduced pressure.

第8図の受液自然採熱管8の例を第23図および第24
図に示す。第23図は合成採熱管の下部を示す第22図
のM断面図であり、第24図は第23図のN断面図であ
る。第23図と茅24図において、受液自然採熱管8の
、J一部に、強制採熱管の往管2の出口25と復管3の
入1:] 26が連通しており、この受液自然採熱管8
の外面には表面積増大伝熱体27、内面には表面積を増
大した液滞留伝熱体28を有する。受液自然採熱管8の
下部の液滞留伝熱体28は沸騰用であるが、上部の液滞
留伝熱体28は、強制循環運転中には液化ガスが減圧さ
れて沸騰用となり、運転停止l−中には液化ガスが自然
循環して凝縮用となる。凝縮用は凝縮した液化ガスが表
面張力で留どまらないように、滞留している液体液化ガ
スで表面張力を破り、連続的に導き去るようにしたもの
であり、沸騰用は液体液化ガスが滞留して暖まり易くな
っていて、蒸気の離脱と液体液化ガスの供給か連続的に
行われるようにしたものである。
Examples of the liquid receiving natural heat collection tube 8 shown in Fig. 8 are shown in Figs. 23 and 24.
As shown in the figure. FIG. 23 is a cross-sectional view of M in FIG. 22 showing the lower part of the synthetic heat collection tube, and FIG. 24 is a cross-sectional view of N in FIG. 23. In Figures 23 and 24, the outlet 25 of the outgoing pipe 2 and the inlet 26 of the incoming pipe 3 of the forced heat collecting pipe are in communication with part J of the liquid receiving natural heat collecting pipe 8, and this Liquid natural heat collection tube 8
It has a heat transfer body 27 with increased surface area on its outer surface, and a liquid retention heat transfer body 28 with increased surface area on its inner surface. The liquid retention heat transfer body 28 at the bottom of the liquid receiving natural heat collection pipe 8 is for boiling, but the liquid retention heat transfer body 28 at the top is used for boiling as the liquefied gas is depressurized during forced circulation operation, and the operation is stopped. The liquefied gas naturally circulates in the l- and is used for condensation. The condensing type is designed to break the surface tension with the stagnant liquid liquefied gas so that the condensed liquefied gas does not stay there due to surface tension, and is continuously guided away. The vapor is retained and warms up easily, and the removal of vapor and the supply of liquid liquefied gas are performed continuously.

第1O図および第14図において、往管1.2は、装置
内部に対しては熱交換する管となっており、絞り管であ
る。これは、螺旋管でも直管でもよい。この往管1.2
は、復管3.4の液化ガスを過熱しながら、管内の液を
冷やしている。熱交換部分の復管3および受液自然採熱
管8は波形管であり、表面積を増大した、液を滞留させ
ろ管となっている。これは、液化ガスにも地下水にも侵
されず、熱伝導率が大きくて柔軟な管である。この復管
3は液化ガスを強制循環しているときは、蒸発管および
過熱管となり、強制循環をしていないときは、凝縮管と
なる。受液自然採熱管8の無い場合には、別に、独立し
た自然採熱管5が必要である。
In FIG. 1O and FIG. 14, the outgoing pipe 1.2 is a pipe that exchanges heat with the inside of the apparatus, and is a throttle pipe. This may be a spiral tube or a straight tube. This outbound pipe 1.2
The liquid inside the pipe is cooled while heating the liquefied gas in the return pipe 3.4. The return pipe 3 and liquid receiving natural heat collecting pipe 8 of the heat exchange section are corrugated pipes, and have an increased surface area and serve as filter pipes for retaining the liquid. This is a flexible pipe with high thermal conductivity that is not attacked by liquefied gas or groundwater. The return pipe 3 serves as an evaporation pipe and a superheating pipe when the liquefied gas is being forcedly circulated, and serves as a condensing pipe when the liquefied gas is not being forcedly circulated. If there is no liquid receiving natural heat collecting pipe 8, an independent natural heat collecting pipe 5 is required.

第15図において、熱交換部分の往管2、熱交換部分の
復管3および受液自然採熱管8は、装置の内部と熱交換
するが、装置の外部に対しては熱交換しない。しかし、
往管2、復管3および受液自然採熱管8が蓄熱部分に囲
まれている場合は、装置の外部に対しても熱交換する。
In FIG. 15, the outgoing pipe 2 of the heat exchange part, the return pipe 3 of the heat exchange part, and the liquid receiving natural heat collection pipe 8 exchange heat with the inside of the apparatus, but do not exchange heat with the outside of the apparatus. but,
When the outgoing pipe 2, the returning pipe 3, and the liquid receiving natural heat collection pipe 8 are surrounded by a heat storage part, heat is also exchanged with the outside of the device.

第15図の往復管2.3内は液化ガスが強制減圧循環す
るが、絞り管である往管1から、往管2の円周に対して
接線方向に流入する液化ガスは、熱交換部分で回転しな
から復管3を経て復管4より流出する。この回転の遠心
力によって、液体液化ガスは波形管となっている往復管
2.3の管壁に沿って回転する。このとき、波形管2.
3の細くなっている部分が液散布突起15となり、液体
液化ガスは中心の自然採熱管5に散布される。また、こ
の遠心力のため、回転する液化ガスの外側の圧力は高く
なり内側の圧力は低くなって、中心の自然採熱管5に散
布された液体液化ガスの蒸発が促進される。
The liquefied gas is circulated under forced pressure inside the reciprocating pipe 2.3 in Fig. 15, but the liquefied gas flowing tangentially to the circumference of the outgoing pipe 2 from the outgoing pipe 1, which is a throttle pipe, flows into the heat exchange section. After rotating, the water passes through the return pipe 3 and flows out from the return pipe 4. Due to the centrifugal force of this rotation, the liquid liquefied gas rotates along the pipe wall of the reciprocating pipe 2.3, which is a corrugated pipe. At this time, the corrugated tube 2.
The narrowed portion of 3 becomes a liquid dispersion protrusion 15, and the liquid liquefied gas is sprayed into the natural heat collection pipe 5 at the center. Moreover, due to this centrifugal force, the pressure on the outside of the rotating liquefied gas becomes high and the pressure on the inside becomes low, promoting the evaporation of the liquid liquefied gas dispersed in the natural heat collection tube 5 at the center.

第1図、第9図および第15図上段において、強制採熱
管1〜4内の液化ガスのサイクルを説明する。液化ガス
は、強制採熱管1〜4内を強制減圧循環する。往管2お
よび復管3内の液化ガスが吸引されて、管内が減圧され
ると、絞り管である往管1内の液体液化ガスは、往管2
内で気化熱を奪って蒸発し、圧力のより低い復管3内で
過熱されて出ていくつ最初、液化ガスは液体と蒸気の混
合した湿り蒸気になっているが、途中で過熱されると乾
き蒸気になり、さらに過熱蒸気になる。ここで、管内の
循環速度を水平管で4 m/sec以上、鉛直管で8 
m/sec以上とすれば、液化ガスとともに潤滑油を循
環させろことができる。
The cycle of the liquefied gas in the forced heat collection tubes 1 to 4 will be explained with reference to FIGS. 1, 9, and the upper part of FIG. 15. The liquefied gas is forced to circulate through the forced heat collection tubes 1 to 4 under reduced pressure. When the liquefied gas in the outgoing pipe 2 and the returning pipe 3 is sucked and the pressure inside the pipe is reduced, the liquefied gas in the outgoing pipe 1, which is a throttle pipe, is transferred to the outgoing pipe 2.
The liquefied gas absorbs the heat of vaporization and evaporates, and is superheated in the return pipe 3 where the pressure is lower. At first, the liquefied gas becomes wet steam, which is a mixture of liquid and steam, but when it is overheated on the way, It becomes dry steam and then superheated steam. Here, the circulation speed in the pipe should be set to 4 m/sec or more for horizontal pipes and 8 m/sec for vertical pipes.
m/sec or more, the lubricating oil can be circulated together with the liquefied gas.

第8図、第1O図、第14図および第15図下段におい
て、合成採熱管1〜4.8内の液化ガスのサイクルを説
明する。液化ガスは、合成採熱管1〜11.8内を減圧
循環および自然循環する。本装置を運転すると、減圧循
環と自然循環をし、停+l二すると、自然循環だけにな
る。減圧循環では、液化ガスが吸引され、管内が減圧さ
れろと、受液自然採熱管8内の液体液化ガスと、絞り管
から自由落下する液体液化ガスが、気化熱を奪って蒸発
し、過熱蒸気となって出ていく。このとき、余剰液体液
化ガスは、受液自然採熱管8の下部に溜まる。自然循環
では、合成採熱rf1〜4.8の上部の温度が下部より
低くなると、自然に循環して無償で採熱し続ける。すな
わち、受液自然採熱管8の下部には、液体液化ガスが溜
まっており、合成採熱管1〜4.8の他の部分は、液化
ガスの飽和蒸気で満たされている。液化ガスが液体とな
っている範囲で温度差か生じると、対流によって自然循
環するが、液化ガスが飽和蒸気となっている範囲で温度
差が生じると、」二部の温度の低い部分で飽和蒸気が凝
縮し、凝縮熱を放出して液体液化ガスとなり、自由落下
しながら、落下途中に温度の高い部分があると、そこで
暖められて気化熱を奪い、その温度の飽和蒸気圧まで蒸
発する。このようにして、自然循環によって下部からL
部に熱が運ばれろ。
In FIG. 8, FIG. 1O, FIG. 14, and the lower part of FIG. 15, the cycle of the liquefied gas in the synthetic heat collecting tubes 1 to 4.8 will be explained. The liquefied gas is circulated under reduced pressure and naturally within the synthetic heat collecting tubes 1 to 11.8. When this device is operated, it performs depressurized circulation and natural circulation, and when it is stopped, only natural circulation occurs. In the depressurized circulation, when the liquefied gas is sucked and the pressure inside the tube is reduced, the liquefied gas in the liquid receiving natural heat collection tube 8 and the liquid liquefied gas freely falling from the throttle tube take away the heat of vaporization and evaporate, resulting in superheating. It comes out as steam. At this time, the excess liquid liquefied gas accumulates at the lower part of the liquid receiving natural heat collection tube 8. In natural circulation, when the temperature of the upper part of the synthetic heat collection rf1 to 4.8 becomes lower than the lower part, it continues to circulate naturally and collect heat for free. That is, the liquid liquefied gas is stored in the lower part of the liquid receiving natural heat collection tube 8, and the other portions of the synthetic heat collection tubes 1 to 4.8 are filled with saturated vapor of the liquefied gas. If a temperature difference occurs in the range where the liquefied gas is a liquid, natural circulation occurs due to convection, but if a temperature difference occurs in the range where the liquefied gas is a saturated vapor, the lower temperature part of the two parts will become saturated. The vapor condenses, releases the heat of condensation, and becomes a liquid liquefied gas. While falling freely, if there is a high temperature part on the way down, it is warmed there, absorbs the heat of vaporization, and evaporates to the saturated vapor pressure of that temperature. . In this way, L from the bottom through natural circulation.
Bring heat to the area.

第1図、第8図、第9図および第15閃において、自然
採熱管5〜7は、少なくと6下部か熱交換性の管であり
、全体が閉じた管であって、管内に液化ガスを封入した
管で、一本の管でも複数の管でもよい。自然採熱管5〜
7は、」二部の温度が下部の温度より低くなると、管内
の封入液化ガスが自然循環して、下部から上部へ熱を運
ぶものである。第8図、第9図および第15図のように
、自然採熱管5〜7の中間を非熱交換性の管6とするこ
とによって、途中での放熱を防出することができる。特
に、第8図のような非熱交換性の封入管7を設けると、
自然採熱管5〜7を設置した後に、地中の温度に応じて
適切な液化ガスを封入することができるとともに、自然
採熱管5〜7の上下の温度差、および液化ガスの種類に
応じて最大能力となるように封入液化ガスの晴を調節す
ることができる。
In Figures 1, 8, 9, and 15, the natural heat collection tubes 5 to 7 are heat exchangeable tubes in at least 6 lower portions, are closed tubes as a whole, and have liquefaction inside the tubes. A tube filled with gas, which may be a single tube or multiple tubes. Natural heat collection tube 5~
7, when the temperature of the second part becomes lower than the temperature of the lower part, the liquefied gas sealed in the tube naturally circulates and carries heat from the lower part to the upper part. As shown in FIG. 8, FIG. 9, and FIG. 15, by using a non-heat exchanging tube 6 in the middle of the natural heat collecting tubes 5 to 7, heat radiation in the middle can be prevented. In particular, if a non-heat exchangeable enclosing tube 7 as shown in FIG. 8 is provided,
After installing the natural heat collecting pipes 5 to 7, it is possible to fill in an appropriate liquefied gas depending on the underground temperature, and also to fill in the appropriate liquefied gas depending on the temperature difference between the upper and lower sides of the natural heat collecting pipes 5 to 7 and the type of liquefied gas. The discharge of the sealed liquefied gas can be adjusted to reach the maximum capacity.

自然採熱管5〜7の熱交換部分について、第1図、第8
図および第9図の場合、伝熱管は、その外面に表面積増
大伝熱体、内面に下部が液滞留伝熱体沸騰用、上部が液
滞留伝熱体凝縮用を有しているが、第15図の場合、上
部外面に液滞留伝熱体沸騰用を有している。このような
管の一例を第16図および第17図に示す。第16図は
横断面図、第17図はJ縦断面図である。これらの図に
おいて、伝熱管!6は、液化ガスや地下水に侵されない
、熱伝導率の大きい柔軟な管であり、表面積増大伝熱体
17は、伝熱面積を大きくした、熱を伝えやすい突起で
あり、液滞留伝熱体18は、容易に気化熱や凝縮熱のや
り取りができるようにした、熱を伝えやすい突起である
。なお、凝縮用および沸騰用の液滞留伝熱体は、受液自
然採熱管8のそれと同じ構造である。
Regarding the heat exchange parts of natural heat collecting pipes 5 to 7, Fig. 1 and Fig. 8
In the case of Fig. 9 and Fig. 9, the heat transfer tube has a surface area increasing heat transfer body on its outer surface, a liquid staying heat transfer body for boiling on the inner surface at the lower part, and a liquid staying heat transfer body for condensing on the upper part. In the case of Fig. 15, a liquid retention heat transfer element for boiling is provided on the upper outer surface. An example of such a tube is shown in FIGS. 16 and 17. FIG. 16 is a cross-sectional view, and FIG. 17 is a J-longitudinal cross-sectional view. In these diagrams, heat transfer tubes! 6 is a flexible pipe with high thermal conductivity that is not attacked by liquefied gas or ground water, and the surface area increasing heat transfer body 17 is a protrusion that has a large heat transfer area and is easy to conduct heat, and is a liquid retention heat transfer body. Reference numeral 18 denotes a heat-transferring protrusion that allows easy exchange of vaporization heat and condensation heat. Note that the liquid retention heat transfer body for condensing and boiling has the same structure as that of the liquid receiving natural heat collection tube 8.

第8図、第9図および第15図のように、自然採熱管5
〜7の中間が非熱交換性の管のときは、被覆管を使用し
、その例を第18図と第19図に示す。これは、非熱交
換性の管1〜4と同じ構造としている。
As shown in Fig. 8, Fig. 9 and Fig. 15, the natural heat collecting pipe 5
When the intermediate part of 7 to 7 is a non-heat exchangeable tube, a cladding tube is used, an example of which is shown in FIGS. 18 and 19. This has the same structure as the non-heat exchangeable tubes 1 to 4.

前述の通り、自然採熱管5〜7の上下で温度差が生じる
と、すなわち、」一部の温度が下部の温度より低くなる
と、管内の封入液化ガスが自然循環し、無償で採熱し続
ける。これは、強制採熱管1〜4、受液自然採熱管8お
よび第二管9〜IIが作動していないときでも、独立し
て作動するもので、上下の温度差がある限り絶えず作動
するものである。
As mentioned above, when a temperature difference occurs between the upper and lower portions of the natural heat collection tubes 5 to 7, that is, when the temperature of a part becomes lower than the temperature of the lower part, the liquefied gas sealed in the tubes circulates naturally and continues collecting heat for free. This operates independently even when forced heat collection tubes 1 to 4, liquid natural heat collection tube 8, and second tubes 9 to II are not operating, and operates constantly as long as there is a temperature difference between the upper and lower sides. It is.

自然採熱管5〜7内の液化ガスのサイクルを説明する。The cycle of liquefied gas in the natural heat collecting pipes 5 to 7 will be explained.

自然採熱管5〜7には、適tlの液化ガスが封入されて
いるが、下部は液体の液化ガスが溜まっており、」二部
は液化ガスの飽和蒸気で満たされている。まず、液化ガ
スが液体となっている範囲で温度差が生じると、対流に
よって温度の高い液体液化ガスは上に、温度の低い液体
液化ガスは下に移動して自然循環する。次に、液化ガス
が飽和蒸気となっている範囲で温度差が生じると、上部
の温度の低い部分で封入液化ガスの飽和蒸気が凝縮し、
凝縮熱を放出して液体液化ガスとなって自由落下する。
The natural heat collection tubes 5 to 7 are filled with a suitable amount of liquefied gas, and the lower part is filled with liquid liquefied gas, and the second part is filled with saturated vapor of the liquefied gas. First, when a temperature difference occurs in the range where the liquefied gas is in a liquid state, convection causes the higher temperature liquefied gas to move upwards and the lower temperature liquefied gas to move downwards, resulting in natural circulation. Next, when a temperature difference occurs in the range where the liquefied gas is saturated vapor, the saturated vapor of the sealed liquefied gas condenses in the lower temperature part of the upper part.
It releases the heat of condensation and becomes a liquid liquefied gas that falls freely.

この〔1山落下する液体液化ガスは途中に温度の高い部
分があると、そこで暖められて気化熱を奪い、その温度
の飽和蒸気圧まで蒸発する。結局、自然採熱管5〜7内
は、絶えず、管内で最も温度の高い部分の飽和蒸気圧の
液化ガスで満たされる。このようにして、封入液化ガス
は自動的に作動し、気化熱を奪い凝縮熱を放出しながら
自然循環して熱を下部から上部へ運ぶ。この上下差は、
何千メートルであっても、無償で運び続ける。自然採熱
管5〜7の能力を決定する要素は、上下の温度差、管の
材質と大きさ、管内外の伝熱体の材質と構造、および封
入液化ガスの種類と量である。
If this liquid liquefied gas falls in one heap, and there is a high-temperature part along the way, it will be warmed there, take away the heat of vaporization, and evaporate to the saturated vapor pressure at that temperature. As a result, the natural heat collecting tubes 5 to 7 are constantly filled with liquefied gas at the saturated vapor pressure of the portion of the tube with the highest temperature. In this way, the enclosed liquefied gas operates automatically, absorbing the heat of vaporization and releasing the heat of condensation, while naturally circulating and transporting heat from the bottom to the top. This vertical difference is
We will continue to carry it for free, even if it is thousands of meters away. The factors that determine the capacity of the natural heat collecting tubes 5 to 7 are the temperature difference between the upper and lower sides, the material and size of the tubes, the material and structure of the heat transfer bodies inside and outside the tubes, and the type and amount of the enclosed liquefied gas.

第1図、第8図、第9図、第10図、第14図および第
15図において、第二管9〜IIは地中深く放熱する往
復管である。装置の外部に対して非熱交換性の往管9は
、装置の内部に対しては熱交換性の管であってもよい。
In FIGS. 1, 8, 9, 10, 14, and 15, second pipes 9 to II are reciprocating pipes that radiate heat deep underground. The outgoing pipe 9, which has no heat exchange property with respect to the outside of the device, may be a pipe with heat exchange property with respect to the inside of the device.

本例では、この往管9は、非熱交換性の管11と共に、
第18図および第19図に示す被覆管を使用している。
In this example, the outgoing pipe 9 includes a non-heat exchange pipe 11, and
The cladding shown in FIGS. 18 and 19 is used.

熱交換性の管lOは、液化ガスにも地下水にも侵されな
い、熱伝導率の大きい柔軟な管で、その外面に表面積増
大伝熱体を有する。この第二管9〜I+の最深部は、自
然採熱管5〜7および受液自然採熱管8が地中深く到達
する場合には、第8図、第9図および第15図のように
途中で折り返される。
The heat exchange tube IO is a flexible tube with high thermal conductivity that is not attacked by liquefied gas or ground water, and has a surface area increasing heat transfer body on its outer surface. When the natural heat collection pipes 5 to 7 and the liquid receiving natural heat collection pipe 8 reach deep underground, the deepest part of the second pipes 9 to I+ is It is folded back.

本例では、第二管内の液化ガスは高温高圧の蒸気で流入
する場合が多いが、できるだけ地表に近い位置で凝縮熱
を放出して、気体から液体に状聾変化すると、液体液化
ガスの重量バランスが得られ、加圧循環が容易になる。
In this example, the liquefied gas in the second pipe often flows in as high-temperature, high-pressure steam, but when the heat of condensation is released as close to the ground as possible and the state changes from gas to liquid, the weight of the liquid liquefied gas increases. Balance is achieved and pressurized circulation is facilitated.

第1図、第8図、第9図、第1O図、第14図および第
15図において、第二管9〜ll内の液化ガスのサイク
ルを説明する。前述のように、液化ガスは、高温高圧の
蒸気で流入するとき、熱交換性の管10に入ると、その
まわりの蓄熱体の熱は第一管によって採熱されて、温度
が低くなっているので、そこで凝縮熱を放出して液体液
化ガスになる。このため、液化ガスの比重量が大きくな
り、循環速度が減少して管路の摩擦圧力損失が少なくな
るとともに、往管と復管内の液体液化ガスの重量バラン
スによって、僅かな加圧力で循環するようになる。この
凝縮した液体液化ガスの温度は、熱交換性の管10内を
循環しながら段々低くなり、膨大な熱容(jtをもつ地
中に放熱されて地中の温度になっていく。地中の温度に
なった液体液化ガスは、非熱交換性の管ll内を断熱的
に通過して流出していく。この流出圧力は、往管と復管
内の液化ガスの比重量の違い、および循環する液化ガス
が管壁から受ける摩擦抵抗によって、本装置に入る時よ
りも少し低くなっている。
The cycle of the liquefied gas in the second pipes 9 to 11 will be explained with reference to FIGS. 1, 8, 9, 10, 14, and 15. As mentioned above, when the liquefied gas flows in as high-temperature, high-pressure steam, when it enters the heat exchange pipe 10, the heat of the surrounding heat storage body is collected by the first pipe, and the temperature becomes lower. There, it releases heat of condensation and becomes a liquid liquefied gas. For this reason, the specific weight of the liquefied gas increases, the circulation speed decreases, and the friction pressure loss in the pipeline decreases.The weight balance of the liquid liquefied gas in the outgoing and returning pipes allows the gas to circulate with a small pressure. It becomes like this. The temperature of this condensed liquid liquefied gas gradually decreases as it circulates inside the heat exchange pipe 10, and heat is radiated into the ground, which has a huge heat capacity (jt), reaching the temperature of the ground. The liquid liquefied gas, which has reached a temperature of Due to the frictional resistance that the circulating liquefied gas receives from the pipe wall, it is slightly lower than when it enters the device.

第9図は、」二部に蓄熱体13を【fする例で、蓄熱体
13は断熱層14に囲まれている。このように、強制採
熱管1〜4を含む蓄熱体をできるだけ」一部に設けると
、それだけ強制循環管路の摩擦圧力損失を少なくずろこ
とができるので、動力を節約することができる。また、
第15図の強制採熱管1〜4ら蓄熱体内に設けることが
できる。
FIG. 9 shows an example in which the heat storage body 13 is placed in two parts, and the heat storage body 13 is surrounded by a heat insulating layer 14. In this way, if the heat storage body including the forced heat collection tubes 1 to 4 is provided in as many parts as possible, the frictional pressure loss of the forced circulation pipe can be reduced accordingly, and power can be saved. Also,
The forced heat collection tubes 1 to 4 shown in FIG. 15 can be provided inside the heat storage body.

第25図は、本発明装置を使用したコントロールンステ
トの例である。本発明装置は、給湯・暖房・冷房・冷凍
サイクルに接続されており、かつ太陽熱・大気熱・水中
熱集熱サイクルに接続されている。
FIG. 25 is an example of a control system using the device of the present invention. The device of the present invention is connected to a hot water supply, heating, cooling, and refrigeration cycle, and is also connected to a solar heat, atmospheric heat, and underwater heat collection cycle.

第25図において、自然循環管路系の29お上び30は
、暖房専用のサイクルであり、循環系に採熱コイル31
、放熱器32および調整弁33を含んでいる。
In Fig. 25, 29 and 30 of the natural circulation pipe system are cycles dedicated to heating, and a heat collecting coil 31 is installed in the circulation system.
, a radiator 32 and a regulating valve 33.

第一強制循環管路系の34.35.36.37および3
8は、冷房・冷凍サイクルであり、太陽熱・大気熱・水
中熱を集熱するサイクルである。
34.35.36.37 and 3 of the first forced circulation pipeline system
8 is a cooling/freezing cycle, which is a cycle that collects solar heat, atmospheric heat, and underwater heat.

この循環系は、圧縮機39、給湯コイル40、暖房コイ
ル41、本発明装置、安全弁42、ろ過器43、熱交換
器44、乾燥器45、空気抜46、調整弁47、膨張弁
48、冷却・集熱器49および熱交換器44を含んでい
て、この熱で給湯や暖房をして、余った熱を地中に蓄え
ろ。
This circulation system includes a compressor 39, a hot water supply coil 40, a heating coil 41, a device of the present invention, a safety valve 42, a filter 43, a heat exchanger 44, a dryer 45, an air vent 46, a regulating valve 47, an expansion valve 48, a cooling - Contains a heat collector 49 and a heat exchanger 44, this heat is used for hot water supply and space heating, and excess heat is stored underground.

第二強制循環管路系の34.35.50.51および3
8は、地熱や地中の蓄熱を採熱するサイクルであり、循
環系に圧縮機39、給湯コイル40、暖房コイル41.
本発明装置、安全弁・12、ろ過器43、熱交換器44
、乾燥器45、空気抜46、調整弁52、膨張弁53、
受液器54、調整弁55、本発明装置、調整弁56およ
び熱交換器44を含み、地中の熱で給湯や暖房有する。
34.35.50.51 and 3 of the second forced circulation pipeline system
8 is a cycle for collecting geothermal heat or heat stored underground, and the circulation system includes a compressor 39, a hot water supply coil 40, a heating coil 41.
Device of the present invention, safety valve 12, filter 43, heat exchanger 44
, dryer 45, air vent 46, adjustment valve 52, expansion valve 53,
It includes a liquid receiver 54, a regulating valve 55, a device of the present invention, a regulating valve 56, and a heat exchanger 44, and provides hot water and space heating using underground heat.

調整弁47.52.55および56を、自動または手動
によって操作すれば、第一強制循環管路系と第二強制循
環管路系を平行運転することができろ。
By automatically or manually operating the regulating valves 47, 52, 55 and 56, it is possible to operate the first forced circulation line system and the second forced circulation line system in parallel.

水の流れは、給水管57から温水タンク58を経て給湯
管59へと流れていく。その経路に逆止弁60および安
全弁61を含んでおり、温水タンク58は、下部が暖房
用温水タンク、上部が給湯用温水タンクになっている。
The water flows from the water supply pipe 57 to the hot water supply pipe 59 via the hot water tank 58. The path includes a check valve 60 and a safety valve 61, and the hot water tank 58 has a lower part as a hot water tank for heating and an upper part as a hot water tank for hot water supply.

第25図の矢印は、運転中の液化ガスの流れを示す。各
の循環管路系について、液化ガスのサイクルを説明する
The arrows in FIG. 25 indicate the flow of liquefied gas during operation. The liquefied gas cycle will be explained for each circulation pipe system.

自然循環管路系のサイクルは、暖房専用サイクルで、調
整弁33を開くと、管路29に溜まっていた液体液化ガ
スが暖房用温水タンク内の採熱コイル31で気化熱を今
って蒸発し、自然循環で管路30を流れ、放熱器32で
凝縮熱を放出して液体液化ガスとなり、自然循環で管路
29内を自由落下オろ。この放出される凝縮熱で暖房を
行う。
The cycle of the natural circulation pipe system is a heating-only cycle, and when the regulating valve 33 is opened, the liquid liquefied gas accumulated in the pipe 29 is evaporated by the heat collecting coil 31 in the heating hot water tank. Then, it flows through the pipe 30 by natural circulation, releases condensation heat in the radiator 32, becomes a liquid liquefied gas, and freely falls in the pipe 29 by natural circulation. This released condensed heat is used for heating.

放菖器32は幾つら(lk列に設けることができる。A number of irises 32 can be provided in lk rows.

第−強制循環管路系のサイクルは、冷房や冷凍を行うサ
イクルであり、太陽熱や大気熱および水中熱を集熱する
サイクルでもあり、同時に、この熱で給湯や暖房をして
、余った熱を地中に蓄えるサイクルである。
The cycle of the forced circulation pipe system is a cycle that performs cooling and freezing, as well as a cycle that collects solar heat, atmospheric heat, and underwater heat.At the same time, this heat is used for hot water supply and space heating, and the surplus heat is This is a cycle in which water is stored underground.

温水タンク58内には、飲料水が供給され、温水がつく
られるように準備されている。ここで、調整弁52を閉
じ、調整弁47.55および56を適度に開いて、圧縮
機39を運転すると、受液器54や強制採熱管1〜4内
の液化ガスは、地中の熱で蒸発し、圧縮機39に吸引さ
れ、断熱圧縮されて、圧縮機39から膨張弁48に至る
管路内に溜まっていくが、受液器54や強制採熱管1〜
4内の液化ガスがなくなると、調整弁55および56を
閉じて運転する。
The hot water tank 58 is prepared to be supplied with drinking water and to produce hot water. Here, when the regulating valve 52 is closed and the regulating valves 47, 55 and 56 are opened appropriately, and the compressor 39 is operated, the liquefied gas in the liquid receiver 54 and the forced heat collection pipes 1 to 4 is absorbed by the underground heat. It evaporates, is sucked into the compressor 39, is adiabatically compressed, and accumulates in the pipeline from the compressor 39 to the expansion valve 48, but does not pass through the liquid receiver 54 or the forced heat collection pipes 1 to 48.
When the liquefied gas in 4 is exhausted, the regulating valves 55 and 56 are closed and the operation is started.

この状態で運転するとき、圧縮機39で断熱圧縮された
高温高圧の液化ガスの蒸気は、給湯コイル40で凝縮熱
を放出し、さらに暖房コイル41で凝縮熱を放出する。
When operating in this state, the high-temperature, high-pressure liquefied gas vapor adiabatically compressed by the compressor 39 releases condensation heat in the hot water supply coil 40 and further releases condensation heat in the heating coil 41.

この凝縮熱で温水がつくられるが、このとき、液化ガス
は温水タンク58の温度になって本発明装置に入り、液
化ガスの熱は本発明装置によって、地中に放熱され、地
中に蓄えられるとともに、地中の温度の液体液化ガスと
なって本発明装置を出ていく。地中の温度となった液体
液化ガスは、熱交換器44で熱交換され、過冷却されて
、さらに温度の低い液体液化ガスとなって膨張弁48に
達する。途中の安全弁42、ろ過器43、乾燥器45お
よび空気抜46は、システ11内の異常高圧を防ぎ、異
物・水分・空気を取り除いている。
Hot water is created by this condensation heat, but at this time, the liquefied gas reaches the temperature of the hot water tank 58 and enters the device of the present invention, and the heat of the liquefied gas is radiated underground by the device of the present invention and stored underground. At the same time, it becomes a liquid liquefied gas at underground temperature and exits the device of the present invention. The liquid liquefied gas, which has reached the underground temperature, undergoes heat exchange in the heat exchanger 44, is supercooled, becomes a lower temperature liquid liquefied gas, and reaches the expansion valve 48. A safety valve 42, a filter 43, a dryer 45, and an air vent 46 on the way prevent abnormally high pressure within the system 11 and remove foreign matter, moisture, and air.

膨張弁48で断熱膨張した液体液化ガスは、冷却・集熱
器49内で気化熱を奪って蒸発し、熱交換器44で過熱
蒸気となって、圧縮機39に吸引されていく。このとき
、冷却・集熱器49で冷房・冷凍の効果が得られるとと
もに、太陽熱・大気熱・水中熱が集熱される。この冷却
・集熱器49は放熱器32と同様に、何台も並列に設け
ることができる。
The liquid liquefied gas adiabatically expanded by the expansion valve 48 absorbs vaporization heat in the cooling/collector 49 and evaporates, becomes superheated vapor in the heat exchanger 44, and is sucked into the compressor 39. At this time, the cooling/heat collector 49 provides cooling/freezing effects and collects solar heat, atmospheric heat, and underwater heat. Similar to the heat radiator 32, a number of cooling/heat collectors 49 can be provided in parallel.

温水タンク58の上部の給湯用温水タンクの温度が十分
高くなると、液化ガスは給湯コイル40内を高温高圧蒸
気のままで通過し、下部の暖房用温水タンク内の暖房コ
イルで凝縮熱を放出するようになる。しかし、この暖房
用温水タンクの温度も十分に高くなると、液化ガスは、
本発明装置まで、高温高圧蒸気となる。こうして、圧縮
機39から本発明装置に至る管路が高温高圧蒸気で満た
されると、液化ガスの体積は大きくなり、液化ガスが余
ってくるので、自動または手動により、調整弁52を開
くと、受液器54に、余った液体液化ガスが蓄えられる
When the temperature of the upper hot water tank for hot water supply of the hot water tank 58 becomes sufficiently high, the liquefied gas passes through the hot water supply coil 40 as high-temperature, high-pressure steam, and releases condensation heat in the heating coil in the lower hot water tank for heating. It becomes like this. However, when the temperature of this heating hot water tank becomes high enough, the liquefied gas becomes
Until the device of the present invention, high-temperature, high-pressure steam is produced. In this way, when the pipeline from the compressor 39 to the device of the present invention is filled with high-temperature, high-pressure steam, the volume of the liquefied gas increases and there is a surplus of liquefied gas, so when the regulating valve 52 is opened automatically or manually, Surplus liquid liquefied gas is stored in the liquid receiver 54.

第二強制循環管路系のサイクルは、地中の熱によって給
湯や暖房を行うサイクルであり、第−強制循環管路系の
サイクルと平行運転することもできる。
The cycle of the second forced circulation pipe system is a cycle for supplying hot water and heating using underground heat, and can also be operated in parallel with the cycle of the first forced circulation pipe system.

温水タンク58内には、飲料水が供給され、温水がつく
られるように準備されている。ここで、コM整弁47を
閉じ、調整弁56を全開し、調整弁52と55を適度に
開いて、圧縮機39を運転すると、受液器54や強制採
熱管1〜・1内の液化ガスは地中の熱で蒸発し、圧縮機
39に吸引され、断熱圧縮されて、圧縮機39から膨張
弁53に至る管路内に溜まっていく。
The hot water tank 58 is prepared to be supplied with drinking water and to produce hot water. Here, when the compressor 39 is operated by closing the control valve 47, fully opening the control valve 56, and opening the control valves 52 and 55 moderately, the liquid receiver 54 and the forced heat collection pipes 1 to 1 are The liquefied gas is evaporated by the heat in the ground, sucked into the compressor 39, adiabatically compressed, and accumulated in the pipe line leading from the compressor 39 to the expansion valve 53.

この状態で、自動または手動によって、調整弁52と5
5を調節して運転すると、第−強制循環管路系と同じサ
イクルで、温水がつくられ、液体液化ガスが過冷却され
る。この過冷却された液体液化ガスは膨張弁53で断熱
膨張し、本発明装置内で気化熱を奪って蒸発して、熱交
換器44て過熱蒸気となって圧縮機39に吸引されてい
く。ごのとき、地中の熱が採熱される。
In this state, the regulating valves 52 and 5 are automatically or manually operated.
5, when operated, hot water is produced and liquid liquefied gas is supercooled in the same cycle as the first forced circulation pipe system. This supercooled liquid liquefied gas is adiabatically expanded by the expansion valve 53, takes away the heat of vaporization and evaporates in the device of the present invention, and is turned into superheated vapor by the heat exchanger 44 and sucked into the compressor 39. During this time, heat from the ground is collected.

ニーI整弁47を適度に開さ、調整弁52を適度に閉じ
ると、冷却・集熱器496機能1.、太陽に〜等を集熱
しながら平行運転をオろことができろ。また、温水タン
ク58内の温水の温度が十分に高くなると、余剰液体液
化ガスが生じてくるが、#AI整弁52と55を適度に
調節することによって、この余剰液体液化ガスを受液器
54内に蓄えろことがてきる。
When the knee I regulating valve 47 is appropriately opened and the regulating valve 52 is appropriately closed, the cooling/heat collector 496 function 1. , parallel operation can be turned off while collecting heat from the sun. Additionally, when the temperature of the hot water in the hot water tank 58 becomes sufficiently high, surplus liquid liquefied gas will be generated, but by appropriately adjusting the #AI regulating valves 52 and 55, this surplus liquid liquefied gas can be transferred to the receiver. You will be asked to save it within 54 days.

このように本発明は、地熱を直接利用するだけでなく、
太陽熱や大気中・水中から得られろ熱、および冷房・冷
凍によって得られる熱で給湯や暖房をし、余った熱を地
中に蓄え、その熱でまた給湯や暖房有するための地中熱
交換装置を提供ケろものである、 「発明の効果」 以上のように本発明は、液滞留伝熱体の使用によりいく
ら深い所からでもイイ効にかつ無償で採熱できる自然採
熱管と絞り管を有する第一管と、液化ガスを」二部で液
体とすることによって僅かな加圧力で深層まで効率よく
敢然でさる第二管と、を地中の簡単な穿孔内に挿入する
もので、管路の摩擦圧力損失を少なくした高効率の地中
熱交換装置を得ることができる。これによって、大地の
膨大な熱容量と保温性を利用して、排熱や太陽熱等を蓄
え、熱の過不足を調節し、あるい(土地熱を直接利用す
ることができるようになり、とりわけ、給湯・暖房・冷
房・冷凍サイクルの成績係数を飛躍的に増大することが
でき、眠っている無尽蔵の熱資源を活用することができ
る。
In this way, the present invention not only utilizes geothermal heat directly, but also
A geothermal heat exchange system that uses solar heat, heat obtained from the air and water, and heat obtained from air conditioning and refrigeration to supply hot water and space heaters, stores the excess heat underground, and uses that heat to supply hot water and space heaters. ``Effects of the Invention'' As described above, the present invention provides a natural heat collection tube and a constriction tube that can efficiently and freely collect heat from any depth by using a liquid retention heat transfer element. A first pipe with a liquefied gas and a second pipe that can be efficiently penetrated to deep depths with a slight pressure by converting the liquefied gas into a liquid in two parts are inserted into a simple hole underground. A highly efficient underground heat exchange device with reduced frictional pressure loss in the pipeline can be obtained. This makes it possible to utilize the vast heat capacity and heat retention properties of the earth to store waste heat, solar heat, etc., adjust the excess or deficiency of heat, or directly utilize land heat. It is possible to dramatically increase the coefficient of performance of hot water supply, heating, cooling, and refrigeration cycles, and it is possible to utilize dormant and inexhaustible thermal resources.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る地中熱交換装置の第一の実施例を
示す正面図:第2図、第3図、第4図、第5図、第6図
および第7図はそれぞれ第1図に示すΔ断面図、I3断
面図、C断面図、D断面図、E断面図およびF断面図;
第8図、第9図および第10図はそれぞれ本発明の第二
ないし第四の実施例を示す正面図;第11図、第12図
および第13図はそれぞれ第1O図に示すC断面図、I
T断面図および■断面図:第14図は本発明の第五の実
施例を示す正面図;第15図は本発明の第六の実施例を
示し、強制採熱管部分に縦断面図を含む正面図;第16
図は第1図、第8図、第9図および第15図に示す自然
採熱管の熱交換性の管の例を示している拡大横断面図:
第17図は第16図に示すJ拡大縦断面図;第18図は
第1図、第8図、第9図、第10図、第14図および第
15図に示す、非熱交換性の管または非熱交換性の部分
の例を示している拡大横断面図:第19図は第18図に
示すに拡大縦断面ヌ!;第20図は第1図、第8図およ
び第9図に示す強制採熱管の熱交換部分の例を示してい
る拡大横断面図;第21図は第20図に示すし拡大縦断
面図:第22図は第8図に示す合成採熱管の下方部を示
している部分正面図:第23図は第22図に示すM拡大
縦断面図;第24図は第23図に示すN拡大縦断面図;
第25図は、本発明に係る地中熱交換装置の使用例を示
す概略図である。 ■・・・強制採熱管の、装置の外部に対して非熱交換性
の往管、2・・・強制採熱管の、熱交換部分の往管、3
・・・強制採熱管の、熱交換部分の復管、4・・・強制
採熱管の、装置の外部に対して非熱交換性の復管、5・
・・自然採熱管の熱交換性の管、6・・・自然採熱管の
非熱交換性の部分、7・・・自然採熱管の非熱交換性の
液化ガス封入管、8・・・受液自然採熱管、9・・・第
二管の、装置の外部に対して非熱交換性の往管、IO・
・・第二管の熱交換性の管、11・・・第二管の非熱交
換性の管、12・・・埋戻材、RH・・・地中のポーリ
ング穿孔、G L・・・地表面、13・・・蓄熱体、1
4・・・断熱層、15・・・液散布突起、17・・・表
面積増大伝熱体または液滞留伝熱体、18・・・液滞留
伝熱体、32・・・放熱器、39・・・圧縮機、44・
・・熱交換器、49・・・冷却・集熱器、54・・・受
液器、58・・・温水タンク。 第 1 m 第2図 算3z 第4図 Jj、5 図 第7図 第8z 茎? 2 ヌ/θ2  n m 第1Z囮 茶14Ω 輩昆2          第17Δ 第18fJJ            $1’f/M第
zo(H冥zt(gl 第zzm 名23図
FIG. 1 is a front view showing a first embodiment of the underground heat exchange device according to the present invention; FIGS. 2, 3, 4, 5, 6, and 7 are respectively Δ sectional view, I3 sectional view, C sectional view, D sectional view, E sectional view and F sectional view shown in Figure 1;
8, 9, and 10 are front views showing second to fourth embodiments of the present invention, respectively; FIGS. 11, 12, and 13 are C sectional views shown in FIG. 1O, respectively. , I
T sectional view and ■ sectional view: Fig. 14 is a front view showing the fifth embodiment of the present invention; Fig. 15 shows the sixth embodiment of the present invention, including a longitudinal sectional view of the forced heat collection pipe portion Front view; 16th
The figure is an enlarged cross-sectional view showing examples of heat exchangeable natural heat collecting tubes shown in FIGS. 1, 8, 9 and 15:
Fig. 17 is an enlarged vertical cross-sectional view of J shown in Fig. 16; Fig. 18 is a non-heat exchangeable cross-sectional view shown in Figs. An enlarged cross-sectional view showing an example of a tube or a non-heat exchangeable part: FIG. 19 is an enlarged longitudinal section similar to that shown in FIG. 18! ; Fig. 20 is an enlarged cross-sectional view showing an example of the heat exchange portion of the forced heat collection tube shown in Figs. 1, 8, and 9; Fig. 21 is an enlarged longitudinal sectional view of the same as shown in Fig. 20; : Fig. 22 is a partial front view showing the lower part of the synthetic heat collection tube shown in Fig. 8; Fig. 23 is an enlarged vertical sectional view of M shown in Fig. 22; Fig. 24 is an enlarged N part shown in Fig. 23. Longitudinal cross-sectional view;
FIG. 25 is a schematic diagram showing an example of use of the underground heat exchange device according to the present invention. ■... Outgoing pipe of the forced heat collection tube that does not exchange heat with the outside of the device, 2... Outgoing pipe of the heat exchange part of the forced heat collection pipe, 3
... Return pipe of the heat exchange part of the forced heat collection pipe, 4... Return pipe of the forced heat collection pipe, which does not have heat exchange properties with respect to the outside of the device, 5.
... Heat exchangeable pipe of the natural heat collection pipe, 6... Non-heat exchangeable part of the natural heat collection pipe, 7... Non-heat exchangeable liquefied gas filled pipe of the natural heat collection pipe, 8... Receiver Liquid natural heat collection pipe, 9...Second pipe, outgoing pipe that does not have heat exchange with the outside of the device, IO/
...Second heat exchange pipe, 11...Second non-heat exchange pipe, 12...Backfilling material, RH...Underground poling hole, G L... Ground surface, 13... Heat storage body, 1
4... Heat insulation layer, 15... Liquid dispersion protrusion, 17... Surface area increasing heat transfer body or liquid retention heat transfer body, 18... Liquid retention heat transfer body, 32... Heat radiator, 39.・Compressor, 44・
...Heat exchanger, 49... Cooling/heat collector, 54... Liquid receiver, 58... Hot water tank. 1st m 2nd illustration 3z 4th figure Jj, 5th figure 7th figure 8z Stem? 2 nu/θ2 nm 1st Z decoy tea 14Ω haiku 2nd 17Δ 18th fJJ $1'f/Mth zo(Hmeizt(gl th zzm name 23)

Claims (10)

【特許請求の範囲】[Claims] (1)装置の外部に対して非熱交換性の往管に熱交換部
分が連通し、この熱交換部分に装置の外部に対して非熱
交換性の復管が連通した往復管である強制採熱管と;少
なくとも下部が熱交換性の管であり、全体が閉じた管で
あって、管内に液化ガスを封入した自然採熱管と;少な
くとも、下部に熱交換部分を有し、下部が閉じた管であ
る受液自然採熱管があって;強制採熱管と自然採熱管が
熱交換関係にある、または強制採熱管の最深部に受液自
然採熱管の上部が連通した合成採熱管である、あるいは
この合成採熱管と自然採熱管が熱交換関係にある、第一
管と;装置の外部に対して非熱交換性の往管に熱交換性
の管が連通し、この熱交換性の管に非熱交換性の復管が
連通した往復管である第二管と;を地中にボーリングし
た穿孔内に挿入して、これら第一管と第二管が熱交換関
係にあり、液化ガスが、強制採熱管内を減圧循環し、自
然採熱管内を自然循環し、合成採熱管内を減圧循環およ
び自然循環し、第二管内を加圧循環する地中熱交換装置
(1) A forced reciprocating pipe in which a heat exchange part communicates with an outgoing pipe that does not have heat exchange properties to the outside of the equipment, and a return pipe that does not have heat exchange properties communicates with this heat exchange part to the outside of the equipment. A natural heat collection tube that has at least a heat exchanger section at the bottom and is completely closed, with liquefied gas sealed inside the tube; A natural heat collection tube that has at least a heat exchange section at the bottom and is closed. There is a natural heat collection tube that is a natural heat collection tube; the forced heat collection tube and natural heat collection tube are in a heat exchange relationship, or it is a synthetic heat collection tube in which the upper part of the natural heat collection tube communicates with the deepest part of the forced heat collection tube. , or the synthetic heat collecting pipe and the natural heat collecting pipe are in a heat exchange relationship with the first pipe; the heat exchangeable pipe is connected to the outgoing pipe that does not have heat exchange with the outside of the device, and this heat exchange A second pipe, which is a reciprocating pipe in which a non-heat exchange return pipe communicates with the pipe, is inserted into a hole bored underground, and these first pipe and second pipe are in a heat exchange relationship, and liquefy. A geothermal heat exchange device in which gas is circulated under reduced pressure in a forced heat collection pipe, naturally circulated in a natural heat collection pipe, circulated under reduced pressure and naturally in a synthetic heat collection pipe, and circulated under pressure in a second pipe.
(2)強制採熱管の往管が、絞り管または絞り弁を有す
る特許請求の範囲第1項記載の地中熱交換装置。
(2) The underground heat exchange device according to claim 1, wherein the outgoing pipe of the forced heat collection pipe has a throttle pipe or a throttle valve.
(3)熱交換部分が、螺旋状である特許請求の範囲第1
項または第2項記載の地中熱交換装置。
(3) Claim 1 in which the heat exchange portion is spiral-shaped.
The underground heat exchange device according to item 1 or 2.
(4)自然採熱管が、非熱交換性の部分を有している特
許請求の範囲第1項ないし第3項のいずれか一に記載の
地中熱交換装置。
(4) The underground heat exchange device according to any one of claims 1 to 3, wherein the natural heat collection pipe has a non-heat exchange portion.
(5)自然採熱管が、非熱交換性の液化ガス封入管を有
している特許請求の範囲第1項ないし第4項のいずれか
一に記載の地中熱交換装置。
(5) The underground heat exchange device according to any one of claims 1 to 4, wherein the natural heat collection pipe has a non-heat exchangeable liquefied gas filled pipe.
(6)少なくとも第一管が、断熱層に囲まれた蓄熱体内
にある特許請求の範囲第1項ないし第5項のいずれか一
に記載の地中熱交換装置。
(6) The underground heat exchange device according to any one of claims 1 to 5, wherein at least the first pipe is inside a heat storage body surrounded by a heat insulating layer.
(7)装置を構成する管が、可曲管である特許請求の範
囲第1項ないし第6項のいずれか一に記載の地中熱交換
装置。
(7) The underground heat exchange device according to any one of claims 1 to 6, wherein the pipes constituting the device are bendable pipes.
(8)強制採集管が、その内面に液散布突起を有する特
許請求の範囲第1項ないし第7項のいずれが一に記載の
地中熱交換装置。
(8) The underground heat exchange device according to any one of claims 1 to 7, wherein the forced collection pipe has a liquid dispersion projection on its inner surface.
(9)第一管の熱交換部分に、液滞留伝熱体を有する特
許請求の範囲第1項ないし第8項のいずれか一に記載の
地中熱交換装置。
(9) The underground heat exchange device according to any one of claims 1 to 8, which has a liquid retention heat transfer body in the heat exchange portion of the first pipe.
(10)熱交換性の管が、その熱交換面に表面積増大伝
熱体を有する特許請求の範囲第1項ないし第9項のいず
れか一に記載の地中熱交換装置。
(10) The underground heat exchange device according to any one of claims 1 to 9, wherein the heat exchange pipe has a surface area increasing heat transfer body on its heat exchange surface.
JP62128051A 1986-06-20 1987-05-27 Underground heat exchanger Pending JPS63108158A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP14271686 1986-06-20
JP61-142716 1986-06-20

Publications (1)

Publication Number Publication Date
JPS63108158A true JPS63108158A (en) 1988-05-13

Family

ID=15321916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62128051A Pending JPS63108158A (en) 1986-06-20 1987-05-27 Underground heat exchanger

Country Status (1)

Country Link
JP (1) JPS63108158A (en)

Similar Documents

Publication Publication Date Title
US4015962A (en) Temperature control system utilizing naturally occurring energy sources
US5272879A (en) Multi-system power generator
US8567482B2 (en) Heat tube device utilizing cold energy and application thereof
US8650875B2 (en) Direct exchange geothermal refrigerant power advanced generating system
AU674276B2 (en) Gas turbine intake air cooling apparatus
US4240268A (en) Ground cold storage and utilization
US4383419A (en) Heating system and method
US4444249A (en) Three-way heat pipe
JP6021313B2 (en) Method, power plant, and cooling system for cooling a carrier fluid in a power plant
US4341202A (en) Phase-change heat transfer system
KR20010029460A (en) Arrangement for transferring heating and cooling power
US4224925A (en) Heating system
JPH01269862A (en) Geotherm exchanger
FR3060714A1 (en) VAPOR GENERATING DEVICE USING LOW TEMPERATURE HEAT SOURCE
JPS63108158A (en) Underground heat exchanger
CN1325869C (en) Heat pipe cold guide device and cold storage body and freezer with said device
RU2641775C1 (en) Caloric engine unit heating system
CA1283549C (en) Heat pipe having a turbine built therein and apparatus using same
EP0041976B1 (en) Method of storing energy and system for carrying out this method
JPS6045328B2 (en) heating device
RU2381425C1 (en) Heat-pipe power complex
KR100296699B1 (en) Ground source cooling and heating pump system using heat pipe with two headers
JP3996434B2 (en) Interregional heat supplement system
JPH05312056A (en) Intake air cooling system of gas turbine
CN101025293A (en) All-weather solar power utilization method and apparatus