JPH01269862A - Geotherm exchanger - Google Patents

Geotherm exchanger

Info

Publication number
JPH01269862A
JPH01269862A JP63099242A JP9924288A JPH01269862A JP H01269862 A JPH01269862 A JP H01269862A JP 63099242 A JP63099242 A JP 63099242A JP 9924288 A JP9924288 A JP 9924288A JP H01269862 A JPH01269862 A JP H01269862A
Authority
JP
Japan
Prior art keywords
heat
pipe
heat exchange
underground
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63099242A
Other languages
Japanese (ja)
Inventor
Kazuo Kuroiwa
一男 黒岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP63099242A priority Critical patent/JPH01269862A/en
Publication of JPH01269862A publication Critical patent/JPH01269862A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/15Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using bent tubes; using tubes assembled with connectors or with return headers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Abstract

PURPOSE:To obtain geotherm exchanger which can be easily used effectively at a deep underground layer and has high efficiency and high capability, by a construction wherein a liquefied gas is circulated with decompression in a forced heat intake pipe, is naturally circulated in a natural heat intake pipe, and is circulated with pressurization in a heat radiating pipe. CONSTITUTION:A first pipe 1-4, a natural heat intake pipe 5-7 or a liquid-receiving natural heat intake pipe 8 and a second pipe 9-11 are inserted in bored holes BH under the ground, and a liquefied gas is circulated in the pipes. The forced heat intake pipe 1-4 is used for taking in heat by power, and is in a heat-exchanging relationship with the natural heat intake pipe 5-7, 8 to constitute a forced circulating pipe system comprising a compressor. The forward and backward pipe 1-4 can reduce a frictional pressure loss, more as a pipe part thereof for circulation with decompression is greater in diameter and shorter. Therefore, when natural heat intake is carried out at an upper part by the natural heat intake pipe 5-7 and the liquid-receiving natural heat intake pipe 8, the power required can be saved, and a device can be made smaller. The second pipe 9-11 is a forward and backward pipe for heat radiation in the depth under the ground, and in many cases, the liquefied gas in the pipe is introduced as a high-temperature high pressure vapor. When the vapor is converted into a liquid through releasing the heat of condensation at a position near the surface of the ground, a weight balance of the liquid liquefied gas can be obtained, and circulation with pressurization can be performed easily.

Description

【発明の詳細な説明】 (技術分野) 本発明は、地熱、地中の膨大な熱容量と恒温性および大
地の保温性を充分に活用するため、深い地中を簡単かつ
有効に利用できる地中熱交換装置を提案するもので、例
えば給湯、暖房、冷房および冷凍を行なうための地中熱
交換装置に関する。
Detailed Description of the Invention (Technical Field) The present invention is directed to a geothermal system that enables easy and effective use of deep underground areas in order to fully utilize geothermal heat, the vast heat capacity and constant temperature of the earth, and the heat retention ability of the earth. The present invention proposes a heat exchange device, and relates to an underground heat exchange device for, for example, hot water supply, heating, cooling, and refrigeration.

(従来技術とその問題点) 深い地中の温度は、気温にはほとんど影響されず、季節
を通じて安定していて、地下およそ6〜7mで一定にな
り、それより深い浅層で段々高くなる。もつと深い深層
では内部からの地熱によりさらに増大する。大地の表層
の温度は気温の変化に伴って変動するが、地下数十mの
浅層には、気温とは逆に夏より冬の方が高いところがあ
る。これは大地の熱伝導が非常にゆっくりしているため
で、地中の膨大な熱容量と大地の保温性によるものであ
る。すなわち、大地の表層が夏期に熱せられると、冬期
に亘って徐々に浅層も暖められ、冬期に表層が冷やされ
ると、夏期に亘って徐々に浅層も冷やされる。この熱伝
導のタイムラグによって、夏より冬の方が高くなるもの
である。また、深い地中の熱は取っても取っても集って
くる。これは地中の恒温性のためで、太陽熱や地熱を蓄
えている地中の膨大な熱容量と大地の保温性によるもの
である。地中には地下水があり、地下水によって地中の
熱容量が大きくなるとともに、熱交換が速やかに行なわ
れる。
(Prior art and its problems) The temperature deep underground is almost unaffected by air temperature and is stable throughout the seasons, becoming constant at about 6 to 7 meters underground and gradually rising in shallower layers. In deeper layers, it increases further due to geothermal heat from within. The temperature of the surface layer of the earth fluctuates with changes in air temperature, but there are places in shallow layers several tens of meters underground that are higher in winter than in summer, contrary to the temperature. This is because the earth conducts heat very slowly, and is due to the huge heat capacity of the earth and the earth's ability to retain heat. That is, when the surface layer of the earth is heated during the summer, the shallow layer is gradually warmed over the winter, and when the surface layer is cooled during the winter, the shallow layer is also gradually cooled over the summer. Due to this time lag in heat conduction, it is higher in winter than in summer. Also, heat deep underground gathers no matter how much heat you take away. This is due to the constant temperature of the earth, which has a huge heat capacity that stores solar heat and geothermal heat, and the earth's ability to retain heat. There is groundwater underground, and groundwater increases the heat capacity of the ground and facilitates rapid heat exchange.

ところが、従来技術で地中の深いところまで利用しよう
としても、熱交換媒体循環のための摩擦圧力損失が大き
く、過大な動力を必要として、著しく効率が低下すると
ともに、管路が太くなって、穿孔も大きくなり、装置が
大形化して、設置作業が大掛かりになる。そのため、コ
ストの節約にならず、豊かな自然の能力を活かした、地
中深く到達できる地中熱交換装置は実現していない。
However, even if conventional technology were to be utilized deep underground, the frictional pressure loss due to circulation of the heat exchange medium was large and excessive power was required, resulting in a significant drop in efficiency and the pipes becoming thicker. The holes become larger, the device becomes larger, and the installation work becomes more extensive. As a result, underground heat exchange equipment that can penetrate deep into the earth and utilize the rich capabilities of nature has not been realized, without cost savings.

(発明の目的) 本発明は、従来の問題点を解決して、簡単に地中の深層
まで有効に利用できる、高効率で能力の大きな地中熱交
換装置を得ることにより、地中に眠っている豊富な熱資
源を充分に活用しようとするものである。
(Objective of the Invention) The present invention solves the conventional problems and provides a highly efficient and large-capacity underground heat exchange device that can be easily and effectively used deep underground. The aim is to make full use of the abundant heat resources available in Japan.

(発明の概要) 本発明は、この目的を達成するために、気温に変化に伴
って地温の変動する、大地の表層部分は対象とせず、地
下およそ6〜7m以深の浅層から深層を対象とする。従
って、本装置の達する深さは地下数十mから数千m以上
にも及ぶ。本発明は、地中の深層まで有効に利用する方
法として、採熱サイクルと放熱サイクルを別系統とし、
採熱サイクルには、いくら深くても下部から上部に無償
で熱を運ぶ第1管を設けている。これは、温度差により
自動的に作動して液化ガスが自然循環するランニングコ
ストの全くかからない採熱管である。
(Summary of the Invention) In order to achieve this objective, the present invention does not target the surface layer of the earth, where the soil temperature fluctuates with changes in air temperature, but targets the shallow to deep layers approximately 6 to 7 meters deep underground. shall be. Therefore, the depth that this device can reach ranges from several tens of meters underground to several thousand meters or more. The present invention separates the heat collection cycle and the heat release cycle as a method to effectively utilize the depths of the earth.
The heat collection cycle is equipped with a first pipe that carries heat from the bottom to the top free of charge, no matter how deep it is. This is a heat collecting tube that automatically operates based on temperature differences and naturally circulates liquefied gas, requiring no running costs.

従って、動力により採熱は常に上部から行なえば良いの
で、強制採熱管を地上に置くこともできるようになり、
管内の摩擦圧力損失が少なく、効率良く細い管で大量の
熱交換ができる。また、放熱サイクルは、第2管を上記
採熱サイクルとともに設け、強制採熱管部分等上部で高
温高圧蒸気を冷却液化できるため、上部で比重量が大き
くなり、上部で循環速度の減少と液体液化ガスの重量バ
ランスが得られ、わずかな圧力で効率良く地中深く放熱
することができるとともに、上部で体積が縮小されるの
で、細い管で大量の熱交換ができる。
Therefore, heat collection using power can always be done from the top, making it possible to place forced heat collection pipes above ground.
Frictional pressure loss inside the tube is small, and a large amount of heat can be efficiently exchanged with a thin tube. In addition, in the heat dissipation cycle, a second pipe is installed together with the above-mentioned heat collection cycle, and the high temperature and high pressure steam can be cooled and liquefied at the upper part of the forced heat collection pipe, etc., so the specific weight increases at the upper part, and the circulation speed decreases and the liquid liquefies at the upper part. The weight balance of the gas is achieved, and heat can be efficiently dissipated deep into the earth with a small amount of pressure.The volume is reduced in the upper part, so a large amount of heat can be exchanged with a thin tube.

減圧によって管底で分流滞留する潤滑油が、強制採熱管
内を循環しない場合には、受液自然採熱管を使用するこ
とにより、強制採熱管をざらに短くして圧力損失を少な
くすることができる。
If the lubricating oil that separates and accumulates at the bottom of the tube due to depressurization does not circulate within the forced heat collection tube, it is possible to reduce pressure loss by roughly shortening the forced heat collection tube by using a liquid receiving natural heat collection tube. can.

その他、本発明の特徴として、強制採熱管の往管を絞り
管とし、往管内の液化ガスを液体のままで循環させて往
管を細い管にしている。また、第1管の熱交換部分には
、液滞留伝熱体を設けて、適量の液体液化ガスを適度に
滞留させ、放熱凝縮や吸熱蒸発が能率的に行なわれるよ
うにしている。
Another feature of the present invention is that the outgoing tube of the forced heat collection tube is a constricted tube, and the liquefied gas in the outgoing tube is circulated as a liquid to make the outgoing tube a thin tube. Further, a liquid retention heat transfer body is provided in the heat exchange portion of the first tube to appropriately retain an appropriate amount of liquid liquefied gas so that heat dissipation condensation and endothermic evaporation are performed efficiently.

特に、受液自然採熱管は、自然採熱管の役目だけでなく
、受液機の役目もしていて、そこで液体と蒸気を分離し
て、余剰液体が管路を塞ぐのを防止し、蒸気の円滑な流
動を妨げないようにするとともに、本装置内の液化ガス
循環量も自動的(調節して本装置の始動と高速運転を容
易にしている。
In particular, liquid receiving natural heat collection pipes not only function as natural heat collection pipes, but also serve as liquid receivers, separating liquid and steam, preventing excess liquid from clogging the pipes, and preventing steam from clogging the pipes. In addition to ensuring smooth flow is not disturbed, the amount of liquefied gas circulating within the device is automatically adjusted to facilitate startup and high-speed operation of the device.

以上のように、本発明は、簡単なボーリング穿孔を利用
して、いくら深くても深さに関係なく、管路の圧力損失
を少なくして動力を節約し、高い効率の高速熱交換を可
能にし、装置を構成する管を細くして、容易に高い圧力
に耐え、容易に曲げられる装置とし、容易に地中深く到
達できる地中熱交換装置を提供するものである。
As described above, the present invention utilizes simple boring to reduce pressure loss in the pipeline, save power, and enable high-speed heat exchange with high efficiency, regardless of the depth. To provide a geothermal heat exchange device that can easily reach deep underground by making the tubes that make up the device thinner so that the device can easily withstand high pressure and can be easily bent.

本発明は、地熱を直接利用するだけでなく、太陽熱、水
中・大気中から得られる熱、おるいは冷房・冷凍によっ
て得られる熱で給湯や暖房をし、余った熱を地中に蓄え
、その熱でまた給湯や暖房をするための地中熱交換装置
である。給湯や暖房で使用済みの熱は、排水中や大気中
に放散され、地中にも返還される。このような熱が循環
するだけで物質は消費されない。
The present invention not only uses geothermal heat directly, but also uses solar heat, heat obtained from water or the atmosphere, or heat obtained from air conditioning and refrigeration for hot water supply and space heating, and stores excess heat underground. This is an underground heat exchange device that uses that heat to supply hot water and space heating. The heat used for hot water supply and space heating is dissipated into wastewater, the atmosphere, and returned underground. This kind of heat only circulates, and no matter is consumed.

従来、物を冷やすために熱を捨て、暑さを凌ぐために熱
を捨ててきた。一方、湯を沸かすために燃料を消費し、
寒さを凌ぐために燃料を消費してきた。このように熱を
無駄にしている事実は、新たな必要性を教えている。こ
こで、本発明は大地の保温性を利用し、地中を大きな蓄
熱体として利用して、熱の過不足を調節し、あるいは地
熱を直接利用して、眼っている無尽蔵の熱資源を活用し
た地中熱交換装置を提案するものである。
Traditionally, we have used heat to cool things down, and heat to beat the heat. On the other hand, fuel is consumed to boil water,
We have been consuming fuel to survive the cold. The fact that we are wasting heat in this way teaches us a new need. Here, the present invention takes advantage of the heat retention properties of the earth, uses the underground as a large heat storage body to adjust the excess or deficiency of heat, or directly utilizes geothermal heat to utilize the inexhaustible heat resources available. This paper proposes a geothermal heat exchange device that utilizes the ground heat exchange system.

(実施例の説明) 以下図示実施例について、本発明を説明する。(Explanation of Examples) The invention will now be described with reference to the illustrated embodiments.

本発明において、「表層」とは地温が気温の変化に伴っ
て変動する範囲を、「浅層」とは動力だけで採熱できる
範囲を、「深層」とは液化ガスの自然循環によって、管
路の摩擦圧力損失を少なくして採熱できる範囲を意味す
るものとする。
In the present invention, the "surface layer" refers to the range where the soil temperature fluctuates with changes in air temperature, the "shallow layer" refers to the area where heat can be collected using only power, and the "deep layer" refers to the area where the soil temperature changes due to the natural circulation of liquefied gas. This refers to the range in which heat can be collected while minimizing frictional pressure loss in the road.

第1図、第8図、第9図、第10図、第14図および第
15図は、それぞれ本発明の実施例であり、第15図の
強制採熱管は縦断面図を示す。第2図〜第7図および第
11図〜第13図は、その主要な部分の断面図である。
1, 8, 9, 10, 14, and 15 each show an embodiment of the present invention, and the forced heat collection tube in FIG. 15 shows a longitudinal cross-sectional view. 2 to 7 and 11 to 13 are cross-sectional views of the main parts thereof.

同図において、第1管1〜8自然採熱管5〜7または受
液自然採熱管8、および第2管9〜11は、地中のボー
リング穿孔BH内に挿入されていて、管内を液化ガスが
循環する。液化ガスにはアンモニア、および上空で分解
してオゾンと反応しないフロンを使用している。これら
の管の回りには砂、砂利等の埋戻材12が充填されてい
て、地下水の移動を容易にし、本装置の熱交換効率を高
めるとともに、穿孔8Hの崩れを防止しながら、これら
の管が地下水により浮力で浮き上がるのを防いでいる。
In the figure, first pipes 1 to 8 natural heat collection pipes 5 to 7 or liquid receiving natural heat collection pipes 8, and second pipes 9 to 11 are inserted into underground boring holes BH, and liquefied gas flows through the pipes. is circulated. The liquefied gases used are ammonia and fluorocarbons, which decompose in the air and do not react with ozone. A backfilling material 12 such as sand or gravel is filled around these pipes to facilitate the movement of groundwater and increase the heat exchange efficiency of this device. This prevents the pipe from floating up due to the buoyancy of groundwater.

これらの管は必ずしも同−穿孔内に挿入される必要はな
く、互いに熱交換できる位置にあれば良い。
These tubes do not necessarily have to be inserted into the same borehole, but only need to be positioned so that they can exchange heat with each other.

第1図、第8図、第9図、第10図、第14図および第
15図において、強制採熱管1〜4は、動力により採熱
する管であり、必ず自然採熱管5〜7,8と熱交換関係
にあって、圧縮器を含む強制循環管路系をなしている。
In FIGS. 1, 8, 9, 10, 14, and 15, forced heat collection tubes 1 to 4 are tubes that collect heat by power, and natural heat collection tubes 5 to 7, It is in a heat exchange relationship with 8 and forms a forced circulation piping system including a compressor.

この往復管1〜4は、減圧循環する部分の管が太くて短
いほど、摩擦圧力損失を少なくすることができる。従っ
て、自然採熱管5〜7および受液自然採熱管8(より、
できるだけ上部に自然採熱すれば、動力を節約すること
ができるとともに、本装置を小形化することができる。
In the reciprocating pipes 1 to 4, the thicker and shorter the part of the pipe that circulates under reduced pressure can reduce the frictional pressure loss. Therefore, the natural heat collection pipes 5 to 7 and the liquid receiving natural heat collection pipe 8 (from
By collecting natural heat as much as possible from the top, power can be saved and the device can be made more compact.

第1図、第8図、第9図、第14図および第15図の往
管4、または第10図の往管1゜2を絞り管とすれば、
管内の液化ガスを液体として循環できるので、°本装置
をさらに小形化できる。
If the outgoing pipe 4 in Figs. 1, 8, 9, 14, and 15 or the outgoing pipe 1°2 in Fig. 10 is a constricted pipe,
Since the liquefied gas inside the pipe can be circulated as a liquid, the device can be further downsized.

強制採熱管1〜4内を循環する液化ガスに、潤滑油が含
まれていて、減圧によって、この潤滑油が管底で分流滞
留する場合には、第1図、第9図および第15図上段の
ように、受液自然採熱管8の無い強制採熱管1〜4を使
用する。この場合、強制循環によって、川りの蓄熱部分
や自然採熱管5および第2管10との熱交換を行なうの
で、充分な長さの強制採熱管1〜4が必要であるが、第
8図、第10図、第14図および第15図下段のような
受液自然採熱管8を有する例では、熱交換は受液自然採
熱管8でも行なうことができるので、強制採熱管1〜4
を短くすることができる。
If the liquefied gas circulating in the forced heat collection tubes 1 to 4 contains lubricating oil and this lubricating oil is diverted and retained at the bottom of the tube due to pressure reduction, Figs. 1, 9, and 15. As shown in the upper row, forced heat collection tubes 1 to 4 without liquid receiving natural heat collection tube 8 are used. In this case, forced circulation is used to exchange heat with the heat storage part of the river, the natural heat collection pipe 5, and the second pipe 10, so forced heat collection pipes 1 to 4 of sufficient length are required. , FIG. 10, FIG. 14, and FIG. 15, in the example shown in the lower part of FIG.
can be shortened.

第1図、第8図、第9図、第10図、第14図および第
15図において、非熱交換性の管1,4は、装置の外部
から熱の影響がないようにする断熱管で、被覆管を使用
している。第18図および第19図にその例を示す。第
18図は横断面図、第19図はに縦断面図である。管1
9は液化ガスに侵されない柔軟な管で作り、断熱材20
には複層の発泡ポリプロピレン等を用い、被覆材21に
は地下水に侵されない材料を使用する。
In FIGS. 1, 8, 9, 10, 14, and 15, non-heat exchanging tubes 1 and 4 are heat-insulating tubes that prevent the influence of heat from outside the device. So, cladding is used. Examples are shown in FIGS. 18 and 19. FIG. 18 is a cross-sectional view, and FIG. 19 is a vertical cross-sectional view. tube 1
9 is made of a flexible pipe that is not affected by liquefied gas, and the insulation material 20
A multilayer foamed polypropylene or the like is used for the covering material 21, and a material that is not eroded by groundwater is used for the covering material 21.

本装置を構成する管を、容易に曲げられる柔軟な可曲管
とすれば、長い管をコイル状に巻いて扱うことができる
ため、運搬や設置の作業は簡単になる。
If the tube constituting this device is a flexible tube that can be easily bent, the long tube can be coiled and handled, making transportation and installation easier.

第1図、第8図および第9図において、強制採熱管1〜
4のうち、熱交換部分の往管2の外面。
In Figures 1, 8, and 9, forced heat collection tubes 1 to
4, the outer surface of the outgoing pipe 2 in the heat exchange section.

および復管3の外面と内面には表面積増大伝熱体を設け
、伝熱面積を大きくして熱交換効率を高めている。特に
、蒸発管である往管2の内面には表面積を増大した液滞
留伝熱体が設けており、適量の液体液化ガスが適度に滞
留していて、容易に気化熱を得て吸熱蒸発がしやすいよ
うにしたもので、蒸気の離脱と液体液化ガスの供給が連
続的に行なわれるようにしている。このような管の例を
第20図および第21図に示す。第2図にはこの管の横
断面図、第21図はL縦断面図である。管22には、液
化ガスや地下水に侵されず、熱伝導率の大きい柔軟な材
料を使用している。これは、外面に表面積を大きくした
突起23を有し、内面の突起24は、表面積の大きくな
っているだけでなく、直管に使用するとき、液化ガスが
流れやすく、螺旋管に使用するとき、液が滞留しやすく
なっている。
A surface area increasing heat transfer body is provided on the outer and inner surfaces of the return pipe 3 to increase the heat transfer area and improve the heat exchange efficiency. In particular, a liquid retention heat transfer body with an increased surface area is installed on the inner surface of the outgoing tube 2, which is an evaporation tube, and an appropriate amount of liquid liquefied gas is retained in the inner surface of the outgoing tube 2, which allows for easy evaporation heat to be obtained and endothermic evaporation. This makes it easy to remove vapor and supply liquid liquefied gas continuously. Examples of such tubes are shown in FIGS. 20 and 21. FIG. 2 is a cross-sectional view of this tube, and FIG. 21 is an L-longitudinal cross-sectional view. The pipe 22 is made of a flexible material that is not corroded by liquefied gas or groundwater and has high thermal conductivity. This has protrusions 23 on the outer surface with a large surface area, and protrusions 24 on the inner surface not only have a large surface area, but also allow the liquefied gas to flow easily when used for straight pipes, and when used for spiral pipes. , liquid tends to stagnate.

第1図、第8図および第9図のように、熱交換部分の往
管2を螺旋管とすれば、全体が一定の緩かな勾配となり
、液が滞留しやすくなるばかりでなく、同じ深さの装置
でも、伝熱面積を大きくすることができる。また、容易
に曲げられる装置とすることができるため、運搬や設置
が簡単になる。
As shown in Figs. 1, 8, and 9, if the outgoing pipe 2 of the heat exchange section is a spiral pipe, the whole will have a constant gentle slope, which will not only make it easier for the liquid to accumulate, but also make it possible to maintain the same depth. Even with a small device, the heat transfer area can be increased. Furthermore, since the device can be easily bent, transportation and installation are simplified.

ざらに、この螺旋管2は復管3.自然採熱管5および第
2管10を包んでいて、それらの管との熱交換が効果的
に行なわれ、復管3内を流れる液化ガスを容易に過熱す
ることができる。
Roughly speaking, this spiral pipe 2 is a return pipe 3. It encloses the natural heat collecting pipe 5 and the second pipe 10, so that heat exchange with these pipes is effectively performed, and the liquefied gas flowing in the return pipe 3 can be easily superheated.

第8図、第10図、第14図および第15図下段におい
て、強制採熱管1〜4に受液自然採熱管8を設けると、
この受液自然採熱管8が、廻りの蓄熱部分、第2管10
および自然採熱管5から採熱するので、強制循環管路を
短くでき、摩擦圧力損失を少なくできる。また、往復管
1〜4内を強制循環するとき、受液自然採熱管8の上部
で液体と蒸気が分離され、蒸気の流動は円滑に行なわれ
るとともに、液化ガスを循環量が自動的に調節され、本
装置の始動と高速運転が容易に行なわれる。
In FIG. 8, FIG. 10, FIG. 14, and the lower part of FIG.
This liquid receiving natural heat collection pipe 8 is the surrounding heat storage part, the second pipe 10
Since heat is collected from the natural heat collection pipe 5, the forced circulation pipe can be shortened and frictional pressure loss can be reduced. In addition, when forced circulation inside the reciprocating tubes 1 to 4, the liquid and steam are separated at the upper part of the liquid receiving natural heat collection tube 8, and the flow of steam is performed smoothly, and the amount of liquefied gas circulated is automatically adjusted. This makes it easy to start up and operate the device at high speed.

往復管1〜4内で強制循環をしないときは、往復管1〜
4と受液自然採熱管8が合した合成採熱管内で、液化ガ
スが自然循環して採熱されるが、強制循環をするときは
、合成採熱管内が減圧されるので、より低い温度で強制
循環と自然循環をしながら採熱される。すなわち、液体
のある液化ガスが減圧されると、液体も蒸気も、その液
化ガスの飽和蒸気圧が、減圧された圧力に等しいときの
温度になる。
When forced circulation is not performed in reciprocating pipes 1 to 4, reciprocating pipes 1 to 4
The liquefied gas naturally circulates and collects heat in the synthetic heat collecting tube where 4 and the liquid receiving natural heat collecting tube 8 are combined, but when performing forced circulation, the pressure inside the synthetic heat collecting tube is reduced, so the temperature is lower. Heat is collected through forced circulation and natural circulation. That is, when a liquefied gas with a liquid is depressurized, both the liquid and the vapor reach the temperature when the saturated vapor pressure of the liquefied gas is equal to the reduced pressure.

第8図の受液自然採熱管8の例を第23図および第24
図に示す。第23図は合成採熱管の下部を示す第22図
のM断面図であり、第24図は第23図のN断面図でお
る。第23図と第24図において、受液自然採熱管8の
上部に、強制採熱管の往管2の出口25と復管3の入口
26が連通しており、この受液自然採熱管8の外面には
表面積増大伝熱体27.内面には表面積を増大した液滞
留伝熱体28を有する。受液自然採熱管8の下部の液滞
留伝熱体28はUli用であるが、上部の液滞留伝熱体
28は、強制循環運転中には液化ガスが減圧されて沸騰
用となり、運転停止中には液化ガスが自然循環して凝縮
用となる。凝縮用は凝縮した液化ガスが表面張力でと溜
まらないように、滞留している液体液化ガスが表面張力
を破り、連続的に導き去るようにしたものであり、沸騰
用は液体液化ガスが滞留して暖まりやすくなっていて、
蒸気の離脱と液体液化ガスの供給が連続的(行なわれる
ようにしたものである。
Examples of the liquid receiving natural heat collection tube 8 shown in Fig. 8 are shown in Figs. 23 and 24.
As shown in the figure. FIG. 23 is a cross-sectional view of M in FIG. 22 showing the lower part of the synthetic heat collecting tube, and FIG. 24 is a cross-sectional view of N in FIG. 23. 23 and 24, the outlet 25 of the outgoing pipe 2 of the forced heat collecting pipe and the inlet 26 of the returning pipe 3 are in communication with the upper part of the natural heat collecting pipe 8. On the outer surface is a surface area increasing heat transfer body 27. The inner surface has a liquid retention heat transfer body 28 with an increased surface area. The liquid retention heat transfer body 28 at the bottom of the liquid receiving natural heat collection tube 8 is for Uli, but the liquid retention heat transfer body 28 at the top is used for boiling as the liquefied gas is depressurized during forced circulation operation, and the operation is stopped. Inside, liquefied gas naturally circulates and is used for condensation. The condensing type is designed to prevent the condensed liquefied gas from accumulating due to surface tension, and the stagnant liquid liquefied gas breaks the surface tension and is guided away continuously, while the boiling type is designed to prevent the liquefied gas from accumulating due to the surface tension. It becomes easier to warm up,
The removal of vapor and the supply of liquid liquefied gas are performed continuously.

第10図および第14図において、往管1,2は、装置
内部に対しては熱交換する管となっており、絞り管であ
る。これは螺旋管でも直管でも良い。この往管1.2は
、復管3,4の液化ガスを過熱しながら、管内の液を冷
やしている。熱交換部分の復管3および受液自然採熱管
8は波形管であり、表面積を増大した、液を滞留させる
管となっている。これには、液化ガスにも地下水にも侵
されず、熱伝導率が大きくて柔軟な管である。この復管
3は液化ガスを強制循環しているときは、蒸発管および
過熱管となり、強制循環をしていないときは、凝縮管と
なる。受液自然採熱管8のない場合には、別に、独立し
た自然採熱管5が必要である。
In FIGS. 10 and 14, outgoing pipes 1 and 2 are tubes that exchange heat with respect to the inside of the apparatus, and are throttle pipes. This may be a spiral pipe or a straight pipe. The outgoing pipe 1.2 cools the liquid inside the pipe while heating the liquefied gas in the returning pipes 3 and 4. The return pipe 3 and liquid receiving natural heat collection pipe 8 in the heat exchange section are corrugated pipes with increased surface area and are used to retain liquid. This is a flexible pipe with high thermal conductivity that is not affected by liquefied gas or groundwater. The return pipe 3 serves as an evaporation pipe and a superheating pipe when the liquefied gas is being forcedly circulated, and serves as a condensing pipe when the liquefied gas is not being forcedly circulated. If there is no liquid receiving natural heat collecting tube 8, an independent natural heat collecting tube 5 is required.

第15図において、熱交換部分の往管2.熱交換部分の
復管3および受液自然採熱管8は、装置の内部と熱交換
するが、装置の外部に対しては熱交換しない。しかし、
往管2.復管3および受液自然採熱管8が蓄熱部分に囲
まれている場合は、装置の外部に対しても熱交換する。
In FIG. 15, the outgoing pipe 2 of the heat exchange section. The return pipe 3 and liquid receiving natural heat collecting pipe 8 of the heat exchange section exchange heat with the inside of the device, but do not exchange heat with the outside of the device. but,
Outbound pipe 2. When the return pipe 3 and the liquid receiving natural heat collection pipe 8 are surrounded by a heat storage part, heat is also exchanged with the outside of the device.

第15図の往復管2,3内は液化ガスが強制減圧循環す
るが、絞り管である往管1から、往管2の円周に対して
接線方向に流入する液化ガスは、熱交換部分で回転しな
から復管3を経て復管4より流出する。このとぎ、液化
ガスを攪拌することにより混合潤滑油が分溜滞留するの
を防ぐ。この回転の遠心力によって液化ガスは波形管と
なっている往復管2.3の管壁に沿って回転する。この
とき、波形管2,3の細かくなっている部分が散散イ[
突起15となり、液体欣化ガスは中心の自然採熱管5に
散布される。また、この遠心力のため、回転する液化ガ
スの外側の圧力は高くなり内側の圧力は低くなって、中
心の自然採熱管5に散布された液体液化ガスの蒸発が促
進される。
The liquefied gas is circulated under forced pressure in the reciprocating pipes 2 and 3 in FIG. After rotating, the water passes through the return pipe 3 and flows out from the return pipe 4. Then, by stirring the liquefied gas, the mixed lubricating oil is prevented from being fractionated and retained. The centrifugal force of this rotation causes the liquefied gas to rotate along the wall of the reciprocating tube 2.3, which is a corrugated tube. At this time, the finer parts of the corrugated tubes 2 and 3 are scattered [
The protrusions 15 form, and the liquid soybean gas is dispersed into the natural heat collection tube 5 at the center. Moreover, due to this centrifugal force, the pressure on the outside of the rotating liquefied gas becomes high and the pressure on the inside becomes low, promoting the evaporation of the liquid liquefied gas dispersed in the natural heat collection tube 5 at the center.

第1図、第9図および第15図上段において、強制採熱
管1〜4内の液化ガスのサイクルを説明する。液化ガス
は、強制採熱管1〜4内を強制減圧循環する。往管2お
よび復管3内の液化ガスが吸引されて、管内が減圧され
て絞り管である往管1内の液体液化ガスは、往管2内で
気化熱を奪って蒸発し、圧力のより低い復管3内で過熱
されて出ていく。最初、液化ガスは液体と蒸気の混合し
た湿り蒸気になっているが、途中で過熱されると乾き蒸
気になり、さらに過熱蒸気になる。ここで、管内の循環
速度を水平管で4m/Sec以上、鉛直管で8m/se
e以上とすれば液化ガスとともに潤滑油を循環させるこ
とができる。
The cycle of the liquefied gas in the forced heat collection tubes 1 to 4 will be explained with reference to FIGS. 1, 9, and the upper part of FIG. 15. The liquefied gas is forced to circulate through the forced heat collection tubes 1 to 4 under reduced pressure. The liquefied gas in the outgoing pipe 2 and the returning pipe 3 is sucked, the pressure inside the pipe is reduced, and the liquid liquefied gas in the outgoing pipe 1, which is a throttle pipe, absorbs the heat of vaporization in the outgoing pipe 2 and evaporates, reducing the pressure. It is superheated in the lower return pipe 3 and exits. At first, liquefied gas is a wet vapor mixture of liquid and vapor, but if it is overheated during the process, it becomes dry vapor and then becomes superheated vapor. Here, the circulation speed in the pipe is set to 4 m/sec or more for horizontal pipes and 8 m/sec for vertical pipes.
If it is more than e, the lubricating oil can be circulated together with the liquefied gas.

第8図、第10図、第14および第15図下段において
、合成採熱管1〜4.8内の液化ガスのサイクルを説明
する。液化ガスは、合成採熱管1〜4,8内を減圧循環
および自然循環する。本装置を運転すると、減圧循環と
自然循環をし、停止すると、自然循環だけになる。減圧
循環では、液−化ガスが吸引され、管内が減圧されると
、受液自然採熱管8内の液体液化ガスと、絞り管から自
由落下する液体液化ガスが、気化熱を奪って蒸発し、過
熱蒸気となって出ていく。このとき、余剰液体液化ガス
は、受液自然採熱管8の下部に溜まる。
The cycle of the liquefied gas in the synthetic heat collecting tubes 1 to 4.8 will be explained in the lower rows of FIGS. 8, 10, 14 and 15. The liquefied gas is circulated under reduced pressure and naturally circulated within the synthetic heat collection tubes 1 to 4 and 8. When this device is operated, it performs depressurized circulation and natural circulation, and when it is stopped, only natural circulation occurs. In depressurized circulation, when the liquefied gas is sucked and the pressure inside the tube is reduced, the liquefied gas in the liquid receiving natural heat collection tube 8 and the liquid liquefied gas freely falling from the throttle tube take away the heat of vaporization and evaporate. , and exits as superheated steam. At this time, the excess liquid liquefied gas accumulates at the lower part of the liquid receiving natural heat collection tube 8.

自然循環では、合成採熱管1〜4.8の上部の温度が下
部より低くなると、自然に循環して無償で採熱し続ける
。すなわち、受液自然採熱管8の下部には、液体液化ガ
スが溜っており、合成採熱管1〜4.8の他の部分は、
液化ガスの飽和蒸気で満たされている、液化ガスが液体
となっている範囲で温度差が生じると、対流によって自
然循環するが、液化ガスが飽和蒸気となっている範囲で
温度差が生じると、上部の温度の低い部分で飽和蒸気が
凝縮し、凝縮熱を放出して液体液化ガスとなり、自由落
下しながら:落下途中に温度の高い部分があると、そこ
で暖められて気化熱を奪い、その温度の飽和蒸気圧まで
蒸発する。このようにして、自然循環によって下部から
上部に熱が運ばれる。
In natural circulation, when the temperature of the upper part of the synthetic heat collecting tubes 1 to 4.8 becomes lower than that of the lower part, the synthetic heat collecting tubes 1 to 4.8 continue to circulate naturally and collect heat for free. That is, the liquid liquefied gas is stored in the lower part of the liquid receiving natural heat collection pipe 8, and the other parts of the synthetic heat collection pipes 1 to 4.8 are as follows.
If a temperature difference occurs in an area filled with saturated vapor of liquefied gas, where the liquefied gas is a liquid, natural circulation occurs due to convection, but if a temperature difference occurs in an area where the liquefied gas is a saturated vapor, The saturated steam condenses in the lower temperature part at the top, releases the heat of condensation and becomes a liquid liquefied gas, falling freely: If there is a high temperature part on the way down, it is warmed there and takes away the heat of vaporization, It evaporates to the saturated vapor pressure at that temperature. In this way, natural circulation transports heat from the bottom to the top.

第1図、第8図、第9図および第15図において、自然
採熱管5〜7は、少なくとも下部が熱交換性の管であり
、全体が閉じた管であって、管内に液化ガスを封入した
管で、1本の管でも検数の管でも良い。自然採熱管5〜
7は、上部の温度が下部の温度より低くなると、管内の
封入液化ガスが自然循環して、下部か15上部へ熱を運
ぶものである。第8図、第9図および第15図のように
、自然採熱管5〜7の中間を非熱交換性の管6どするこ
とによって、途中での放熱を防止することができる。特
に、第8図のような非熱交換性の封入管7を設けると、
自然採熱管5〜7を設置した後に、地中の温度に応じて
適切な液化ガスを封入することができるとともに、自然
採熱管5〜7の上部の温度差、および液化ガスの種類の
応じて最大能力となるように封入液化ガスの量を調節す
ることができる。
In FIGS. 1, 8, 9, and 15, the natural heat collection tubes 5 to 7 are tubes with heat exchange properties at least in the lower part, and are closed tubes as a whole, and the liquefied gas is not allowed to pass through the tubes. It is a sealed tube, and it can be a single tube or a counting tube. Natural heat collection tube 5~
7, when the temperature of the upper part becomes lower than the temperature of the lower part, the liquefied gas sealed in the tube naturally circulates and carries heat to either the lower part or the upper part of 15. As shown in FIGS. 8, 9, and 15, heat dissipation in the middle can be prevented by using a non-heat exchanging tube 6 between the natural heat collecting tubes 5 to 7. In particular, if a non-heat exchangeable enclosing tube 7 as shown in FIG. 8 is provided,
After installing the natural heat collecting pipes 5 to 7, an appropriate liquefied gas can be sealed depending on the underground temperature, and the temperature difference at the upper part of the natural heat collecting pipes 5 to 7 and the type of liquefied gas can be filled. The amount of sealed liquefied gas can be adjusted to achieve maximum capacity.

自然採熱管5〜7の熱交換部分について、第1図、第8
図および第9図の場合、伝熱管は、その外面に表面積増
大伝熱体、内面に下部が液滞留伝熱体沸騰用、上部が液
滞留伝熱体凝縮用を有しているが、第15図の場合、上
部外面に液滞留伝熱体沸騰用を有り、ている。このよう
な管の一例を第16図および第17図に示す。第16図
は横断面図、第17図はJ縦断面図である。これらの図
において、伝熱管16は、液化ガスや地下水に侵されな
い、熱伝導率の大きい柔軟な管であり、表面積増大伝熱
体17は、伝熱面積を大ぎくした熱を伝えやすい突起で
あり、液滞留伝熱体18は、容易に気化熱や凝縮熱のや
りとりができるようにした、熱を伝えやすい突起である
。なお、凝縮用および沸騰用の液滞留伝熱体は、受液自
然採熱管8のそれと同じ構造である。
Regarding the heat exchange parts of natural heat collecting pipes 5 to 7, Fig. 1 and Fig. 8
In the case of Fig. 9 and Fig. 9, the heat transfer tube has a surface area increasing heat transfer body on its outer surface, a liquid staying heat transfer body for boiling on the inner surface at the lower part, and a liquid staying heat transfer body for condensing on the upper part. In the case of Figure 15, there is a liquid retention heat transfer element for boiling on the upper outer surface. An example of such a tube is shown in FIGS. 16 and 17. FIG. 16 is a cross-sectional view, and FIG. 17 is a J-longitudinal cross-sectional view. In these figures, the heat transfer tube 16 is a flexible tube with high thermal conductivity that is not attacked by liquefied gas or underground water, and the surface area increasing heat transfer body 17 is a protrusion that has a large heat transfer area and is easy to conduct heat. The liquid retention heat transfer body 18 is a protrusion that easily transmits heat so that vaporization heat and condensation heat can be exchanged easily. Note that the liquid retention heat transfer body for condensing and boiling has the same structure as that of the liquid receiving natural heat collection tube 8.

第8図、第9図および第15図のように、自然採熱管5
へ・7の中間が非熱交換性の管のときは、被復管を使用
し、その例を第18図と第19図に示す。これは、非熱
交換性の管1,4と同じ構造をしている。
As shown in Fig. 8, Fig. 9 and Fig. 15, the natural heat collecting pipe 5
When the middle part of 7 is a non-heat exchangeable tube, a reinstated tube is used, an example of which is shown in FIGS. 18 and 19. This has the same structure as the non-heat exchange tubes 1 and 4.

前述の通り、自然採熱管5〜7の上下で温度差が生じる
と、すなわら、上部の温度が下部の温度より低くなると
、管内の封入液化ガスが自然循環し、無償で採熱し続け
る。これは、強制採熱管1〜4.受液自然採熱管8およ
び第2管9〜11が作動していないときでも、独立して
作動するもので、上下の温度差がある限り絶えず作動す
るものである。
As mentioned above, when a temperature difference occurs between the upper and lower portions of the natural heat collection tubes 5 to 7, that is, when the temperature at the upper portion becomes lower than the temperature at the lower portion, the liquefied gas sealed in the tubes circulates naturally and continues to collect heat for free. This is forced heat collection tube 1-4. Even when the liquid receiving natural heat collection tube 8 and the second tubes 9 to 11 are not in operation, they operate independently and continue to operate as long as there is a temperature difference between the upper and lower sides.

自然採熱管5〜7内の液化ガスのサイクルを説明する。The cycle of liquefied gas in the natural heat collection pipes 5 to 7 will be explained.

自然採熱管5〜7には、適量の液化ガスが封入され′τ
いるが、下部は液体の液化ガスが溜っており、上部は液
化ガスの飽和蒸気で満たされている。まず、液化ガスが
液体となっている範囲で温度差が生じると、滞留によっ
て温度の高い液体液化ガスは上に、温度の低い液体液化
ガスは下に移動して自然循環する。次に、液化ガスが飽
和蒸気となっている範囲で温度差が生じると、上部の温
度の低い部分で封入液化ガスの飽和蒸気が凝縮し、凝縮
熱を放出して液体液化ガスとなって自由落下する。この
自由落下する液体液化ガスは途中に温度の高い部分があ
ると、そこで暖められて気化熱を奪い、その温度の飽和
蒸気圧まで蒸発する。結局、自然採熱管5〜7は、絶え
ず管内でも最も温度の高い部分の飽和蒸気圧の液化ガス
で満たされる。このようにして、封入液化ガスは自動的
に作動し、気化熱を奪い凝縮熱を放出しながら自然循環
して熱を下部から上部へ運ぶ。この上下差は、何千mと
おっても無償で運び続ける。自然採熱管5〜7の能力を
決定する要素は、上下の温度差、管の材質と大きさ、管
内外の伝熱体の材質と構造および封入液化ガスの種類と
量である。
The natural heat collecting tubes 5 to 7 are filled with an appropriate amount of liquefied gas.
However, the lower part is filled with liquid liquefied gas, and the upper part is filled with saturated vapor of liquefied gas. First, when a temperature difference occurs in the range where the liquefied gas is in a liquid state, the higher temperature liquefied gas moves upward due to stagnation, and the lower temperature liquid liquefied gas moves downward, resulting in natural circulation. Next, when a temperature difference occurs in the range where the liquefied gas is saturated vapor, the saturated vapor of the sealed liquefied gas condenses in the lower temperature area at the top, releases the heat of condensation, and becomes free liquefied gas. Fall. If this free-falling liquid liquefied gas encounters a high-temperature area along the way, it is warmed there, absorbs the heat of vaporization, and evaporates to the saturated vapor pressure at that temperature. As a result, the natural heat collection tubes 5 to 7 are constantly filled with liquefied gas at the saturated vapor pressure in the hottest part of the tube. In this way, the enclosed liquefied gas operates automatically, absorbing the heat of vaporization and releasing the heat of condensation, while naturally circulating and transporting heat from the bottom to the top. This vertical difference continues to be carried free of charge, even if the distance is thousands of meters. The factors that determine the capacity of the natural heat collecting tubes 5 to 7 are the temperature difference between the upper and lower sides, the material and size of the tube, the material and structure of the heat transfer body inside and outside the tube, and the type and amount of the liquefied gas enclosed.

第1図、第8図、第9図、第10図、第14図および第
15図において、第2管9〜11は地中深く放熱する往
復管である。装置の外部に対して非熱交換性の往管9は
、装置の内部に対して熱交換性の管であっても良い。本
例では、この往管9は、非熱交換性の管11とともに、
第18図および第19図に示す被復管を使用している。
In FIGS. 1, 8, 9, 10, 14, and 15, second pipes 9 to 11 are reciprocating pipes that radiate heat deep underground. The outgoing pipe 9, which does not have heat exchange properties with respect to the outside of the device, may be a pipe with heat exchange properties with respect to the inside of the device. In this example, the outgoing pipe 9 includes a non-heat exchange pipe 11, and
The reinstated tube shown in FIGS. 18 and 19 is used.

熱交換性の管10は、液化ガスにも地下水にも侵されな
い熱伝導率の大きい柔軟な管で、その外面に表面積増大
伝熱体を有する。この第2管9〜11の最深部は、自然
採熱管5〜7および受液自然採熱管8が地中深く到達す
る場合には、第8図、第9図および第15図のように途
中で折返される。
The heat exchange pipe 10 is a flexible pipe with high thermal conductivity that is not attacked by liquefied gas or ground water, and has a surface area increasing heat transfer member on its outer surface. When the natural heat collection pipes 5 to 7 and the liquid receiving natural heat collection pipe 8 reach deep underground, the deepest parts of the second pipes 9 to 11 are located midway as shown in Figs. It will be turned around.

本例では、第2管内の液化ガスは高温高圧の蒸気で流入
する場合が多いが、できるだけ地表に近い位置で凝縮熱
を放出して、気体から液体に状態変化すると、液体液化
ガスの@量バランスが得られ、加圧循環が容易になる。
In this example, the liquefied gas in the second pipe often flows in the form of high-temperature, high-pressure steam, but when the heat of condensation is released as close to the ground as possible and the state changes from gas to liquid, the amount of liquid liquefied gas Balance is achieved and pressurized circulation is facilitated.

第1図、第8図、第9図2第10図、第14図および第
15図において、第2管9〜11内の液化ガスのサイク
ルを説明する。前述のように、液化ガスは高温高圧の蒸
気で流入するとき、熱交換性の管10に入ると、その廻
りの蓄熱体の熱は第1管によって採熱されて、温度が低
くなっているので、そこで凝縮熱を放出して液体液化ガ
スになる。このため、液化ガスの比重量が大きくなり、
循環速度が減少して管路の摩擦圧力損失が少なくなると
ともに、往管と復管内の液体液化ガスの重量バランスに
よって、僅かな過圧力で循環するようになる。この凝縮
した液体液化ガスの温度は、熱交換性の管10内を循環
しながら段々低くなり、膨大な熱容量を持つ地中に放熱
されて地中の温度になっていく。地中の温度になった液
体液化ガスは、非熱交換性の管11内を断熱的に通過し
て流出していく。この流出圧力は、往管と復管内の液化
ガスの比Ulの違い、8よび循環する液化ガスが管壁か
ら受ける摩擦抵抗によって、本装置に入る時よりも少し
低くなっている。
1, 8, 9, 2, 10, 14 and 15, the cycle of the liquefied gas in the second pipes 9 to 11 will be explained. As mentioned above, when the liquefied gas flows in as high-temperature, high-pressure steam, when it enters the heat exchange pipe 10, the heat of the surrounding heat storage body is collected by the first pipe, resulting in a lower temperature. Therefore, it releases the heat of condensation and becomes a liquid liquefied gas. For this reason, the specific weight of the liquefied gas increases,
The circulation speed is reduced to reduce frictional pressure loss in the pipeline, and the weight balance of the liquid liquefied gas in the outgoing and returning pipes allows the gas to circulate with a slight overpressure. The temperature of this condensed liquid liquefied gas gradually decreases as it circulates within the heat exchange pipe 10, and heat is radiated into the ground, which has a huge heat capacity, reaching the temperature of the ground. The liquid liquefied gas, which has reached the underground temperature, adiabatically passes through the non-heat exchangeable pipe 11 and flows out. This outflow pressure is slightly lower than when it enters the apparatus due to the difference in the ratio Ul of the liquefied gas in the outgoing pipe and the incoming pipe 8 and the frictional resistance that the circulating liquefied gas receives from the pipe wall.

第9図は、上部に蓄熱体13を有する例で、蓄熱体13
は断熱層14に囲まれている。このように、強制採熱管
4〜4を含む蓄熱体をできるだけ上部に設けると、それ
だけ強制循環管路の摩擦圧力損失を少なくすることがで
きるので、動力を節約することができる。また、第15
図に強制採熱管1〜4も蓄熱体内に設けることができる
FIG. 9 shows an example in which the heat storage body 13 is provided on the upper part.
is surrounded by a heat insulating layer 14. In this way, if the heat storage body including the forced heat collection tubes 4 to 4 is provided as high as possible, the frictional pressure loss of the forced circulation pipe can be reduced accordingly, so that power can be saved. Also, the 15th
In the figure, forced heat collection tubes 1 to 4 can also be provided inside the heat storage body.

第25図は、本発明装置を使用したコントロールシステ
ムの例である。本発明装置は、給湯・暖房・冷房・冷凍
サイクルに接続されており、かつ太陽熱・大気熱・水中
熱集熱サイクルに接続されている。
FIG. 25 is an example of a control system using the device of the present invention. The device of the present invention is connected to a hot water supply, heating, cooling, and refrigeration cycle, and is also connected to a solar heat, atmospheric heat, and underwater heat collection cycle.

第25図において、自然循環管路系の29および30は
、暖房専用のサイクルであり、循環系に採熱コイル31
.放熱器32および調整弁33を含んでいる。
In FIG. 25, 29 and 30 of the natural circulation pipe system are cycles dedicated to heating, and a heat collecting coil 31 is connected to the circulation system.
.. It includes a radiator 32 and a regulating valve 33.

第1強制循環管路系の34.35.36.37および3
8は、冷房・冷凍サイクルであり、太陽熱・大気熱・水
中熱を集熱するサイクルである。
34.35.36.37 and 3 of the first forced circulation pipeline system
8 is a cooling/freezing cycle, which is a cycle that collects solar heat, atmospheric heat, and underwater heat.

この循環系は、圧縮器39.給湯コイル40.暖房コイ
ル412本発明装置、安全弁42.濾過器43、熱交換
器44.乾燥器45.空気仇46゜調整弁47.膨張弁
48.冷却・集熱器49および熱交換器44を含んでい
て、この熱で給湯や暖房をして余った熱を地中に蓄える
This circulation system includes a compressor 39. Hot water coil 40. Heating coil 412, device of the present invention, safety valve 42. Filter 43, heat exchanger 44. Dryer 45. Air enemy 46° adjustment valve 47. Expansion valve 48. It includes a cooling/heat collector 49 and a heat exchanger 44, and uses this heat for hot water supply and space heating, and stores the excess heat underground.

第2強制循環管路系の34.35,50.51゜および
38は、地熱や地中の蓄熱を採熱するサイクルであり、
循環系に圧縮器39.給湯コイル40、暖房コイル41
2本発明装置、安全弁42゜濾過器43.熱交換器44
.乾燥器45.空気扱46、調整弁52.膨張弁53.
受液器54.調整弁552本発明装置、調整弁6および
熱交換器44を含み、地中の熱で給湯や暖房をする。
34.35, 50.51° and 38 of the second forced circulation pipe system are cycles for collecting geothermal heat and heat storage underground,
Compressor 39 in the circulation system. Hot water supply coil 40, heating coil 41
2. Device of the present invention, safety valve 42° filter 43. heat exchanger 44
.. Dryer 45. Air handling 46, regulating valve 52. Expansion valve 53.
Receiver 54. Regulating valve 552 includes the device of the present invention, regulating valve 6, and heat exchanger 44, and supplies hot water and space heating using underground heat.

調整弁47,52.55および56を自動または手動に
よって操作すれば、第1強制循環管路系と第2強制循環
管路系を平行運転することができる。
By automatically or manually operating the regulating valves 47, 52, 55 and 56, the first forced circulation line system and the second forced circulation line system can be operated in parallel.

水の流れは、給水管57から温水タンク58を経て給湯
管59へと流れていく。この経路に逆止弁60および安
全弁61を含んでおり、温水タンク58は、下部が暖房
用温水タンク、上部が給湯用温水タンクになっている。
The water flows from the water supply pipe 57 to the hot water supply pipe 59 via the hot water tank 58. This path includes a check valve 60 and a safety valve 61, and the hot water tank 58 has a lower part as a hot water tank for heating and an upper part as a hot water tank for hot water supply.

第25図の矢印は、運転中の液化ガスの流れを示す。各
々の循環管路系について、液化ガスのサイクルを説明す
る。
The arrows in FIG. 25 indicate the flow of liquefied gas during operation. The liquefied gas cycle will be explained for each circulation pipe system.

自然循環管路系のサイクルは、暖房専用サイクルで、調
整弁33を開くと、管路29に溜っていた液体液化ガス
が暖房用温水タンク内の採熱コイル31で気化熱を奪っ
て蒸発し、自然循環で管路30を流れ、放熱器32で凝
縮熱を放出して液体液化ガスとなり、自然循環で管路2
9内を自由落下する。この放出される凝縮熱で暖房を行
なう。
The cycle of the natural circulation pipe system is a heating-only cycle, and when the regulating valve 33 is opened, the liquid liquefied gas accumulated in the pipe 29 absorbs the heat of vaporization by the heat collecting coil 31 in the heating hot water tank and evaporates. , flows through the pipe 30 by natural circulation, releases condensation heat in the radiator 32, becomes a liquid liquefied gas, and flows through the pipe 2 by natural circulation.
Free fall within 9. This released condensation heat is used for heating.

放熱器32は幾つも並列に設けることができる。A number of heat radiators 32 can be provided in parallel.

第1強制循環管路系のサイクルは、冷房や冷凍を行なう
サイクルであり、太陽熱や大気熱および水中熱を集熱す
るサイクルでもあり、同時に、この熱で給湯や暖房をし
て、余った熱を地中に蓄えるサイクルである。
The cycle of the first forced circulation pipe system is a cycle that performs cooling and freezing, and is also a cycle that collects solar heat, atmospheric heat, and underwater heat.At the same time, this heat is used for hot water supply and space heating, and the surplus heat is This is a cycle in which water is stored underground.

温水タンク58内には、飲料水が供給され、温水が作ら
れるように準備されている。ここで、調整弁52を閉じ
、調整弁47.55および56を適度に開いて、圧縮器
39を運転すると、受液器54や強制採熱管1〜4内の
液化ガスは、地中の熱で蒸発し、圧縮器39に吸引され
、断熱圧縮されて、圧縮器39から膨張弁48に至る管
路内に溜っていくが、受液器54ヤ強制採熱管1〜4内
の液化ガスがなくなると、調整弁55および56を閉じ
て運転する。
The hot water tank 58 is prepared to be supplied with drinking water and to produce hot water. Here, when the regulating valve 52 is closed and the regulating valves 47, 55 and 56 are opened appropriately, and the compressor 39 is operated, the liquefied gas in the liquid receiver 54 and the forced heat collection pipes 1 to 4 is absorbed by the underground heat. The liquefied gas is sucked into the compressor 39, adiabatically compressed, and accumulated in the pipe line from the compressor 39 to the expansion valve 48. When it runs out, the control valves 55 and 56 are closed and the operation is started.

この状態で運転するとき、圧縮器39で断熱圧縮された
高温高圧の液化ガスの蒸気は、給湯コイル40で凝縮熱
を放出し、さらに暖房コイル41で凝縮熱を放出する。
When operating in this state, the high-temperature, high-pressure liquefied gas vapor adiabatically compressed by the compressor 39 releases condensation heat in the hot water supply coil 40 and further releases condensation heat in the heating coil 41.

この凝縮熱で温水が作られるが、このとき、液化ガスは
温水タンク58の温度になって本発明装置に入り、液化
ガスの熱は本発明装置によって、地中に放熱され、地中
に蓄えられるとともに、地中の温度の液体液化ガスとな
って本発明装置を出ていく。地中の温度となった液体液
化ガスは、熱交換器44出熱交換され、過冷却されて、
さらに温度の低い液体液化ガスとなって膨張弁48に達
する。途中の安全弁42.濾過器43.乾燥器45およ
び空気後46は、システム内の異常高圧を防ぎ、異物・
水分・空気を取り除いている。
Hot water is produced by this heat of condensation, and at this time, the liquefied gas reaches the temperature of the hot water tank 58 and enters the device of the present invention, and the heat of the liquefied gas is radiated underground by the device of the present invention and stored underground. At the same time, it becomes a liquid liquefied gas at underground temperature and exits the device of the present invention. The liquid liquefied gas, which has reached the underground temperature, undergoes heat exchange through a heat exchanger 44, is supercooled, and
It reaches the expansion valve 48 as a liquid liquefied gas with a further lower temperature. Safety valve on the way 42. Filter 43. The dryer 45 and air post 46 prevent abnormally high pressure in the system and prevent foreign matter and
Removes moisture and air.

膨張弁48で断熱膨張した液体液化ガスは、冷却・集熱
器49内で気化熱を奪って蒸発し、熱交換器44で過熱
蒸気となって、圧縮器39に吸引されていく。このとき
、冷却・集熱器4って冷房・冷凍の効果は得られるとと
もに、太陽熱・大気熱・水中熱が集熱される。この冷却
・集熱器49は放熱器32と同様に、何台も並列に設け
ることができる。
The liquid liquefied gas adiabatically expanded by the expansion valve 48 absorbs vaporization heat in the cooling/collector 49 and evaporates, becomes superheated vapor in the heat exchanger 44, and is sucked into the compressor 39. At this time, the cooling/heat collector 4 not only provides cooling/freezing effects, but also collects solar heat, atmospheric heat, and underwater heat. Similar to the heat radiator 32, a number of cooling/heat collectors 49 can be provided in parallel.

温水タンク58の上部の給湯用温水タンクの温度は充分
高くなると、液化ガスは給湯コイル40内を高温高圧蒸
気のままで通過し、下部の暖房用温水タンク内の暖房コ
イルで凝縮熱を放出するようになる。しかし、この暖房
用温水タンクの温度も充分に高くなると、液化ガスは、
本発明装置まで、高温高圧蒸気となる。こうして、圧縮
器39から本発明装置に至る管路が高温高圧蒸気で満た
されると、液化ガスの体積が大きくなり、液化ガスが余
ってくるので、自動または手動により、調整弁52を開
くと、受液器54に余った液体液化ガスが蓄えられる。
When the temperature of the upper hot water tank for hot water supply of the hot water tank 58 becomes sufficiently high, the liquefied gas passes through the hot water supply coil 40 as high-temperature, high-pressure steam, and releases condensation heat in the heating coil in the lower hot water tank for heating. It becomes like this. However, when the temperature of this heating hot water tank becomes high enough, the liquefied gas becomes
Until the device of the present invention, high-temperature, high-pressure steam is produced. In this way, when the pipeline from the compressor 39 to the device of the present invention is filled with high-temperature, high-pressure steam, the volume of the liquefied gas increases and there is a surplus of liquefied gas, so when the regulating valve 52 is opened automatically or manually, The remaining liquid liquefied gas is stored in the liquid receiver 54.

第2強制循環管路系のサイクルは、地中の熱によって給
湯や暖房を行なうサイクルであり、第1強制循環回路系
のサイクルと並行運転することもできる。
The cycle of the second forced circulation pipe system is a cycle in which hot water supply and space heating are performed using underground heat, and can also be operated in parallel with the cycle of the first forced circulation circuit system.

温水タンク58内には、飲料水が供給され、温水が作ら
れるように準備されている。ここで、調整弁47を閉じ
、調整弁56を全開し、調整弁52と55を適度に開い
て、圧縮器39を運転すると、受液器54や強制採熱管
1〜4内の液化ガスは地中の熱で蒸発し、圧縮器39に
吸引され断熱圧縮されて、圧縮器39から膨張弁53に
至る管路内に溜っていく。
The hot water tank 58 is prepared to be supplied with drinking water and to produce hot water. When the compressor 39 is operated by closing the regulating valve 47, fully opening the regulating valve 56, and opening the regulating valves 52 and 55 moderately, the liquefied gas in the liquid receiver 54 and the forced heat collection pipes 1 to 4 is It evaporates due to underground heat, is sucked into the compressor 39, is adiabatically compressed, and accumulates in the pipe line from the compressor 39 to the expansion valve 53.

この状態で、自動または手動によって調整弁52と55
を調整して運転すると、第1強制循環系回路と同じサイ
クルで、温水が作られ、液体液化ガスが過冷却される。
In this state, the regulating valves 52 and 55 are automatically or manually operated.
When the system is adjusted and operated, hot water is produced and the liquid liquefied gas is supercooled in the same cycle as the first forced circulation system circuit.

この過冷却された液体液化ガスは膨張弁53で断熱膨張
し、本発明装置内で気化熱を奪って蒸発して、熱交換器
44で過熱蒸気となって圧縮器39に吸引されていく。
This supercooled liquid liquefied gas is adiabatically expanded in the expansion valve 53, takes away the heat of vaporization and evaporates in the device of the present invention, becomes superheated vapor in the heat exchanger 44, and is sucked into the compressor 39.

このとき、地中の熱が採熱される。At this time, heat from underground is collected.

調整弁47を適度に開き、調整弁52を適度に閉じると
、冷却・集熱器49も機能し、太陽熱等を集熱しながら
平行運転をすることができる。また、温水タンク58内
の温水の温度は充分に高くなると、余剰液体液化ガスが
生じてくるが、調整弁52と55を適度に調整すること
によって、この余剰液体液化ガスを受液器54内に蓄え
ることができる。
When the regulating valve 47 is appropriately opened and the regulating valve 52 is appropriately closed, the cooling/heat collector 49 also functions, and parallel operation can be performed while collecting solar heat and the like. Furthermore, when the temperature of the hot water in the hot water tank 58 becomes sufficiently high, surplus liquid liquefied gas will be generated, but by appropriately adjusting the regulating valves 52 and 55, this surplus liquid liquefied gas can be transferred into the receiver 54. can be stored in

ざらに、第26図および第27図において、第26図は
横断面図、第27図上部は、第26図のP縦断面図、第
27図下部は内管の側面図である。
Roughly speaking, in FIGS. 26 and 27, FIG. 26 is a cross-sectional view, the upper part of FIG. 27 is a longitudinal sectional view of P in FIG. 26, and the lower part of FIG. 27 is a side view of the inner tube.

これは、自然採熱管5,6および受液自然採熱管8の例
であり、内管に有孔気分雌管62が使用されている例で
ある。外管16は、その外面に表面積増大伝熱体17を
有し、その内面に螺旋状の液滞留伝熱体18を有してい
る。外管」6と有孔気液分離管62との間は、自然採熱
管の上部で凝縮した液体の液化ガス66が液滞留伝熱体
18に沿って螺旋状に落下する。液体液化ガス66は、
落下の途中で外管16から熱を奪って気化し、孔63か
ら有孔気液分離管62の内部へ入っていく。
This is an example of the natural heat collection tubes 5 and 6 and the liquid receiving natural heat collection tube 8, and is an example in which a perforated female tube 62 is used as the inner tube. The outer tube 16 has a surface area increasing heat transfer body 17 on its outer surface and a spiral liquid retention heat transfer body 18 on its inner surface. Between the outer tube 6 and the perforated gas-liquid separation tube 62, the liquid liquefied gas 66 condensed at the upper part of the natural heat collection tube falls spirally along the liquid retention heat transfer body 18. The liquid liquefied gas 66 is
During the fall, it absorbs heat from the outer tube 16 and vaporizes, and enters the perforated gas-liquid separation tube 62 through the hole 63.

第27図中の矢印は、気化した液体液化ガスの流れる様
子を示している。こうして、有孔気液分離管62は、気
体と液体を分離する。有孔気液分離管62は、断熱材で
作られていて、この管の外部を落下する冷たい液体液化
ガスと、この管の内部−を上昇する暖かい気体液化ガス
を熱的に遮断し、気体液化ガスの温度を常に高い温度に
保持する。
The arrows in FIG. 27 indicate the flow of the vaporized liquid liquefied gas. Thus, the perforated gas-liquid separation tube 62 separates gas and liquid. The perforated gas-liquid separation tube 62 is made of a heat insulating material, and thermally isolates the cold liquid liquefied gas falling from the outside of this tube and the warm gas liquefied gas rising inside this tube, and separates the gas from The temperature of the liquefied gas is always maintained at a high temperature.

この内管は、非熱交換部分では、当然無孔断熱管となる
。第27図の有孔気液分離管62の孔63について、外
面間口64よりも内面開口65の方が高い位置にあるた
め、液体液化ガス66は常に有孔気液分離管62の外部
を落下する。このようニジて、暖かい気体液化ガスの熱
は、冷たい液体液化ガスに奪われることなく、自然採熱
管の下部の温度を上部で得ることができる。
This inner tube naturally becomes a non-porous heat-insulated tube in the non-heat exchange portion. Regarding the hole 63 of the perforated gas-liquid separation tube 62 in FIG. do. In this way, the heat of the warm gaseous liquefied gas is not taken away by the cold liquid liquefied gas, and the temperature of the lower part of the natural heat collection tube can be obtained at the upper part.

(効果) このように本発明は、地熱を直接利用するだけでなく、
太陽熱や大気・水中から得られる熱、および冷房・冷凍
によって得られる熱で給湯や暖房をし、余った熱を地中
に蓄え、その熱でまた給湯や暖房をすることができる。
(Effects) In this way, the present invention not only utilizes geothermal heat directly, but also
Hot water and space heating can be done using solar heat, heat obtained from the atmosphere and water, and heat obtained from air conditioning and refrigeration, and the excess heat is stored underground and can be used for hot water supply and space heating.

ざらに、本発明は、液滞沼伝熱体の使用によりいくら深
いところからでも有効にかつ無償で採熱できる自然採熱
管と絞り管を有する第1管と、液化ガスを上部で液体と
することによって僅かな加圧力で深層まで効率良く放熱
できる第2管と、を地中の簡単な穿孔内に挿入するもの
で、管路の摩擦圧力損失を少なくした高効率の地中熱交
換装置を得ることができる。これによって、大地の膨大
な熱容量と保温性を利用して、排熱や太陽熱等を蓄え、
熱の過不足を調節し、あるいは地熱を直接利用すること
ができるようになり、とりわけ、給湯・暖房・冷房・冷
凍サイクルの成績係数を飛躍的に増大することができ、
眠っている無尽蔵の資源を活用することができる。
In general, the present invention provides a first pipe having a natural heat collection pipe and a throttle pipe that can effectively and free heat collection from any depth by using a liquid stagnation heat transfer body, and a first pipe that has a constriction pipe that converts liquefied gas into a liquid in the upper part. By inserting a second pipe into a simple hole in the ground, which can efficiently radiate heat to deep layers with a small amount of pressure, we have created a highly efficient underground heat exchange system that reduces frictional pressure loss in the pipe. Obtainable. This makes use of the earth's vast heat capacity and heat retention ability to store waste heat, solar heat, etc.
It is now possible to adjust the excess or deficiency of heat or to directly utilize geothermal heat, and in particular, it is possible to dramatically increase the coefficient of performance of hot water supply, heating, cooling, and refrigeration cycles.
You can utilize inexhaustible resources that are dormant.

また、本発明は、液滞留伝熱体と有孔気液分離管の使用
により、いくら深くても、浅層から深層まで隈なく効率
的かつ無償で採熱できる自然採熱管と:液化ガスを上部
で液体とすることにより、僅かな加圧力で浅層から深層
まで効率良く放熱できる第2管を:地中の簡単な穿孔内
に挿入するもので、強制採熱管を短くすることにより、
管路の摩擦圧力損失を少なくした高効率の地中熱交換装
置を得ることができる。これによって、大地の膨大な熱
容量と保温性を利用し、地熱を直接利用して、夏は冷房
・冷凍時の排熱や集熱器の熱で湯を沸かして余った熱を
地中に蓄え、冬は地中の熱で湯を沸かしながら暖房する
ことができる。これは、夏の暑さを冬の暖かさに活用し
、冬の寒さを夏の涼しさに活用するとともに、眠ってい
る無尽蔵の熱資源を活用するものであり、恵みの太陽エ
ネルギーと豊かな自然の能力を有効に利用して、我々が
必要とする熱の過不足を調節することにより、新たに消
費するエネルギーを節約することができる。
In addition, the present invention is a natural heat collection tube that can collect heat efficiently and free of charge from shallow to deep layers, no matter how deep, by using a liquid retention heat transfer body and a perforated gas-liquid separation tube. A second tube that can efficiently dissipate heat from shallow to deep layers with a small amount of pressure by turning it into a liquid at the top: This is inserted into a simple hole underground, and by shortening the forced heat collection tube,
A highly efficient underground heat exchange device with reduced frictional pressure loss in the pipeline can be obtained. This makes use of the earth's vast heat capacity and heat retention ability, and directly utilizes geothermal heat.In the summer, the excess heat is stored underground by boiling water using the exhaust heat from cooling and freezing operations and the heat from the collector. In the winter, you can use underground heat to heat your home while boiling water. This utilizes summer heat for winter warmth, winter cold for summer coolness, and utilizes dormant inexhaustible heat resources, making use of the blessings of solar energy and abundant By making effective use of nature's ability to adjust the amount of heat we need, we can save on new energy consumption.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る地中熱交換装置の第1の実施例を
示す正面図、第2図、第3図、第4図。 第5図、第6図および第7図はそれぞれ第1図に示すへ
断面図、B断面図、C断面図、D断面図。 E断面図およびF断面図、第8図、第9図および第10
図はそれぞれ本発明の第1ないし第4の実施例を示す正
面図、第11図、第12図および第13図はそれぞれ第
10図に示すG断面図、H断面図および■断面図、第1
4図は本発明の第5の実施例を示す正面図、第15図は
本発明の第6の実施例を示し、強制採熱管部分に縦断面
図を含む正面図、第16図は第1図、第8図、第9図お
よび第15図に示す自然採熱管の熱交換性の管の例を示
している拡大横断面図、第17図は第16図に示すJ拡
大断面図、第18図は第1図、第8図。 第9図、第10図、第14図および第15図に示す非熱
交換性の管または非熱交換性の部分の例を示している拡
大横断面図、第19図は第18図に示すに拡大縦断面図
、第20図は第1図、第8図および第9図に示す強制採
熱管の熱交換部分の例を示している拡大横断面図、第2
1図は第20図に示すし拡大縦断面図、第22図は第8
図に示す合成採熱管の果報部を示している部分正面図、
第23図は第22図に示すM拡大縦断面図、第24図は
第23図に示すN拡大縦断面図、第25図は本発明に係
る地中熱交換装置の使用例を示す概略図、第26図は横
断面図、第27図上部は、第26図のP縦断面図、第2
7図下部は内管の側面図である。 1・・・強制採熱管の装置の外部に対し゛C非熱交換性
の往管 2・・・強制採熱管の熱交換部の往管 3・・・強制採熱管の熱交換部分の往管4・・・強制採
熱管の装置の外部に対して非熱交換性の復管 5・・・自然採熱管の熱交換性の管 6・・・自然採熱管の非熱交換性の部分7・・・自然採
熱管の非熱交換性の液化ガス封入管8・・・受液採熱管 9・・・第2の装置の外部に対して非熱交換性の往管 10・・・第2管の熱交換性の管 11・・・第2管の非熱交換性の管 12・・・埋戻材 8H・・・地中のボーリング穿孔 GL・・・地表面 13・・・蓄熱体 14・・・断熱層 15・・・散散イ[突起 17・・・表面積増大伝熱体または液滞留伝熱体18・
・・液滞招伝熱体 32・・・放熱器 39・・・圧縮器 44・・・熱交換器 41・・・冷却・集熱器 54・・・受液器 58・・・温水タンク
FIG. 1 is a front view, FIG. 2, FIG. 3, and FIG. 4 showing a first embodiment of the underground heat exchange device according to the present invention. 5, 6, and 7 are a cross-sectional view, a cross-sectional view B, a cross-sectional view C, and a cross-sectional view D shown in FIG. 1, respectively. E sectional view and F sectional view, Figures 8, 9 and 10
The figures are front views showing the first to fourth embodiments of the present invention, respectively. 1
Fig. 4 is a front view showing the fifth embodiment of the present invention, Fig. 15 is a front view showing the sixth embodiment of the invention, including a vertical cross-sectional view of the forced heat collection tube portion, and Fig. 16 is a front view showing the fifth embodiment of the present invention. Figures 8, 9 and 15 are enlarged cross-sectional views showing examples of heat exchangeable natural heat collecting tubes; Figure 17 is an enlarged cross-sectional view of J shown in Figure 16; Figure 18 shows Figures 1 and 8. 9, 10, 14 and 15 are enlarged cross-sectional views showing examples of non-heat exchangeable tubes or non-heat exchangeable parts; FIG. 19 is shown in FIG. 18; 20 is an enlarged longitudinal sectional view showing an example of the heat exchange portion of the forced heat collection tube shown in FIGS. 1, 8, and 9;
Figure 1 is shown in Figure 20 and is an enlarged longitudinal sectional view, and Figure 22 is an enlarged longitudinal sectional view of Figure 8.
A partial front view showing the output part of the synthetic heat collecting tube shown in the figure,
Fig. 23 is an enlarged vertical cross-sectional view of M shown in Fig. 22, Fig. 24 is an enlarged longitudinal cross-sectional view of N shown in Fig. 23, and Fig. 25 is a schematic diagram showing an example of use of the underground heat exchange device according to the present invention. , Fig. 26 is a cross-sectional view, the upper part of Fig. 27 is a longitudinal sectional view of P in Fig. 26, and the second
The lower part of Figure 7 is a side view of the inner tube. 1... Outgoing pipe of non-heat exchange property for the outside of the device of the forced heat collecting tube 2... Outgoing pipe of the heat exchange part of the forced heat collecting tube 3... Outgoing pipe of the heat exchange part of the forced heat collecting pipe 4... Forced heat-collecting pipe with non-heat exchangeable return pipe to the outside of the device 5... Natural heat-collecting pipe with heat-exchangeable pipe 6... Natural heat-collecting pipe with non-heat-exchangeable part 7. ... Liquefied gas filled pipe 8 with non-heat exchange property of natural heat collection tube ... Liquid heat collection pipe 9 ... Outgoing pipe 10 with non-heat exchange property with respect to the outside of the second device... Second pipe Heat exchangeable pipe 11... Non-heat exchangeable pipe 12 of the second pipe... Backfilling material 8H... Underground boring hole GL... Ground surface 13... Heat storage body 14... ...Insulating layer 15...Dispersion [Protrusions 17...Surface area increasing heat transfer body or liquid retention heat transfer body 18]
...Liquid stagnation heat transfer body 32...Radiator 39...Compressor 44...Heat exchanger 41...Cooling/heat collector 54...Liquid receiver 58...Hot water tank

Claims (1)

【特許請求の範囲】 1、互いに熱交換関係にある、強制採熱管と自然採熱管
より成る第1管と、 非熱交換性の管と、熱交換性の放熱管より成る第2管と
で構成され、 第1管の自然採熱管と第2管を地中にボーリングした穿
孔内に挿入して、 液化ガスが、強制採熱管内を減圧循環し、自然採熱管内
を自然循環し、放熱管内を加圧循環することを特徴とす
る地中熱交換装置。 2、自然採熱管が、閉じた管である請求項1記載の地中
熱交換装置。 3、自然採熱管が、強制採熱管と連通した受液採熱管で
あることを特徴とする請求項1記載の地中熱交換装置。 4、自然採熱管が、その途中に、非熱交換性の管を有し
ていることを特徴とする請求項1ないし3のいずれかに
記載の地中熱交換装置。 5、自然採熱管が、その内部に気体と液体を分離する断
熱性の有孔気液分離管を有することを特徴とする請求項
1ないし4のいずれかに記載の地中熱交換装置。 6、有孔気液分離管の管壁を貫通する孔について、この
管の外面側開口よりも内面側開口の方が高い位置である
ことを特徴とする請求項5記載の地中熱交換装置。 7、強制採熱管が、地中にボーリングした穿孔内にある
請求項1ないし6のいずれかに記載の地中熱交換装置。 8、強制採熱管が、地中にあり、断熱層で囲まれている
請求項1ないし6のいずれかに記載の地中熱交換装置。 9、強制採熱管が、その廻りに、蓄熱体を有しているこ
とを特徴とする請求項8記載の地中熱交換装置。 10、強制採熱管の往管が、絞り管である請求項1ない
し9のいずれかに記載の地中熱交換装置。 11、熱交換部分が、螺旋状である請求項1ないし10
のいずれかに記載の地中熱交換装置。 12、地中挿入管が、可曲管である請求項1ないし11
のいずれかに記載の地中熱交換装置。 13、強制採熱管が、液散布突起を有することを特徴と
する請求項1無いし12のいずれかに記載の地中熱交換
装置。 14、第1管が、その熱交換部分に液滞留伝熱体を有し
ていることを特徴とする請求項1ないし13のいずれか
に記載の地中熱交換装置。 15、熱交換性の管が、その熱交換面に表面積増大伝熱
体を有する請求項1ないし14のいずれかに記載の地中
熱交換装置。
[Claims] 1. A first tube consisting of a forced heat collection tube and a natural heat collection tube, which are in a heat exchange relationship with each other, and a second tube consisting of a non-heat exchange tube and a heat exchange heat radiation tube. The first natural heat collection pipe and the second pipe are inserted into a hole bored underground, and the liquefied gas circulates under reduced pressure inside the forced heat collection pipe, circulates naturally inside the natural heat collection pipe, and radiates heat. A geothermal heat exchange device characterized by pressurized circulation inside the pipe. 2. The underground heat exchange device according to claim 1, wherein the natural heat collection pipe is a closed pipe. 3. The underground heat exchange device according to claim 1, wherein the natural heat collection pipe is a liquid receiving heat collection pipe that communicates with the forced heat collection pipe. 4. The underground heat exchange device according to any one of claims 1 to 3, wherein the natural heat collecting pipe has a non-heat exchangeable pipe in the middle thereof. 5. The underground heat exchange device according to any one of claims 1 to 4, wherein the natural heat collection tube has an insulating perforated gas-liquid separation tube for separating gas and liquid therein. 6. The underground heat exchange device according to claim 5, wherein the hole penetrating the tube wall of the perforated gas-liquid separation tube is located at a higher position on the inner side than on the outer side of the tube. . 7. The underground heat exchange device according to any one of claims 1 to 6, wherein the forced heat collection pipe is located in a hole bored underground. 8. The underground heat exchange device according to any one of claims 1 to 6, wherein the forced heat collection pipe is located underground and surrounded by a heat insulating layer. 9. The underground heat exchange device according to claim 8, wherein the forced heat collection pipe has a heat storage body around it. 10. The underground heat exchange device according to any one of claims 1 to 9, wherein the outgoing pipe of the forced heat collection pipe is a constricted pipe. 11. Claims 1 to 10, wherein the heat exchange portion has a spiral shape.
The underground heat exchange device according to any one of the above. 12. Claims 1 to 11, wherein the underground insertion pipe is a bendable pipe.
The underground heat exchange device according to any one of the above. 13. The underground heat exchange device according to any one of claims 1 to 12, wherein the forced heat collection pipe has a liquid dispersion projection. 14. The underground heat exchange device according to any one of claims 1 to 13, wherein the first pipe has a liquid retention heat transfer body in its heat exchange portion. 15. The underground heat exchange device according to any one of claims 1 to 14, wherein the heat exchange pipe has a surface area increasing heat transfer body on its heat exchange surface.
JP63099242A 1988-04-21 1988-04-21 Geotherm exchanger Pending JPH01269862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63099242A JPH01269862A (en) 1988-04-21 1988-04-21 Geotherm exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63099242A JPH01269862A (en) 1988-04-21 1988-04-21 Geotherm exchanger

Publications (1)

Publication Number Publication Date
JPH01269862A true JPH01269862A (en) 1989-10-27

Family

ID=14242228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63099242A Pending JPH01269862A (en) 1988-04-21 1988-04-21 Geotherm exchanger

Country Status (1)

Country Link
JP (1) JPH01269862A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100374997B1 (en) * 2000-08-21 2003-03-06 김동현 A heating and air conditioner for ground temperature
JP2008292107A (en) * 2007-05-28 2008-12-04 Furukawa Electric Co Ltd:The Heat exchanger, heat exchange system, and construction method of heat exchange system
JP2013217581A (en) * 2012-04-09 2013-10-24 Norimasa Sasaki Device for utilizing geothermal heat
JP2013231560A (en) * 2012-04-30 2013-11-14 Norimasa Sasaki Geothermal energy utilization device
JP2022013509A (en) * 2020-07-03 2022-01-18 有限会社ジェイディエフ Equipment for concentric shaft multilayer structure underground heat exchanger installation, concentric shaft multilayer structure underground heat exchanger and underground heat exchanger installation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100374997B1 (en) * 2000-08-21 2003-03-06 김동현 A heating and air conditioner for ground temperature
JP2008292107A (en) * 2007-05-28 2008-12-04 Furukawa Electric Co Ltd:The Heat exchanger, heat exchange system, and construction method of heat exchange system
JP2013217581A (en) * 2012-04-09 2013-10-24 Norimasa Sasaki Device for utilizing geothermal heat
JP2013231560A (en) * 2012-04-30 2013-11-14 Norimasa Sasaki Geothermal energy utilization device
JP2022013509A (en) * 2020-07-03 2022-01-18 有限会社ジェイディエフ Equipment for concentric shaft multilayer structure underground heat exchanger installation, concentric shaft multilayer structure underground heat exchanger and underground heat exchanger installation method

Similar Documents

Publication Publication Date Title
US4240268A (en) Ground cold storage and utilization
US4383419A (en) Heating system and method
US8567482B2 (en) Heat tube device utilizing cold energy and application thereof
US4444249A (en) Three-way heat pipe
CN201302322Y (en) Ground heating air conditioning plant
US20140338389A1 (en) Vapor compression system with thermal energy storage
US4586345A (en) Solar energy powered system for the production of cold
JP2988905B2 (en) Soil heat source ice heat storage heat pump device
JP2010038507A (en) Heat pump utilizing underground heat reserve
CN206514443U (en) Energy supplying system based on low valley power storage
CN106440445A (en) Efficient air source heat pump system suitable for low-temperature environment
JPH01269862A (en) Geotherm exchanger
CN105091411A (en) Refrigerating and heating dual-purpose heat pipe type ground heat exchanger
CN1325869C (en) Heat pipe cold guide device and cold storage body and freezer with said device
JPS63108158A (en) Underground heat exchanger
JPS6045328B2 (en) heating device
RU2381425C1 (en) Heat-pipe power complex
KR100296699B1 (en) Ground source cooling and heating pump system using heat pipe with two headers
CN110274330A (en) A kind of solar energy economical air conditioner
JPH10274444A (en) Underground heat-exchange system with heat-reservoir and manufacture thereof
CN109724278A (en) A kind of coal-field fire comprehensive utilization system for heat energy
JP3996434B2 (en) Interregional heat supplement system
JPH0115783B2 (en)
JPH05312056A (en) Intake air cooling system of gas turbine
JPS644044Y2 (en)