JPS63107080A - Internal total reflection type solid laser equipment - Google Patents

Internal total reflection type solid laser equipment

Info

Publication number
JPS63107080A
JPS63107080A JP25412286A JP25412286A JPS63107080A JP S63107080 A JPS63107080 A JP S63107080A JP 25412286 A JP25412286 A JP 25412286A JP 25412286 A JP25412286 A JP 25412286A JP S63107080 A JPS63107080 A JP S63107080A
Authority
JP
Japan
Prior art keywords
laser
main body
light
laser main
type solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25412286A
Other languages
Japanese (ja)
Inventor
Yasuto Nai
名井 康人
Kazuki Hisaba
一樹 久場
Haruhiko Nagai
治彦 永井
Masao Hishii
菱井 正夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP25412286A priority Critical patent/JPS63107080A/en
Publication of JPS63107080A publication Critical patent/JPS63107080A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0619Coatings, e.g. AR, HR, passivation layer
    • H01S3/0625Coatings on surfaces other than the end-faces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0606Crystal lasers or glass lasers with polygonal cross-section, e.g. slab, prism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0915Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
    • H01S3/092Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp
    • H01S3/093Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp focusing or directing the excitation energy into the active medium

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To obtain laser equipment which does not cause the decrease of excitation efficiency due to coloration of a laser main body, and the deterioration in a beam quality due to temperature rise of the laser main body, and has high efficiency of oscillation and high quality of beam, by coating a light emitting surface of the laser main body with a multi-layer film which reflects ultraviolet ray and infrared ray. CONSTITUTION:By radiating light on a laser main body 1 having two optically flat surfaces which are parallel to each other and a square crossection, the laser main body 1 is excited and oscillates a laser beam 6. A light emitting surface of the laser main body 1 in such a device is coated with multi-layer films 7a and 7b which reflect ultraviolet ray and infrared ray. For example, an exited light emitting surface of the laser main body 1 composed of neodymium-doped Gd3Ga5O12 crystal is coated with the multi-layer films 7a and 7b which transmit only the light in the range of wavelength from about 400nm to 900nm. The laser main body 1 is excited by flash light from flash lamps 3a and 3b, and oscillates a laser beam by a laser resonator constituting of a laser beam total reflection mirror 5a and a laser beam partial reflection mirror 5b.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は内部全反射型固体レーザ装置、とくに装置の
簡素化、及びレーザビームの高品質化等に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a total internal reflection type solid-state laser device, and in particular to simplification of the device and improvement of the quality of the laser beam.

〔従来の技術〕[Conventional technology]

第8図fa) (b)は各々例えばレーザー学会研究会
報告、RTM−84−27(1984)に示された従来
の全反射型固体レーザ装置を示す縦断面構成図及び横断
面構成図でアシ、図において(1)は内部全反射屋固体
レーザ本体で互いに平行な2つの光学的平滑面を有し、
断面が矩形をなす、(2)は紫外光除去用フィルター、
(3)は上記レーザ本体(1)を励起するだめの光源例
えばキセノンフラッシュランプ、(4)は上記フラッシ
ュツンブ(3)からの発光を上記レーザ本体(1)に照
射する反射装置、(5a)はレーザビーム全反射鏡、(
5b)はレーザビーム部分反射鏡、(6)はレーザビー
ムである。
Figure 8 fa) and (b) are a vertical cross-sectional configuration diagram and a cross-sectional configuration diagram showing a conventional total internal reflection solid-state laser device shown in, for example, the Laser Society Research Group Report, RTM-84-27 (1984). In the figure, (1) is a total internal reflection solid-state laser body with two optically smooth surfaces parallel to each other,
(2) is a filter for removing ultraviolet light, which has a rectangular cross section;
(3) is a light source such as a xenon flash lamp that excites the laser body (1); (4) is a reflection device that irradiates the laser body (1) with light emitted from the flash tube (3); (5a) ) is a laser beam total reflection mirror, (
5b) is a laser beam partial reflection mirror, and (6) is a laser beam.

次に動作について説明する。レーザ本体(1)は、励起
光源(3)から上記レーザ本体(1)へ向う直接光およ
び、反射装置によシ一度反射されたのちレーザ本体(1
)に向う上記励起光源(3)からの発光によう励起され
る。励起されたレーザ本体(1)はレーザビーム全反射
鏡(5a)とレーザビーム部分反射鏡(5b)からなる
レーザ共振器によりレーザビーム(6)を生じ、上記レ
ーザビーム部分反射鏡(5b)からレーザ共振器の外に
取υ出される。
Next, the operation will be explained. The laser main body (1) receives direct light from the excitation light source (3) toward the laser main body (1), and the laser main body (1) after being reflected once by the reflection device.
) is excited by the light emitted from the excitation light source (3). The excited laser main body (1) generates a laser beam (6) through a laser resonator consisting of a laser beam total reflection mirror (5a) and a laser beam partial reflection mirror (5b), and a laser beam (6) is generated from the laser beam partial reflection mirror (5b). It is taken out of the laser cavity.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の内部全反射型固体レーザ装置は以上のように構成
されており、励起光源(3)による発光のスペクトル分
布は、例えば第4図に示すように紫外から赤外までの全
領域に広がっている。ところが上記レーザ本体(1)中
にドープされた活性イオンであるネオジムを励起するた
めの光の波長は第6図に示されるように約400nmか
ら900nmの範囲にしか存在しない、従って励起光の
他の波長の光は上記レーザ本体(1)の励起には役立た
ない、のみならず、上記レーザ本体(1)は紫外光照射
によシ着色される(ソーツリゼーション)ため、紫外光
を除去する必要がある。従って第8図に示されるように
、紫外光除去用フィルター(2)が上記レーザ本体(1
)と上記励起光源(3)の間に挿入されることが必要と
なっていた。
A conventional total internal reflection type solid-state laser device is configured as described above, and the spectral distribution of light emitted by the excitation light source (3) spreads over the entire range from ultraviolet to infrared, as shown in Figure 4, for example. There is. However, the wavelength of light for exciting neodymium, which is an active ion doped in the laser body (1), exists only in the range of about 400 nm to 900 nm, as shown in FIG. Not only is light with a wavelength of There is a need. Therefore, as shown in FIG. 8, the ultraviolet light removal filter (2) is
) and the excitation light source (3).

また、第8図の構成のものにおいては、レーザ本体の励
起に寄与せず、レーザ本体の温度上昇の原因となる赤外
光がレーザ本体に照射、吸収される等の問題点があった
Further, in the configuration shown in FIG. 8, there were problems such as infrared light being irradiated onto and absorbed by the laser main body, which did not contribute to the excitation of the laser main body but caused a rise in the temperature of the laser main body.

この発明は上記のような問題点を解消するためになされ
たもので、レーザ本体の励起に有用な発光のみを透過し
、紫外光および赤外光のレーザ本体への照射吸収を除去
し、レーザ本体の着色による励起効率の低下、レーザ本
体の温度上昇によるビーム品質の低下のない、高効率発
振、高品質ビームが得られる内部全反射型固体レーザ装
置を得ることを目的とする。
This invention was made to solve the above-mentioned problems. It transmits only the light emitted that is useful for excitation of the laser body, eliminates the absorption of ultraviolet light and infrared light into the laser body, and The object of the present invention is to obtain a total internal reflection type solid-state laser device that can generate highly efficient oscillation and a high-quality beam without decreasing excitation efficiency due to coloring of the laser body or decreasing beam quality due to temperature rise in the laser body.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る内部全反射型固体レーザ装置は、レーザ
本体の光照射面に紫外光及び赤外光を反射する多層膜を
コーティングしたものである。
The total internal reflection type solid-state laser device according to the present invention has the light irradiation surface of the laser body coated with a multilayer film that reflects ultraviolet light and infrared light.

〔作用〕[Effect]

この発明におけるレーザ本体にコーティングされた多層
膜は、紫外光及び赤外光を反射するので、ソーフリゼー
ションを防ぐと共にレーザ本体の温度上昇を防ぎ、高品
質のビームが得られる。
The multilayer film coated on the laser body in the present invention reflects ultraviolet light and infrared light, thereby preventing sofization and temperature rise of the laser body, resulting in a high quality beam.

〔9j!施例〕 以下、この発明の一実施例を図について説明する。第1
図はこの発明の一実施例による内部全反射型固体レーザ
装置を示す断面構成図であり、(1)はネオジムをドー
プしたG G G (Gd3 Ga5 OIt )結晶
よシなるレーザ本体、(7a) (7b)はレーザ本体
(1)の励起光照射面上にコーティングされた多層膜で
あり、例えば第2図のような透過特性を持つものである
。即ち紫外光及び赤外光を反射する。このような膜は例
えば5i01 、 MgF、 、 TlIF等を用い、
慣用されている方法で多層コーチイン嘆を形成すること
により実現することができる。
[9j! Embodiment] An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is a cross-sectional configuration diagram showing a total internal reflection type solid-state laser device according to an embodiment of the present invention, in which (1) shows a laser main body made of neodymium-doped G G G (Gd3 Ga5 OIt) crystal, and (7a) (7b) is a multilayer film coated on the excitation light irradiation surface of the laser body (1), and has a transmission characteristic as shown in FIG. 2, for example. That is, it reflects ultraviolet light and infrared light. Such a film uses, for example, 5i01, MgF, TlIF, etc.
This can be achieved by forming a multi-layer coach-in layer in a customary manner.

(la) (8b)はレーザ本体(1)の両面を各々照
射する励起光源、例えばキセノンフラッシュランプ、(
4a) (4b)はフラッシュワンプ(8a) (8b
)の7プツシユ光を各々上記レーザ本体(1)に反射さ
せる反射鏡である。
(la) (8b) is an excitation light source that illuminates both sides of the laser body (1), such as a xenon flash lamp, (
4a) (4b) is a flash wamp (8a) (8b
) is a reflecting mirror that reflects each of the seven push lights to the laser main body (1).

次に動作について説明する。レーザ本体(1)は、フラ
ッシュランプ(8a) (8b)からの7プツシユ光に
より励起され、レーザビーム全反射fi(5a)とレー
ザビーム部分反射鏡(5b)からなるレーザ共振KgK
 j り l/−ザビームを発振する。このときフラッ
シュ光のスペクトル分布は例えば第4図に示すように紫
外から赤外までの全領域に広がっている。
Next, the operation will be explained. The laser main body (1) is excited by seven push lights from flash lamps (8a) (8b), and a laser resonance KgK consisting of a laser beam total reflection fi (5a) and a laser beam partial reflection mirror (5b) is excited.
j ri l/-The beam is oscillated. At this time, the spectral distribution of the flash light extends over the entire range from ultraviolet to infrared, as shown in FIG. 4, for example.

ところが、レーザ本体(1)の励起光照射面上にコーテ
ィングされた多層膜(7a) (7b)によシ、レーザ
本体(1)の内部には、第2図に示される波長500n
m〜900 nmまでの光しか透過しない、従ってレー
ザ本体(1)には励起に有効な波長域の光しか透過して
こないため、レーザ本体(1)から効率よくレーザ出力
を発振させることができる。また紫外光、赤外光を多層
コーテイング膜(7a) (7b)により反射するため
、レーザ本体(1)はソーヲリゼーションの影響を受け
ず、余分な熱入力もないため、効率よく安定に高品質ビ
ームを得ることができる。なお、上記実施例では励起光
源をレーザ本体の両l1lIIに設けたものを示したが
、レーザ本体の片面にのみ設ける構成のものでもよい。
However, due to the multilayer films (7a) (7b) coated on the excitation light irradiation surface of the laser body (1), there is a wavelength of 500 nm inside the laser body (1) as shown in FIG.
Only light in the wavelength range from m to 900 nm is transmitted. Therefore, only light in the wavelength range effective for excitation is transmitted through the laser body (1), so laser output can be efficiently oscillated from the laser body (1). . In addition, since ultraviolet light and infrared light are reflected by the multilayer coating films (7a) (7b), the laser body (1) is not affected by saworization and there is no excess heat input, so it can efficiently and stably achieve high performance. You can get quality beam. In the above embodiment, the excitation light source is provided on both sides of the laser body, but the excitation light source may be provided on only one side of the laser body.

さらに、上記実施例では、コーティングN(7a)(7
b)の透過特性を、活性イオンであるネオジムを励起す
るのに適した特性としたが、活性イオンが他の踵類であ
れば、その活性イオンを励起するのに適した透過特性を
持つ多層コーテイング膜を装着すれば良い。
Furthermore, in the above embodiment, coating N(7a)(7
The permeation characteristics in b) are suitable for exciting neodymium, which is an active ion, but if the active ion is another type of heel, a multilayer with permeation characteristics suitable for exciting the active ion is used. All you need to do is attach a coating film.

また、多層膜の透過特性は第2図に示すようなものでな
くとも、例えばレーザ本体の活性イオンの吸収スペクト
ルのみを透過させるものでもよい。
Further, the transmission characteristics of the multilayer film need not be as shown in FIG. 2, and may be such that, for example, only the absorption spectrum of active ions of the laser body is transmitted.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば内部全反射型固体レーザ
装置において、レーザ本体の光照射面に紫外光及び赤外
光を反射する多層膜をコーティングしたので、装置が簡
素すると共に、レーザ本体のソーヲリゼーション及び温
度上昇を防ぎ、高効率発振、高品質ビームが得られる効
果がある。
As described above, in the total internal reflection type solid-state laser device according to the present invention, the light irradiation surface of the laser body is coated with a multilayer film that reflects ultraviolet light and infrared light. It has the effect of preventing sowization and temperature rise, and providing high-efficiency oscillation and high-quality beams.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による内部全反射型固体レ
ーザ装置を示す断面構成図、第2図はこの発明の一実施
例による多層コーテイング膜の透過率を示す特性図、第
8図(a) (blは各々従来の内部全反射型固体レー
ザ装置を示す縦断面構成図及び横断面構成図、第4図は
キセノンフラッシュランプの発光スペクトルを示す分布
図、並びに第5図はネオジム活性イオンを励起するのに
有用な光のスペクトルを示す分布図である。 (1)・・・レーザ本体   (8a)(8b)・・・
励起光源(4a)(4b) −反射%   (5a)−
全反射鏡(5b)・・・部分反射鐘(6)・・・レーザ
ビーム(7a)(7b)・・・多層膜 なお、図中、同一符号は同−又は相当部分を示す。
FIG. 1 is a cross-sectional configuration diagram showing a total internal reflection type solid-state laser device according to an embodiment of the present invention, FIG. 2 is a characteristic diagram showing the transmittance of a multilayer coating film according to an embodiment of the present invention, and FIG. a) (bl is a vertical cross-sectional configuration diagram and a cross-sectional configuration diagram showing a conventional total internal reflection type solid-state laser device, respectively, Figure 4 is a distribution diagram showing the emission spectrum of a xenon flash lamp, and Figure 5 is a distribution diagram showing neodymium active ion It is a distribution diagram showing the spectrum of light useful for exciting. (1)... Laser body (8a) (8b)...
Excitation light source (4a) (4b) -Reflection% (5a)-
Total reflection mirror (5b)...Partial reflection bell (6)...Laser beam (7a) (7b)...Multilayer film Note that in the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)互いに平行な2つの光学的平滑面を有し、断面が
矩形のレーザ本体に光を照射し、上記レーザ本体を励起
し、レーザビームを発振させるものにおいて、上記レー
ザ本体の光照射面に紫外光及び赤外光を反射する多層膜
をコーティングしたことを特徴とする内部全反射型固体
レーザ装置。
(1) A laser body having two optically smooth surfaces parallel to each other and having a rectangular cross section is irradiated with light to excite the laser body and oscillate a laser beam, wherein the light irradiation surface of the laser body A total internal reflection type solid-state laser device characterized in that the laser is coated with a multilayer film that reflects ultraviolet light and infrared light.
(2)多層膜はレーザ本体の活性イオンの吸収スペクト
ルのみを透過させる特許請求の範囲第1項記載の内部全
反射型固体レーザ装置。
(2) The total internal reflection type solid-state laser device according to claim 1, wherein the multilayer film transmits only the absorption spectrum of active ions in the laser body.
JP25412286A 1986-10-23 1986-10-23 Internal total reflection type solid laser equipment Pending JPS63107080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25412286A JPS63107080A (en) 1986-10-23 1986-10-23 Internal total reflection type solid laser equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25412286A JPS63107080A (en) 1986-10-23 1986-10-23 Internal total reflection type solid laser equipment

Publications (1)

Publication Number Publication Date
JPS63107080A true JPS63107080A (en) 1988-05-12

Family

ID=17260530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25412286A Pending JPS63107080A (en) 1986-10-23 1986-10-23 Internal total reflection type solid laser equipment

Country Status (1)

Country Link
JP (1) JPS63107080A (en)

Similar Documents

Publication Publication Date Title
US5420876A (en) Gadolinium vanadate laser
JPH04137573A (en) Composite slab laser medium and laser device
JPH09246648A (en) Laser beam source and illuminating optical device
JPS63107080A (en) Internal total reflection type solid laser equipment
US5892614A (en) Optical parametric oscillator including a saturable absorber having a saturable absorption characteristic
JPH0475393A (en) Laser device
JPH02122581A (en) Laser oscillator
JPS60239078A (en) Solid-state laser oscillator
JPS60247983A (en) Erbium laser oscillator
JPH0448664A (en) Array semiconductor laser edge excitation solid state laser
JP2595010B2 (en) Optically pumped laser device
JPH11121850A (en) Laser device
JPH04158588A (en) Semiconductor laser exciting solid laser device
JPH05341334A (en) Wavelength conversion device
JPH08102564A (en) Wavelength converting laser device
JPS637039B2 (en)
JPH02130882A (en) Solid state laser device
JPH03209783A (en) Resonator for solid-state laser device
JPH033379A (en) Solid-state laser device
JPH1187811A (en) Laser device
JPH065953A (en) Solid state laser
JPH0430484A (en) Solid-state laser
JPH0590666A (en) Solid state laser apparatus
JP2865057B2 (en) Laser diode pumped solid-state laser oscillator.
JP2580703B2 (en) Laser device