JPS631067A - Charge coupled device - Google Patents

Charge coupled device

Info

Publication number
JPS631067A
JPS631067A JP61145335A JP14533586A JPS631067A JP S631067 A JPS631067 A JP S631067A JP 61145335 A JP61145335 A JP 61145335A JP 14533586 A JP14533586 A JP 14533586A JP S631067 A JPS631067 A JP S631067A
Authority
JP
Japan
Prior art keywords
layer
coupled device
conductivity type
charge
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61145335A
Other languages
Japanese (ja)
Inventor
Fumiaki Emoto
文昭 江本
Takao Kuroda
黒田 隆男
Sakaki Horii
堀居 賢樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP61145335A priority Critical patent/JPS631067A/en
Publication of JPS631067A publication Critical patent/JPS631067A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Filters That Use Time-Delay Elements (AREA)

Abstract

PURPOSE:To obtain a charge coupled device having constitution, in which the quantity of charges operated is not reduced even in a small area, by forming a reverse conductivity type semiconductor layer partially projected onto one conductivity type semiconductor base body and shaping a conductive film onto the semiconductor layer through an insulating layer. CONSTITUTION:A reverse conductivity type semiconductor layer 8 partially projected onto one conductivity type semiconductor substrate 10 is shaped. Electrodes 6, 7 for applying pulse voltage are formed onto the semiconductor layer 8 through an insulating layer 9. The layer 8 is depleted by applying pulse voltage to shape a channel for a charge coupled device. Signal charges are transferred through the channel. The layer 8 is grown selectively in an epitaxial manner, or grown in the epitaxial manner on to the whole of the layer 10, and sections not required are removed through etching and the layer 8 is formed. An impurity in the layer 8 is introduced on epitaxial growth or after growth.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は固体撮像素子の信号電荷転送、遅延回路および
記憶用電子テパイスなどに用いることができる電荷結合
素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a charge-coupled device that can be used in signal charge transfer of solid-state image pickup devices, delay circuits, storage electronic devices, and the like.

従来の技術 近年、電荷結合素子はp形シリコン基板上にn形シリコ
ン層を形成し、n形シリコン層に酸化シリコン層を介し
てパルス電圧を印加して埋め込みチャンネルを形成する
MO9O9容量次元または2次元的に配列したものが用
いられている。
Prior art In recent years, charge-coupled devices have been developed by forming an n-type silicon layer on a p-type silicon substrate, and applying a pulse voltage to the n-type silicon layer through a silicon oxide layer to form a buried channel. A dimensional array is used.

以下図面を参照しながら上述したような従来の電荷結合
素子を説明する。第5図は従来の埋め込みチャンネルの
電荷結合素子の構成図である。
The conventional charge coupled device as described above will be explained below with reference to the drawings. FIG. 5 is a block diagram of a conventional buried channel charge coupled device.

p形シリコン基板6上にイオン注入などの方法を用いて
n形シリコン層4を形成し、酸化シリコン層2を介して
、パルス電圧を印加する多結晶シリコン層1.3を形成
する。多結晶シリコン層1゜3は、互いに酸化シリコン
層によって絶縁されている。
An n-type silicon layer 4 is formed on a p-type silicon substrate 6 using a method such as ion implantation, and a polycrystalline silicon layer 1.3 to which a pulse voltage is applied is formed via a silicon oxide layer 2. The polycrystalline silicon layers 1.3 are insulated from each other by a silicon oxide layer.

多結晶シリコン層、酸化シリコン層、n形シリコン層と
p形シリコン層から形成されているMIS(金属−絶縁
層一半導体構造)容量を2つ以上釜べて形成し、隣り合
うMIS容量の空乏領域が重なるように構成しである。
Two or more MIS (metal-insulating layer-semiconductor structure) capacitors formed from a polycrystalline silicon layer, a silicon oxide layer, an n-type silicon layer, and a p-type silicon layer are formed together, and the depletion of adjacent MIS capacitors is eliminated. The configuration is such that the areas overlap.

多結晶シリコン層にパルス電圧を順次加えることにより
MO3容量に蓄積されている電荷を順次隣りのMO8容
量に転送する。
By sequentially applying pulse voltages to the polycrystalline silicon layer, the charges accumulated in the MO3 capacitor are sequentially transferred to the adjacent MO8 capacitor.

発明が解決しようとする問題点 しかしながら、上記のような構成ではパルス電圧とn形
シリコン層4の不純物濃度そしてMIS容量の面積に依
存し、電荷結合素子として動作させるには、パルス電圧
とn形不純物層4の不純物濃度に制限があるためにMI
S容量の面積を小さくするとMO3容量が小さくなシミ
荷結合素子の取り扱い電荷量が少なくなることになる。
Problems to be Solved by the Invention However, the above configuration depends on the pulse voltage, the impurity concentration of the n-type silicon layer 4, and the area of the MIS capacitor. Because there is a limit to the impurity concentration of impurity layer 4, MI
If the area of the S capacitor is reduced, the amount of charge handled by the stain coupling element with a small MO3 capacitance will be reduced.

例えばCOD固体撮像素子においては、画素寸法が小さ
くなると垂直転送の電荷結合素子の取り扱い電荷量が少
なくなり、信号のダイナミックレンジが少さくなるとい
うことが起きてくる。
For example, in a COD solid-state image sensor, as the pixel size becomes smaller, the amount of charge handled by the vertical transfer charge-coupled device becomes smaller, and the dynamic range of the signal becomes smaller.

本発明は上記欠点に鑑み、小面積においても取り扱い電
荷量が減少しない構成の電荷結合素子を提供するもので
ある。
In view of the above drawbacks, the present invention provides a charge-coupled device having a structure in which the amount of charge handled does not decrease even in a small area.

問題点を解決するための手段 上記問題点を解決するために本発明の電荷結合素子は、
−導電型半導体基板、上に部分的に反対導電型半導体層
が形成され絶縁膜を介して電極が形成されて構成されて
いる。
Means for Solving the Problems In order to solve the above problems, the charge coupled device of the present invention includes:
- A semiconductor substrate of a conductivity type, a semiconductor layer of an opposite conductivity type is partially formed on the substrate, and an electrode is formed with an insulating film interposed therebetween.

作  用 この構成によって、反対導電型半導体層の幅が小さくな
っても、高さを高くすることによって上記−導電型半導
体層上の単位面積当たりのMIS容量が従来に比べて大
容量とすることができ、電荷結合素子の高集積化に伴な
う取り扱い電荷量の減少を抑制できる。
Effect: With this configuration, even if the width of the opposite conductivity type semiconductor layer is reduced, the MIS capacity per unit area on the above-mentioned conductivity type semiconductor layer can be increased compared to the conventional one by increasing the height. This makes it possible to suppress the decrease in the amount of charge handled due to the increase in the degree of integration of charge-coupled devices.

実施例 以下、本発明の一実施例について図面を参照しながら説
明する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は本発明の電荷結合素子の基本的構成例を示すも
のであシ、−導電型半導体基板10上に部分的に反対導
電型半導体層8が形成され、絶縁膜9を介してパルス電
圧を印加する電極6,7が形成されている。反対導電型
半導体層8はパルス電圧印加で空乏化して電荷結合素子
のチャンネルを形成する。このチャンネルを通して信号
電荷を転送する。反対導電型半導体層8は選択エピタキ
シャル成長させるか、または、−導電型半導体層1o上
全体にエピタキシャル成長させ、必要以外の部分をエツ
チング除去して形成する。反対導電型半導体層8の不純
物は、  °   ゛          エピタキシャル成長時に同時に
混入させるか、またはエピタキシャル成長後にイオン注
入、または熱拡散で反対導電型半導体層8に入れる。
FIG. 1 shows an example of the basic configuration of a charge-coupled device according to the present invention. Electrodes 6 and 7 for applying voltage are formed. The opposite conductivity type semiconductor layer 8 is depleted by applying a pulse voltage to form a channel of a charge coupled device. Signal charges are transferred through this channel. The opposite conductivity type semiconductor layer 8 is formed by selective epitaxial growth, or by epitaxial growth over the entire -conductivity type semiconductor layer 1o, and removing unnecessary portions by etching. Impurities in the opposite conductivity type semiconductor layer 8 are mixed simultaneously during epitaxial growth, or are introduced into the opposite conductivity type semiconductor layer 8 by ion implantation or thermal diffusion after epitaxial growth.

第2図は本発明の一実施例における電荷結合素子を用い
た固体撮像装置のより具体的な断面構成図を示すもので
ある。n形シリコン層13が電荷結合素子のチャンネル
となる部分である。n形シリコン層16は、n形シリコ
ン層15とp形シリは、信号電子を電荷結合素子チャン
ネルに読み出す多結晶シリコン電極である。またこの電
極19及び電極12にパルス電圧を順次印加し、読み出
した信号電子を転送する。14は電極間の層間絶縁膜と
しての酸化シリコン層である。16はMIS容量の酸化
シリコン層である。11は遮光用のアルミニウムである
。17はPウェルであυ、18はn形シリコン基板であ
る。n形半導体層15、Pウェル17、n形シリコン基
板18によって縦型オーバーフロードレインが構成され
ている。
FIG. 2 shows a more specific cross-sectional configuration diagram of a solid-state imaging device using a charge-coupled device according to an embodiment of the present invention. The n-type silicon layer 13 is a portion that becomes a channel of a charge coupled device. The n-type silicon layer 16, the n-type silicon layer 15, and the p-type silicon layer are polycrystalline silicon electrodes that read signal electrons into the charge-coupled device channel. Further, a pulse voltage is sequentially applied to the electrode 19 and the electrode 12 to transfer read signal electrons. 14 is a silicon oxide layer serving as an interlayer insulating film between electrodes. 16 is a silicon oxide layer of MIS capacitor. 11 is aluminum for light shielding. 17 is a P-well υ, and 18 is an n-type silicon substrate. The n-type semiconductor layer 15, the P-well 17, and the n-type silicon substrate 18 constitute a vertical overflow drain.

上記構成の製造方法の1つの方法を、第3図に示す。n
形シリコン基板2o上に数μm厚のp形シリコン層21
を形成した後、p形シリコン層21上全体に酸化シリコ
ン層22をCVDで積層する。
One method of manufacturing the above structure is shown in FIG. n
A p-type silicon layer 21 with a thickness of several μm is formed on a silicon substrate 2o.
After forming, a silicon oxide layer 22 is deposited over the entire p-type silicon layer 21 by CVD.

酸化シリコン層22のうち電荷結合素子のチャンネルと
なる部分を選択的にエツチングする。次に気相エピタキ
シャル成長法でエツチング部分にn型シリコンを結晶成
長させる。その後、酸化シリコン膜22を除去する。そ
の後の製造プロセスは、従来の電荷結合素子を用いた固
体撮像装置の製造プロセスと同じ方法を用いる。例えば
層間絶縁膜となる酸化シリコン14は、減圧CVDで形
成する。多結晶シリコン電極12.19は、減圧CVD
で形成する。遮光用アルミニウムは、減圧CVDで形成
する。
A portion of the silicon oxide layer 22 that will become a channel of a charge coupled device is selectively etched. Next, crystals of n-type silicon are grown in the etched portions by vapor phase epitaxial growth. Thereafter, the silicon oxide film 22 is removed. The subsequent manufacturing process uses the same method as that of a conventional solid-state imaging device using a charge-coupled device. For example, the silicon oxide 14 which becomes an interlayer insulating film is formed by low pressure CVD. Polycrystalline silicon electrodes 12.19 are made by low pressure CVD.
to form. The light shielding aluminum is formed by low pressure CVD.

上記第2図の構成の製造方法の2番目の方法を第4図に
示す。n形シリコン基板26上にp形シリコン層26及
びn形シリコン層24をエピタキシャル成長法で結晶成
長させる。次にn形シリコン層24を電荷結合素子のチ
ャンネル部以外を反応性イオンエツチングで選択エツチ
ングをして第4図の下図となる。後のプロセスは、従来
の電荷結合素子を用いた固体撮像装置の製造プロセスを
用いて行なう。
A second method of manufacturing the structure shown in FIG. 2 is shown in FIG. A p-type silicon layer 26 and an n-type silicon layer 24 are crystal-grown on an n-type silicon substrate 26 by epitaxial growth. Next, the n-type silicon layer 24 is selectively etched by reactive ion etching except for the channel portion of the charge-coupled device, resulting in the result shown in the lower part of FIG. The subsequent process is performed using a conventional manufacturing process for a solid-state imaging device using a charge-coupled device.

本実施例では14.16を酸化シリコンとしたが、絶縁
物ならなんでもよく、例えば、窒化シリコンでもよい。
In this embodiment, silicon oxide is used as 14.16, but any insulating material may be used, for example, silicon nitride may be used.

また本実施例では転送電極12゜19の材料を多結晶シ
リコンとしたが、導電材料ならなんでもよく例えばアル
ミニウムでもよい。
Further, in this embodiment, the material of the transfer electrodes 12 and 19 is polycrystalline silicon, but any conductive material may be used, such as aluminum.

また本実施例では遮光膜11をアルミニウムとしたが、
遮光材料であれば何でもよく例えば、タングステンでも
よい。また本実施例では、半導体材料を7リコンとした
が、ひ化ガリウム、インジウムリンなどの化合物半導体
でもよい。また本実施例では、突出したn形シリコン層
13の形状を第2図で長方形としたが、多角形ならなん
でもよく三角形でもよい。
Further, in this embodiment, the light shielding film 11 is made of aluminum, but
Any light blocking material may be used, for example, tungsten. Further, in this embodiment, the semiconductor material is 7 Licon, but a compound semiconductor such as gallium arsenide or indium phosphide may be used. Further, in this embodiment, the protruding n-type silicon layer 13 has a rectangular shape in FIG. 2, but it may be any polygonal shape or a triangular shape.

発明の効果 以上のように本発明は電荷結合素子のチャンネル部を半
導体基板上の部分的に半導体層に形成しその厚さを制御
することにより転送可能な信号量を増やすことができ、
高集積化に伴なう電荷結合素子の転送可能な信号量の減
少を抑制し、その実用的効果は大きなものがある。また
固体撮像装置に応用した場合、チャンネルが光電変換部
から空間的に離れる構成になるのでスミア現象が抑制で
きる。
Effects of the Invention As described above, the present invention can increase the amount of signals that can be transferred by forming the channel portion of a charge-coupled device in a semiconductor layer partially on a semiconductor substrate and controlling its thickness.
This suppresses the decrease in the amount of signals that can be transferred by charge-coupled devices due to higher integration, and has a great practical effect. Furthermore, when applied to a solid-state imaging device, the channel is configured to be spatially separated from the photoelectric conversion section, so that smear phenomenon can be suppressed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の電荷結合素子の基本的な構成図、第2
図は本発明の一実施例の電荷結合素子を用いた固体撮像
装置の断面図、第3図、第4図は実施例の製造方法の一
部を示す断面図、第5図は従来の電荷結合素子の構成図
である。 1.3・・・・・・多結晶ケイ素電極、2・・・・・・
層間絶縁膜、4・・・・・・n形半導体層、5・・・・
・・p形半導体層、6.7・・・・・転送電極、8・・
・・・反対導電型半導体層、9・−・・−・層間絶縁膜
、1o・・−・・・−導電型半導体層、11・・・・・
・遮光用アルミニウム、12・・・・・読み出し及び転
送電極、13・・・・・・n形シリコン層、14゜16
.19・・・・・・酸化シリコン層、15・・・・・・
n形シリコン、17・・・・・Pウェル、18・・・・
・・n 形シリ=rン基板、2Q・−・・・−n形シリ
コン基板、21・・・・・・p形シリコン層、22・・
・・・・酸化シリコン層、23・・・・・・n形シリコ
ン層、24・・−・・・n形シリコン層、26・・・・
・p形シリコン層、26・・・・・n形シリコン基板。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 乙 第2図 第3図
Figure 1 is a basic configuration diagram of the charge coupled device of the present invention, Figure 2
The figure is a sectional view of a solid-state imaging device using a charge-coupled device according to an embodiment of the present invention, FIGS. 3 and 4 are sectional views showing a part of the manufacturing method of the embodiment, and FIG. FIG. 3 is a configuration diagram of a coupling element. 1.3...Polycrystalline silicon electrode, 2...
Interlayer insulating film, 4... n-type semiconductor layer, 5...
...p-type semiconductor layer, 6.7...transfer electrode, 8...
...Opposite conductivity type semiconductor layer, 9.--Interlayer insulating film, 1o...-conductivity type semiconductor layer, 11...
・Light-shielding aluminum, 12...readout and transfer electrode, 13...n-type silicon layer, 14゜16
.. 19...Silicon oxide layer, 15...
N-type silicon, 17...P well, 18...
... n-type silicon=r silicon substrate, 2Q...-n-type silicon substrate, 21...p-type silicon layer, 22...
...Silicon oxide layer, 23...N-type silicon layer, 24...N-type silicon layer, 26...
・P-type silicon layer, 26...n-type silicon substrate. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure Otsu Figure 2 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)一導電型半導体基体上に部分的に突出した半導体
層が形成され、この半導体層の上に絶縁層を介して導電
性膜が形成されていることを特徴とする電荷結合素子。
(1) A charge-coupled device characterized in that a partially protruding semiconductor layer is formed on a semiconductor substrate of one conductivity type, and a conductive film is formed on this semiconductor layer with an insulating layer interposed therebetween.
(2)部分的に形成した突出した半導体層が半導体基体
と反対導電型であることを特徴とする特許請求の範囲第
1項記載の電荷結合素子。
(2) The charge-coupled device according to claim 1, wherein the partially formed protruding semiconductor layer has a conductivity type opposite to that of the semiconductor substrate.
JP61145335A 1986-06-20 1986-06-20 Charge coupled device Pending JPS631067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61145335A JPS631067A (en) 1986-06-20 1986-06-20 Charge coupled device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61145335A JPS631067A (en) 1986-06-20 1986-06-20 Charge coupled device

Publications (1)

Publication Number Publication Date
JPS631067A true JPS631067A (en) 1988-01-06

Family

ID=15382791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61145335A Pending JPS631067A (en) 1986-06-20 1986-06-20 Charge coupled device

Country Status (1)

Country Link
JP (1) JPS631067A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03285335A (en) * 1990-04-02 1991-12-16 Matsushita Electron Corp Charged transfer element and manufacture thereof
JP2013038161A (en) * 2011-08-05 2013-02-21 Toshiba Corp Optical coupling device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55121678A (en) * 1979-03-14 1980-09-18 Pioneer Electronic Corp Charge transfer device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55121678A (en) * 1979-03-14 1980-09-18 Pioneer Electronic Corp Charge transfer device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03285335A (en) * 1990-04-02 1991-12-16 Matsushita Electron Corp Charged transfer element and manufacture thereof
JP2013038161A (en) * 2011-08-05 2013-02-21 Toshiba Corp Optical coupling device

Similar Documents

Publication Publication Date Title
JP3225939B2 (en) Solid-state imaging device and manufacturing method thereof
JPS63177460A (en) Solid-state image device
JPS631067A (en) Charge coupled device
JPS6057780A (en) Solid-state image pickup device and its manufacture
JP2004281499A (en) Solid-state image pickup element and method of manufacturing the same
JP2964571B2 (en) Solid-state imaging device
JP2573582B2 (en) Method for manufacturing solid-state image sensor
JP2909158B2 (en) Charge coupled device
JPS6258550B2 (en)
JPS62269355A (en) Solid-state image sensing element
JP2525780B2 (en) Stacked solid-state imaging device
EP1453099A2 (en) Vertical charge transfer active pixel sensor
JPS5846905B2 (en) Kotai Satsuzou Sochi
JPH07120774B2 (en) Solid-state imaging device
JPH0465165A (en) Charge coupled device and manufacture thereof
JPS62269356A (en) Solid-state image sensing device
JP2000260972A (en) Solid-state image pickup device and its manufacture
US5910013A (en) Process for manufacturing a solid-state pick-up device
JP2671151B2 (en) Semiconductor device
JP3100624B2 (en) Non-interlaced interline transfer CCD image sensor with simple electrode structure for each pixel
WO1989005039A1 (en) Blooming control in ccd image sensors
JPH0831587B2 (en) Method of manufacturing solid-state image sensor
JPH01123468A (en) Solid-state image sensing element
JPH0424871B2 (en)
JPS62296552A (en) Manufacture of solid-state image sensing device