JPS63106639A - Light distribution correcting mechanism - Google Patents

Light distribution correcting mechanism

Info

Publication number
JPS63106639A
JPS63106639A JP8243087A JP8243087A JPS63106639A JP S63106639 A JPS63106639 A JP S63106639A JP 8243087 A JP8243087 A JP 8243087A JP 8243087 A JP8243087 A JP 8243087A JP S63106639 A JPS63106639 A JP S63106639A
Authority
JP
Japan
Prior art keywords
light
magnification
light shielding
light distribution
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8243087A
Other languages
Japanese (ja)
Other versions
JPH07122730B2 (en
Inventor
Taku Saito
卓 斎藤
Yozo Fujii
藤井 洋三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Publication of JPS63106639A publication Critical patent/JPS63106639A/en
Publication of JPH07122730B2 publication Critical patent/JPH07122730B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To execute a sufficient light distribution against many projecting magnifications by a simple constitution, by providing the light shielding member of thin plate thickness, in which length in the transverse direction of an optical path cross section is varied unequally in an adjacent position, against an optical path whose cross section is regulated to a slender slit shape. CONSTITUTION:When the light distribution of a light source 3 is set so that a light beam is not shielded at the time of the maximum magnification and the peripheral light quantity separated from the optical axis 31 of a photosensitive body 12 becomes a necessary and sufficient light quantity, its periphery light quantity shows only an increasing tendency in decreasing the magnification. Accordingly, it may be sufficient that its increased portion is brought to light shielding by light shielding plates 23, 24 and corrected to the same degree as the light quantity of the optical axis 31 part, and a light quantity distribution characteristic of the surface of the photosensitive body 12 is made flat. In this state, when the light shielding plates 23, 24 are turned so that its surface is intersected orthogonally with the optical axis 31 of the optical path, the luminous fluxs of both sides of the optical path are shielded mainly, and when its surface is turned so as to be parallel to the optical axis 31, the thin light shielding plates 23, 24 scarcely interrupt the luminous flux.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、複写機の投影機構に適用される配光補正機構
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a light distribution correction mechanism applied to a projection mechanism of a copying machine.

〔従来技術〕[Prior art]

電子写真複写機の投影機構においては、投影像を像担持
体としての感光体上に結像させるためにレンズが必要不
可欠である。しかし、このレンズには、’ cos ’
θの法則jという「光軸外の像点における光束密度は光
軸上の像点における光束密度のcos ’θに比例して
減少する」特性がある。
In the projection mechanism of an electrophotographic copying machine, a lens is essential in order to form a projected image on a photoreceptor as an image carrier. However, this lens has 'cos'
There is a characteristic called the law of θ, ``the luminous flux density at an image point off the optical axis decreases in proportion to cos 'θ of the luminous flux density at an image point on the optical axis.''

そこで、変倍可能な電子写真複写機においては、例えば
特開昭52−146630号公報のように、光路規制部
材としてのスリットの一辺を光路に対して進退可能に設
けて配光を調整したり、または特開昭57−73767
号公報のように、スリットとは別に遮光部材を設けて、
これをレンズ光軸に垂直に進退可能として配光を調整し
ている。
Therefore, in an electrophotographic copying machine capable of variable magnification, one side of a slit serving as an optical path regulating member is provided so as to be movable toward and away from the optical path to adjust the light distribution, as disclosed in Japanese Patent Application Laid-open No. 52-146630, for example. , or Japanese Patent Publication No. 57-73767
As in the publication, a light shielding member is provided separately from the slit,
Light distribution is adjusted by allowing this to move forward and backward perpendicular to the lens optical axis.

しかしながらこれらの機構においては、光路に対して進
退する遮光部材の形状が一定であるので、数多くの投影
倍率に対してそのすべてに良好な光量補正を行なうこと
はできない。特に、スリットによって形成された光路の
断面の長手方向において遮光板の存在しない領域がある
場合(つまり、遮光量が長手方向で不連続な場合)、局
部的に光量の高い部分が生まれてしまう。
However, in these mechanisms, since the shape of the light shielding member that moves forward and backward with respect to the optical path is constant, it is not possible to perform good light amount correction for all of the many projection magnifications. In particular, if there is a region where no light shielding plate is present in the longitudinal direction of the cross section of the optical path formed by the slit (that is, if the amount of light shielding is discontinuous in the longitudinal direction), a portion with a locally high amount of light will be created.

また、第27図に示すように、遮光部材1の位置に対し
て光路2がずれてしまうと、遮光量が変化してしまう。
Further, as shown in FIG. 27, if the optical path 2 is deviated from the position of the light shielding member 1, the amount of light shielding will change.

更に、ある倍率から低い倍率へ移行すると、光路の断面
形状は幅、長さともに小さくなるので、遮光部材はその
小さくなった分だけ移動した後、更に配光補正に必要な
量を移動しなければならなく、その機構が複雑となる。
Furthermore, when moving from a certain magnification to a lower magnification, the cross-sectional shape of the optical path becomes smaller in both width and length, so the light shielding member must be moved by the amount that has become smaller, and then further moved by the amount necessary for light distribution correction. However, the mechanism becomes complicated.

更に、縮小時に縮小倍率が比較的小さい値の場合には、
光路の断面形状は幅、長さともに小さくなっているため
、これに対して適正な配光補正を行なうには、遮光部材
の移動量は等倍や拡大時に比較して高い精度が要求され
る。
Furthermore, if the reduction magnification is a relatively small value during reduction,
Since the cross-sectional shape of the optical path is smaller in both width and length, in order to correct the light distribution appropriately, higher precision is required for the amount of movement of the light shielding member than when magnifying the image. .

更に、遮光部材の進入が直線的に行われるものは、ガイ
ドレールや多くの節を持ったリンク機構が必要となり、
構成が複雑となる。
Furthermore, if the light shielding member enters in a straight line, a guide rail or link mechanism with many nodes is required.
The configuration becomes complicated.

更に、従来の配光補正機構は、常に部分的な遮光状態に
あるため、光源が無駄な光を放っていることになり、不
経済である。
Furthermore, the conventional light distribution correction mechanism is always in a partially shaded state, which means that the light source emits unnecessary light, which is uneconomical.

以上のような問題点をもつ機構として、上記公報以外に
、特開昭54−136845 、特開昭57−9234
8、特開昭57−154265 、特開昭60−134
226 、特開昭60−80828等の公報で提案され
るものがある。
In addition to the above-mentioned publications, mechanisms with the above-mentioned problems include JP-A-54-136845 and JP-A-57-9234.
8, JP-A-57-154265, JP-A-60-134
There are some proposals in publications such as No. 226 and Japanese Unexamined Patent Publication No. 60-80828.

一方、実開昭57−121953号公報では、光軸に対
して直交するように長方形の遮光板を配備して、その遮
光板を光軸の前後方向に回転できるようにしたものが提
案されている。この技術では、非遮光時に殆ど光量を損
失しないとき利点があるが、形状が長方形であるので、
配光補正を適正に行うことはできないという問題がある
On the other hand, Japanese Utility Model Application Publication No. 57-121953 proposes a device in which a rectangular light-shielding plate is arranged perpendicular to the optical axis, and the light-shielding plate can be rotated in the front-rear direction of the optical axis. There is. This technology has the advantage of not losing much light when not shaded, but since the shape is rectangular,
There is a problem that light distribution correction cannot be performed appropriately.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上述した欠点を解消し、簡単な構成で
多くの投影倍率に対して充分な配光補正が可能となるよ
うにすることである。
An object of the present invention is to eliminate the above-mentioned drawbacks and to enable sufficient light distribution correction for many projection magnifications with a simple configuration.

〔発明の構成〕[Structure of the invention]

このために本発明は、原稿を照明する光源と、該原稿か
らの像光の断面形状を規制するスリットをもつ光路規制
部材と、上記像光により与えられる像を担持する像担持
体と、上記原稿と上記像担持体との間の光路に配備され
た結像用のレンズとを有する像投影機構において、 上記光路規制部材によって断面が長細のスリット状に規
制された光路に対して、該光路の光軸に交差する方向で
且つ上記光路の長さ方向に沿った軸を中心として回転し
且つ該回転により上記光路の幅方向の長さが隣接位置に
おいて不均等に変化する薄い板厚の遮光部材を配備して
構成した。
To this end, the present invention provides a light source that illuminates a document, an optical path regulating member having a slit that regulates the cross-sectional shape of image light from the document, an image carrier that carries an image given by the image light, and a light source that illuminates the document. In an image projection mechanism having an imaging lens disposed in an optical path between a document and the image carrier, the optical path is regulated by the optical path regulating member into a long and thin slit-like cross section. A thin plate that rotates about an axis that intersects the optical axis of the optical path and along the length of the optical path, and that the length of the optical path in the width direction changes unevenly at adjacent positions due to the rotation. It was constructed by providing a light shielding member.

〔実施例〕〔Example〕

鳳−案隻開工 以下、本発明を変倍可能な電子写真複写機に適用した実
施例によって説明する。第1図はその複写機の概要を示
す図である。矢印X方向に露光走査する棒状(紙面に垂
直方向に長い)の光源3から発射する光はプラテンガラ
ス4上に載せられた原稿5で反射され、そこで原稿像を
担持した反射光(像光)は、光路規制部材としてのスリ
7)板6を介してミラー7〜9で光路を変更し、結像用
のレンズ機構10を経由し、ミラー11で更に光路を変
更して、像担持体としての感光体ドラム12に導かれて
、そこに静電潜像を形成する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to an embodiment in which the present invention is applied to an electrophotographic copying machine capable of variable magnification. FIG. 1 is a diagram showing an outline of the copying machine. Light emitted from a bar-shaped (long in the direction perpendicular to the paper surface) light source 3 that exposes and scans in the direction of the arrow X is reflected by the document 5 placed on the platen glass 4, where the reflected light carrying the document image (image light) is emitted. The optical path is changed by the mirrors 7 to 9 via the pickpocket 7) plate 6 as an optical path regulating member, and the optical path is further changed by the mirror 11 via the lens mechanism 10 for image formation. is guided to the photoreceptor drum 12 to form an electrostatic latent image thereon.

この感光体ドラム12は矢印y方向に上記光源3の走査
と同期して回転しており、上記静電潜像は現像部13で
トナー現像され、給紙部14がら給紙される転写紙がレ
ジストレーションローラ15で像先端とタイミングを取
られて給送されると、そこに転写極16によりトナー像
が転写される。
The photosensitive drum 12 rotates in the direction of the arrow y in synchronization with the scanning of the light source 3, and the electrostatic latent image is developed with toner in the developing section 13, and the transfer paper fed from the paper feeding section 14 is When the toner image is fed by the registration roller 15 in a timing with the leading edge of the image, the toner image is transferred thereto by the transfer pole 16.

そして、この転写紙は分離極17によって感光体ドラム
12から分離され、熱定着ローラ18に送られてトナー
像が定着され、排紙皿19に排紙される。20はクリー
ニング部、21は帯電極である。
The transfer paper is separated from the photoreceptor drum 12 by a separation pole 17, sent to a heat fixing roller 18, where the toner image is fixed, and discharged onto a paper discharge tray 19. 20 is a cleaning section, and 21 is a charging electrode.

この複写機では、複写倍率を変更すると、レンズ機構1
0及びミラー8.9が適正な位置に移動する0本実施例
では、光源3に後記するように特有の配光分布特性を持
たせ、且つレンズ機構10に配光補正機構22を具備さ
せており、上記倍率変更時に、この配光補正機構22が
動作してその配光補正が行われる。
In this copying machine, when the copying magnification is changed, the lens mechanism 1
In this embodiment, the light source 3 has a unique light distribution characteristic as described later, and the lens mechanism 10 is equipped with a light distribution correction mechanism 22. When the magnification is changed, the light distribution correction mechanism 22 operates to correct the light distribution.

この配光補正機構22は第2図に示すように、薄い板厚
(例えば、0.4m)の楔形状の金属板で成る2枚の遮
光板23.24を有しており、それら遮光板23.24
の表面にはつや消しの黒色処理が施されている。これら
の遮光板23.24は、レンズ機構10のレンズホルダ
25から180度の角度間隔で伸びた腕26.27に軸
28.29によって回動可能に取り付けられ、その先端
は相互に離れて対峙している。そして、その回転中心は
、レンズ機構10のレンズ30の光軸31と直角でしか
も上記したスリット板6のスリットの長手方向(紙面に
垂直な方向)の中心軸と平行な軸32である。この遮光
板23.24はその両者が連動して回転するように連結
アーム33で連結され、また先端にカムホロワ34が取
り付けられたアーム35にも連結されている。36は複
写機本体に固定されたカムであり、そのカム面36aに
上記カムホロワ34が常時当接するようになっている。
As shown in FIG. 2, this light distribution correction mechanism 22 has two light shielding plates 23 and 24 made of wedge-shaped metal plates with a thin plate thickness (for example, 0.4 m). 23.24
The surface has a matte black finish. These light shielding plates 23 and 24 are rotatably attached to arms 26 and 27 extending from the lens holder 25 of the lens mechanism 10 at angular intervals of 180 degrees by shafts 28 and 29, and their tips are spaced apart from each other and face each other. are doing. The center of rotation is an axis 32 that is perpendicular to the optical axis 31 of the lens 30 of the lens mechanism 10 and parallel to the central axis of the slit in the slit plate 6 in the longitudinal direction (direction perpendicular to the paper surface). The light shielding plates 23 and 24 are connected by a connecting arm 33 so that both of them rotate in conjunction with each other, and are also connected to an arm 35 having a cam follower 34 attached to its tip. A cam 36 is fixed to the main body of the copying machine, and the cam follower 34 is always in contact with the cam surface 36a.

よって、レンズ機構10が変倍のために光軸31に沿っ
て移動すると、カム作用によってアーム33.35が回
転するので、遮光板23.24の傾き角度が変化し、光
軸31に直交する面に投影した形状が変化する。
Therefore, when the lens mechanism 10 moves along the optical axis 31 for zooming, the arm 33.35 rotates due to the cam action, so the inclination angle of the light shielding plate 23.24 changes and becomes orthogonal to the optical axis 31. The shape projected onto the surface changes.

そして、遮光板23.24をその面が光路1の光軸31
に対して直交するように回動した場合、第3図に示すよ
うになって、光路1の両側の光束が遮蔽される。また、
その面が光軸と平行となるように回動した場合には、第
4図に示すようになり、薄い遮光板23.24は光束を
ほとんど遮断しない。
Then, the light shielding plates 23 and 24 are placed so that their surfaces are aligned with the optical axis 31 of the optical path 1.
When the light beam is rotated perpendicularly to the light beam, the light beams on both sides of the optical path 1 are blocked as shown in FIG. Also,
When the light shielding plates 23 and 24 are rotated so that their surfaces are parallel to the optical axis, as shown in FIG. 4, the thin shielding plates 23 and 24 hardly block the light flux.

源の配 ゝ布について まず、前述した’cos’θの法則」について説明する
。第5図はその説明のための図であり、原稿5から距離
aだけ離れた位置のレンズ3oにより、その原稿5の像
をレンズ30がら距離すだけ離れた感光体12に結像さ
せるようにした場合、原稿5の点A(光軸31上の点)
の光を投影した感光体12の点A′の光量に比較して、
原稿5の光軸31から離れた点Bの同一光を投影した感
光体12の点B′の光量は、レンズ3oの光軸31に対
して点Bからレンズ30に入射する角度をθとすると、
cos’θ(〈1)倍となる。つまり、゛点Bが光軸3
1から離れるほど、感光体12に投影される点B′の光
量はcos’θに比例して減少する。
Regarding the distribution of sources, we will first explain the ``cos'' θ law mentioned above. FIG. 5 is a diagram for explaining this, in which an image of the original 5 is formed by a lens 3o located at a distance a from the original 5 on a photoreceptor 12 located at a distance from the lens 30. In this case, point A on the original 5 (point on the optical axis 31)
Compared to the amount of light at point A' on the photoreceptor 12 on which the light is projected,
The amount of light at point B' on the photoreceptor 12 on which the same light at point B, which is distant from the optical axis 31 of the original 5, is projected is calculated as follows, assuming that the angle of incidence from point B to the lens 30 with respect to the optical axis 31 of the lens 3o is θ. ,
It becomes cos'θ(<1) times. In other words, point B is optical axis 3
1, the amount of light projected onto the photoreceptor 12 at point B' decreases in proportion to cos'θ.

なお、距離a、bはレンズ4の焦点距離をf、倍率をm
とすると、 a = f  (1+ 1/m)         ・
・・(1)b=f(1+m)           ・
・・(2)で与えられる。
Note that the distances a and b are the focal length of the lens 4, f, and the magnification, m.
Then, a = f (1+ 1/m) ・
...(1)b=f(1+m)・
... is given by (2).

そこで、本実施例では、光源3(原稿5と光学的に等価
)の配光分布を「レンズ30を通過した後の感光体12
上での光量分布が、最大倍率の条件のとき、無遮光にて
一様(フラット)となる」ように設定する。
Therefore, in this embodiment, the light distribution of the light source 3 (optically equivalent to the original 5) is defined as "the light distribution of the photoreceptor 12 after passing through the lens 30".
Set so that the light amount distribution on the top is uniform (flat) with no light shielding under the maximum magnification condition.

上記したように原稿5とレンズ30との間の距離aは式
(1)で与えられるが、この式は倍率mが大きくなると
小さくなり、最大倍率時にレンズ30が原稿5側に最も
近づくことを示す。よって、このときの角度θは最も大
きくなり、上記した’cos’θの法則Jによる周辺光
量の低下が、この最大倍率に最も顕著となる。
As mentioned above, the distance a between the document 5 and the lens 30 is given by the formula (1), but this formula decreases as the magnification m increases, indicating that the lens 30 is closest to the document 5 at maximum magnification. show. Therefore, the angle θ at this time becomes the largest, and the decrease in the amount of peripheral light due to the above-mentioned 'cos' θ law J becomes most noticeable at this maximum magnification.

よって、この最大倍率のときに無遮光で感光体12の光
軸31から離れた周辺光量が必要充分な光量となるよう
に、光源3の配光分布を設定すれば、倍率を低下すれば
その周辺光量がますます増大する傾向を示すことになる
ので、その増加分を遮光板23.24で遮光して光軸3
1部分の光量と同程度に補正して感光体12の面の光量
分布特性をフラットにすれば良いのである。
Therefore, if the light distribution of the light source 3 is set so that at this maximum magnification, the amount of light in the periphery away from the optical axis 31 of the photoreceptor 12 without light shielding is a necessary and sufficient amount of light, then if the magnification is lowered, the amount of light will be the same. Since the amount of peripheral light tends to increase more and more, the increased amount is blocked by the light shielding plates 23 and 24 and the optical axis 3 is
It is only necessary to correct the light amount to the same extent as the light amount of one portion to flatten the light amount distribution characteristics on the surface of the photoreceptor 12.

上記のようにして設定した配光分布の一例を第6図に示
した。曲線Qが光源3(原稿5)の配光分布特性(光軸
31に対称となる。)、直線Rが感光体12の光量分布
特性である。光源3の光軸31中心からの発射光量を最
も小さく (但し、感光体12の光軸部分で必要充分な
光量が得られる値)し、そこから外側に至るほど発射光
量を大きくする配光分布特性とすることにより、感光体
12の面での光量が光軸3工からの離れ距離(所定範囲
内)に関係なく一定となっている。
An example of the light distribution set as described above is shown in FIG. The curve Q is the light distribution characteristic of the light source 3 (original 5) (symmetrical to the optical axis 31), and the straight line R is the light amount distribution characteristic of the photoreceptor 12. A light distribution that minimizes the amount of light emitted from the center of the optical axis 31 of the light source 3 (provided that a sufficient amount of light can be obtained at the optical axis portion of the photoreceptor 12), and increases the amount of light emitted from there toward the outside. Due to this characteristic, the amount of light on the surface of the photoreceptor 12 is constant regardless of the distance from the optical axis 3 (within a predetermined range).

本発明者は、倍率m=1.55において感光体12でフ
ラットとなるような第7図に示す特性の配光分布を持つ
光源3を使用し、倍率をm=0.5から0.1刻みで1
.5まで変化させて、遮光を一切行わない場合の感光体
12の面での光量分布特性をシュミレートした。この結
果を第8a図〜第8に図に示す。いずれの倍率において
も、周辺光量が中心光量に比べて高くなっている。
The present inventor uses a light source 3 having a light distribution having the characteristics shown in FIG. 7, which is flat on the photoreceptor 12 at a magnification of m=1.55, and changes the magnification from m=0.5 to 0.1. 1 in increments
.. 5 to simulate the light amount distribution characteristics on the surface of the photoreceptor 12 when no light shielding is performed. The results are shown in Figures 8a-8. At any magnification, the amount of peripheral light is higher than the amount of light at the center.

遮 板のノ状について 上記した第8a図〜第8に図に示したように、中心光景
に対する周辺光量の増加割合は、最小倍率において最も
大きくなる。従って、レンズ30の感光体12側に設置
する遮光板23.24により遮光する光量は、この最小
倍率のときの最大量となるようにする必要がある。
As shown in FIGS. 8a to 8 above regarding the shape of the shield plate, the rate of increase in the amount of peripheral light relative to the central scene is greatest at the minimum magnification. Therefore, the amount of light shielded by the light shielding plates 23 and 24 installed on the photoreceptor 12 side of the lens 30 needs to be the maximum amount when the minimum magnification is achieved.

本実施例では光軸31に直交する方向に遮光板23.2
4を配置して、光軸31の前後方向にその遮光板を回転
させて、光軸31に垂直な面に投影した形状により実効
的遮光を行うようにしたことは前述した。
In this embodiment, the light shielding plate 23.2 is placed in the direction perpendicular to the optical axis 31.
4, and the light shielding plate is rotated in the front and back direction of the optical axis 31, so that effective light shielding is achieved by the shape projected onto a plane perpendicular to the optical axis 31, as described above.

従って、この遮光板23.24の面が光軸31に対して
なす角度も、最小倍率のときに最大となる。この角度を
αとすると、0≦α≦90@である。よってこの遮光板
23.24の形状は「その面をレンズ光軸に対してある
角度(≠0)をもって配置したときに、その光軸に垂直
な面に投影した形状が、最小倍率のときの感光面の配光
分布をフラットにする形状」に設定する。
Therefore, the angle that the surfaces of the light shielding plates 23 and 24 make with respect to the optical axis 31 also becomes maximum at the minimum magnification. If this angle is α, then 0≦α≦90@. Therefore, the shape of the light shielding plates 23 and 24 is ``When the surface is placed at a certain angle (≠0) to the optical axis of the lens, the shape projected onto a plane perpendicular to the optical axis is the shape at the minimum magnification. Set to a shape that flattens the light distribution on the photosensitive surface.

例えば、倍率m=0.5を最小倍率とするときは、その
最小倍率時に遮光板をその面が光軸31と直交する(9
0@)角度αに配置したとき、感光体12面上の配光分
布がフラットとなる形状とする。
For example, when setting the magnification m=0.5 as the minimum magnification, the light shielding plate is placed so that its surface is orthogonal to the optical axis 31 (9
0@) When placed at an angle α, the light distribution on the surface of the photoreceptor 12 is flat.

この形状は計算機を使用すれば容易に求めることができ
る。即ち、光軸31に角度θをなして入射する光束に対
して、その光束密度が光軸を通る光束の光束密度と同程
度となるように、遮光板23.24における光束内に占
める面積を決定すればよい。第9図では、遮光板23.
24は光軸31を通るA−A’の経路の光束については
遮光せず(第10図(a))、経路B−B’の光束につ
いて若干遮光(第10図(b)の斜線部)し、経路c−
c’の光束について大幅に遮光(第10図(C1の斜線
部)している。つまり周辺部はど遮光量が多くなってい
る。
This shape can be easily determined using a computer. That is, for a light beam incident on the optical axis 31 at an angle θ, the area occupied by the light beam on the light shielding plates 23 and 24 is set so that the light flux density is approximately the same as the light flux density of the light beam passing through the optical axis. All you have to do is decide. In FIG. 9, the light shielding plate 23.
24 does not block the light beam along the path A-A' passing through the optical axis 31 (FIG. 10(a)), but slightly blocks the light beam along the path B-B' (shaded area in FIG. 10(b)). and route c-
The light beam c' is significantly blocked (the shaded area in FIG. 10 (C1)). In other words, the amount of light blocked in the peripheral area is large.

角度θはレンズ30の位置、つまり倍率によって変化し
、このθの値によって光束の遮光板23、24上の通過
位置は変化するので、θ=0@ (遮光板なし)から始
めてθの値を少しづつ増加し、感光体12の面上の光量
がθ=0″のものと同じになるような遮光板の幅の数値
を求めればよい。
The angle θ changes depending on the position of the lens 30, that is, the magnification, and the passing position of the light flux on the light shielding plates 23 and 24 changes depending on the value of θ, so starting from θ = 0 @ (no light shielding plate), the value of θ is What is necessary is to find a numerical value for the width of the light shielding plate that increases little by little so that the amount of light on the surface of the photoreceptor 12 becomes the same as that when θ=0''.

さて、ここで遮光板23.24の形状を求める倍率は最
小であり、また原稿5或いは感光体12の面の大きさに
は限りがある。従って、上記の方法で求めた遮光板の形
状は、この倍率でのみ有効なθの範囲の狭いものと考え
られるかもしれないが、形状を求めるに当たっては、原
稿或いは感光面の大きさは実際のものよりもはるかに大
きいと仮定して、最大倍率の最大画角に相当するθの値
まで計算する(第11図参照)。もちろん、光源の配光
分布もこの範囲まで連続しているものと仮定する。
Now, here, the magnification for determining the shape of the light shielding plates 23 and 24 is the minimum, and the size of the surface of the original 5 or the photoreceptor 12 is limited. Therefore, the shape of the light-shielding plate determined by the above method may be considered to have a narrow range of θ that is valid only at this magnification, but when determining the shape, the size of the original or photosensitive surface must be determined based on the actual size. The value of θ corresponding to the maximum angle of view at the maximum magnification is calculated (see FIG. 11). Of course, it is assumed that the light distribution of the light source is also continuous within this range.

第12図は上記によって決定した遮光板23.24の平
面形状を示す図である。この第12図に示す遮光板を使
用し、各倍率において所定の角度を与えて配光補正のシ
ュミレートを行ったので、第13a図〜第13に図にそ
の結果の感光体12面の光量分布特性を示す。最大倍率
はm=1.55である。
FIG. 12 is a diagram showing the planar shape of the light shielding plates 23 and 24 determined as described above. Using the light shielding plate shown in Fig. 12, we simulated the light distribution correction by giving a predetermined angle at each magnification. Figs. Show characteristics. The maximum magnification is m=1.55.

以上から、露光用光源3と遮光板23.24を配備した
複写機で、最大倍率においては遮光板23.24の面を
レンズ光軸31と平行にして遮光量をほぼ零にすれば、
感光体12面上の配光分布はほぼフラットとなり、また
最小倍率においては遮光板23.24の面と光軸31と
のなす角度を前記のα(本実施例では90’)に設定す
れば、この倍率における感光体12面上の光量分布もほ
ぼフラットとなる。
From the above, in a copying machine equipped with the exposure light source 3 and the light shielding plate 23.24, if the surface of the light shielding plate 23.24 is made parallel to the lens optical axis 31 at maximum magnification and the amount of light shielding is made almost zero,
The light distribution on the surface of the photoconductor 12 becomes almost flat, and at the minimum magnification, if the angle between the surface of the light shielding plate 23, 24 and the optical axis 31 is set to the above-mentioned α (90' in this embodiment). , the light amount distribution on the surface of the photoreceptor 12 at this magnification is also approximately flat.

そして、最大から最小の間の各倍率おいては、カム36
のカム面36aの形状を適宜設定して、遮光板23.2
4と光軸31とのなす角度αを適当に選ぶことにより、
第13a図〜第13に図に示したように、全倍率に亘っ
てほぼ一様な光量分布を得ることができる。また、この
角度αは最小倍率のときに最大の遮光量となり、倍率が
大きくなるに従って遮光量が次第に減少してゆき、どの
倍率においても多少の変動はあるものの、光量分布はほ
ぼフラットとなる。
At each magnification between the maximum and minimum, the cam 36
By appropriately setting the shape of the cam surface 36a of the light shielding plate 23.2,
By appropriately selecting the angle α between 4 and the optical axis 31,
As shown in FIGS. 13a to 13, a substantially uniform light amount distribution can be obtained over the entire magnification. Further, this angle α has the maximum amount of light shielding at the minimum magnification, and as the magnification increases, the amount of light shielding gradually decreases, and although there is some variation at any magnification, the light amount distribution is almost flat.

なお、この実施例1では理論的に厳密性を強調するため
に光源3の配光分布は最大倍率において感光体上で一様
となるものとし、遮光板23.24の形状は最小倍率に
おいて感光体上12で一様な配光分布が得られる形状と
してか、実用上の観点からすれば、若干の許容幅があり
、例えば光源3の配光分布は最大倍率よりやや低い倍率
において感光体上で一様となるものとし、遮光板23.
24の形状も最小倍率よりやや高い倍率において感光体
12上で一様な配光分布が得られるものとしても、同様
な効果を得ることができる。
In this first embodiment, in order to emphasize theoretical rigor, it is assumed that the light distribution of the light source 3 is uniform on the photoreceptor at the maximum magnification, and the shape of the light shielding plates 23 and 24 is such that the light distribution is uniform on the photoreceptor at the minimum magnification. From a practical point of view, there is a certain tolerance for the shape of the body 12 to obtain a uniform light distribution.For example, the light distribution of the light source 3 may be difficult to achieve on the photoreceptor at a magnification slightly lower than the maximum magnification. The light shielding plate 23.
The same effect can be obtained even if the shape of 24 is such that a uniform light distribution can be obtained on the photoreceptor 12 at a magnification slightly higher than the minimum magnification.

即ち、光源の配光分布は「レンズを通過した後の感光体
面上での配光分布が、最大又はその近傍の倍率のとき、
無遮光にて一様となる」条件に設定すれば良く、また遮
光板の形状はrその面をレンズ光軸に対してある角度(
≠0)をもって配置したときに、その先軸に垂直な面に
投影した形状が、最小又はその近傍の倍率のときの感光
面の光量分布を一様にする形状」に設定すれば良い。
In other words, the light distribution of the light source is defined as ``When the light distribution on the photoreceptor surface after passing through the lens is at the maximum magnification or near the maximum magnification,
The shape of the light shielding plate should be set so that its surface is at a certain angle (
≠0), the shape projected onto a plane perpendicular to the tip axis may be set to a shape that makes the light amount distribution on the photosensitive surface uniform when the magnification is at or near the minimum.

そして、この結果においては光量分布の変動がやや大き
くなることがあるものの、実用上はほとんど影響がない
In this result, although the variation in the light amount distribution may be slightly large, it has almost no effect in practice.

以上から、全体が極めて簡単な構成で済み、また倍率の
広い変化範囲に亘って充分な光量補正を行なうことが可
能となる。光路1が第3図に示すように多少上下に変動
しても、その光路1の断面の長手方向における殆どの領
域に遮光板23.24をほぼ適正な形状で存在させるこ
とができるので局部的に光量の高い領域が生じることは
なくなる。
From the above, the entire configuration is extremely simple, and it is possible to perform sufficient light amount correction over a wide variation range of magnification. Even if the optical path 1 fluctuates up and down to some extent as shown in FIG. 3, the light shielding plates 23 and 24 can be present in almost an appropriate shape in most of the longitudinal direction of the cross section of the optical path 1, so that local There will no longer be areas with high light intensity.

特に縮小時に光路1の幅が狭くなった場合に有利である
。また、遮光部材は不必要に多く動くことはない。また
、縮小時、特に縮小倍率が比較的小さい場合には、遮光
板の平面とレンズ光軸とのなす角度は、直角に近くなり
、よって遮光板の形状の精度が良ければ、この角度が多
少ばらついても光路中に占める遮光板の面積にはあまり
影響が出ずに済む、即ち、小さい縮小倍率のとき、高い
精度の配光補正を行なうことができる。等倍時や拡大時
は、遮光されている領域は極く僅かであるので、光源の
光が無駄に遮断されることはない。
This is especially advantageous when the width of the optical path 1 becomes narrow during reduction. Further, the light shielding member does not move unnecessarily. Also, when reducing, especially when the reduction magnification is relatively small, the angle between the plane of the light shielding plate and the optical axis of the lens becomes close to a right angle. Even if there is variation, the area of the light shielding plate occupied in the optical path is not affected much, that is, when the reduction magnification is small, highly accurate light distribution correction can be performed. When the image is at the same magnification or enlarged, the area that is blocked is extremely small, so the light from the light source is not unnecessarily blocked.

以上により、配光補正を行なわない場合には、第14図
に示すように0.5倍の縮小時には光軸付近と周辺部と
で20%を越える光景の差が生まれていたものが、上記
補正により、第15図に示すように光量差が5%以内に
納まった。そして、全倍率(Xo、5〜1 、55)を
通じての光量の変動も約10%程度で、実用上問題とな
らなかった。そして、第15図に破線で示したように、
縮小時に光源の光量を高めた場合には、全倍率を通じて
の光量の変動も5%以下にまで押さえることができた。
As a result, when light distribution correction is not performed, as shown in Figure 14, when the reduction is 0.5 times, there is a difference in sight of more than 20% between the vicinity of the optical axis and the peripheral area. As a result of the correction, the difference in light amount was reduced to within 5% as shown in FIG. Further, the variation in the amount of light throughout the entire magnification (Xo, 5 to 1, 55) was about 10%, which was not a practical problem. Then, as shown by the broken line in Figure 15,
When the light intensity of the light source was increased during reduction, the variation in light intensity throughout all magnifications could be suppressed to 5% or less.

施11の変ン11 なお、上記した実施例では、遮光板23.24がレンズ
30と共に移動する機構となっているが、第16図に示
すように、1枚で構成された遮光板37を複写機本体に
固定された支持部材38に取り付けて、その遮光板37
の軸39にプーリ40を取り付けると共にそのブーIJ
40をワイヤ41でレンズ機構10に連結させて、その
レンズ機構10め移動に伴って遮光板37が回転して配
光補正が行われるようにするこ、ともできる。
Modification 11 of Section 11 In the above embodiment, the light shielding plates 23 and 24 move together with the lens 30, but as shown in FIG. The light shielding plate 37 is attached to the support member 38 fixed to the main body of the copying machine.
Attach the pulley 40 to the shaft 39 of the
40 can be connected to the lens mechanism 10 by a wire 41, and the light shielding plate 37 can be rotated as the lens mechanism 10 moves, thereby correcting the light distribution.

また、軸39をモータ等によって駆動可能に構成して、
変倍に応じてその軸39が回転して遮光板37の傾斜角
を調整することもできる。更に、ここで示した遮光板3
7は1枚であるが、このようにすれば、前記した連結ア
ーム33が不要となる。また、遮光板の回転軸は、必ず
しもレンズの光軸と直交する必要はない。
Further, the shaft 39 is configured to be able to be driven by a motor or the like,
The inclination angle of the light shielding plate 37 can also be adjusted by rotating the shaft 39 in accordance with the magnification change. Furthermore, the light shielding plate 3 shown here
7 is one piece, but if this is done, the above-mentioned connecting arm 33 becomes unnecessary. Further, the rotation axis of the light shielding plate does not necessarily need to be orthogonal to the optical axis of the lens.

また、第17図に示すように、遮光板42の回転中心軸
43は、遮光板42の上にある必要もなく、またその遮
光板42の形状は必ずしも対称である必要もない。特に
、片側基準の複写機等では、長手方向に関して非対称に
することが良い。
Further, as shown in FIG. 17, the rotation center axis 43 of the light shielding plate 42 does not need to be above the light shielding plate 42, and the shape of the light shielding plate 42 does not necessarily have to be symmetrical. In particular, in a copying machine or the like based on one side, it is preferable to make it asymmetrical with respect to the longitudinal direction.

−何一災■開1 複写機に適用する場合の別の実施例として、次のものも
可能である。即ち、原稿を照明する露光光源の配光分布
を「レンズを通った後の感光体面上での配光分布が、最
小またはその近傍の倍率のときに、無遮光にて一様とな
るJものとし、遮光板の形状を「その面をレンズ光軸に
対してある角度(≠O)をもって置いたときに、レンズ
光軸に垂直な面に投影した形状が、最大又はその近傍の
倍率のときの感光体面の配光分布を一様とする形状Jに
設゛定することも可能である。
-Whatever Happens ■Opening 1 As another embodiment when applied to a copying machine, the following is also possible. In other words, the light distribution of the exposure light source that illuminates the original is defined as "J type in which the light distribution on the photoreceptor surface after passing through the lens is uniform without light shielding when the magnification is at or near the minimum." The shape of the light-shielding plate is defined as ``When the surface is placed at a certain angle (≠O) to the lens optical axis, and the shape projected onto the plane perpendicular to the lens optical axis is at the maximum magnification or near it. It is also possible to set the shape J so that the light distribution on the surface of the photoreceptor is uniform.

これは、上述の実施例1の場合と逆であり、最小倍率に
て無遮光で感光体面上での配光分布が一様な露光光源を
用いると、周辺の光量は倍率を大きくしていくと低くな
って行く。言い換えれば、光軸中心の光量が周辺の光量
に比較して高くなって行く。そこで、倍率が大きくなる
に従い、相対的に高くなった中心部の光量を減少させる
ようにする。
This is the opposite of the case of Example 1 above, and if an exposure light source with no shading at the minimum magnification and a uniform light distribution on the photoreceptor surface is used, the amount of light in the periphery will increase as the magnification increases. It's getting lower. In other words, the amount of light at the center of the optical axis becomes higher than the amount of light at the periphery. Therefore, as the magnification increases, the amount of light at the center, which has become relatively high, is reduced.

この場合、遮光板の形状は上述の場合と異なって、中心
部の幅が広く、周辺に向かうに従って狭くなる形状とな
る。そして、最大倍率又はその近傍の倍率において、光
軸に対して最大の遮光量となる角度αをなし、倍率が小
さくなるに従い遮光量が減少してゆく。
In this case, the shape of the light shielding plate differs from the above case in that it is wide at the center and narrows toward the periphery. Then, at the maximum magnification or a magnification close to the maximum magnification, an angle α is formed with respect to the optical axis that provides the maximum amount of light shielding, and as the magnification decreases, the amount of light shielding decreases.

第18図にこの実施例2の場合の露光光源3の配光分布
特性を示し、第19図及び第20図にこの実施例2の場
合の遮光板44を使用した配光補正機構を示した。第1
9図は最大倍率時の角度、第20図は最小倍率時の角度
状態である。
FIG. 18 shows the light distribution characteristics of the exposure light source 3 in this embodiment 2, and FIGS. 19 and 20 show the light distribution correction mechanism using the light shielding plate 44 in this embodiment 2. . 1st
Figure 9 shows the angle at maximum magnification, and Figure 20 shows the angle at minimum magnification.

何2大隻■ユ 更なる第3の実施例として、次のものが考えられる。即
ち、露光光源□の配光分布をrレンズを通った後の感光
体面上での配光分布が、全変倍範囲の内、中間的な1倍
率において、無遮光で一様となる1分布に設定し、遮光
板を「その面をレンズ光軸に対してある角度(≠0)を
もって置いたときに、レンズ光軸に垂直な面に投影した
形状が、最大又はその近傍の倍率のときの感光体面上の
光量分布を一様にする形状のもの」と、「その面をレン
ズ光軸に対して別のある角度(≠0)をもって置いたと
きに、レンズ光軸に垂直な面に投影した形状が最小又は
その近傍の倍率のときの感光体面上の光量分布を一様に
する形状のもの」の両者を備えるように設定する。
As a further third embodiment, the following can be considered. In other words, the light distribution of the exposure light source □ after passing through the r lens on the surface of the photoreceptor is one distribution in which the light distribution on the photoconductor surface is uniform without light shielding at an intermediate magnification within the entire magnification range. When the shape projected onto a plane perpendicular to the lens optical axis is at or near the maximum magnification when the light-shielding plate is placed at a certain angle (≠0) to the lens optical axis, ``A shape that makes the light intensity distribution uniform on the photoreceptor surface'' and ``When that surface is placed at a different angle (≠0) to the lens optical axis, the shape is perpendicular to the lens optical axis. A shape that uniformizes the light intensity distribution on the photoreceptor surface when the projected shape is at the minimum magnification or near the minimum magnification.

つまり、前記した実施例1と実施例2の考え方を複合し
たのもであるが、変倍範囲の内、中間的な倍率に等倍を
含むものにおいては、新たな効果が生まれる。それには
、遮光板に次の条件を付は加える。
In other words, this is a combination of the concepts of the first and second embodiments described above, but a new effect is produced when the intermediate magnification includes equal magnification within the variable magnification range. To do this, add the following conditions to the light shielding plate.

即ち、第21図(alに示す実施例1の遮光板23.2
4を回転中心軸32から1方向にのみ存在する第21図
伽)に示す遮光板23′、24′の形状とし、また第2
2図に示す実施例2の遮光板44も同様に回転中心軸3
2から1方向にのみ存在する第22図(b)に示す遮光
板44′の形状に変形する。
That is, the light shielding plate 23.2 of Example 1 shown in FIG.
4 is the shape of the light shielding plates 23' and 24' shown in FIG.
Similarly, the light shielding plate 44 of the second embodiment shown in FIG.
The shape of the light-shielding plate 44' shown in FIG. 22(b) is changed from 2 to 44', which exists only in one direction.

なお、実施例1、実施例2の説明の中におけるrある角
度」は等しいものとし、この角度αをα≦90″とする
In addition, in the description of Examples 1 and 2, "r" are assumed to be equal, and this angle α is set to α≦90″.

そして、上記第21図(bl、第22図(b)に示した
形状の遮光板23′、24′、44′を、回転中心軸3
2を一致させて、両者の・なす角度がαとなるように、
第23図の符号45で示すように一体的に構成する。
Then, the light shielding plates 23', 24', and 44' having the shapes shown in FIG. 21 (bl) and FIG.
2, so that the angle between them is α,
It is integrally constructed as shown by reference numeral 45 in FIG.

このように構成すれば、回転式の遮光部材としては1個
となり、実施例1における連結アーム33は不要となる
。そして、全変倍範囲を通じての全体光量の変動を、前
記の2つの実施例に比較して小さくすることができるの
である。なぜなら、無遮光の場合、全体光量は等倍にお
いて最大となる。
With this configuration, there is only one rotary light shielding member, and the connecting arm 33 in the first embodiment becomes unnecessary. Furthermore, the variation in the overall light amount over the entire zoom range can be made smaller than in the two embodiments described above. This is because, in the case of no light shielding, the total light amount is maximum at the same magnification.

一方、この遮光板を用いるに当たっては、等倍において
は中心部も周辺部も遮光量は同程度でなければならない
が、このとき、こめ遮光板の投影面積は最大となり、全
体光量の低下も最大となるからである。なお、この実施
例3においても、遮光板はレンズ機構10の感光体12
側にレンズ機構10と一体に設けられる。
On the other hand, when using this light shielding plate, the amount of light shielding must be the same in the center and the periphery at the same magnification, but in this case, the projected area of the light shielding plate is the maximum, and the decrease in the overall light amount is also the largest. This is because. In this third embodiment as well, the light shielding plate is connected to the photoreceptor 12 of the lens mechanism 10.
It is provided integrally with the lens mechanism 10 on the side.

第24図(a)、(blに最大倍率時の遮光板45の態
様を1、第25図(a)、(b)に等倍時の態様を、第
26図(a)、(b)に最小倍率時の態様を示した。
24(a) and (bl) show the state of the light shielding plate 45 at maximum magnification (1), FIGS. 25(a) and (b) show the state at same magnification, and FIGS. 26(a) and (b) The image is shown at minimum magnification.

〔発明の効果〕〔Effect of the invention〕

以上から本発明によれば、全体が極めて簡単な構成で済
み、また倍率の広い変化範囲に亘って充  。
As described above, according to the present invention, the entire structure is extremely simple, and the magnification can be varied over a wide range.

分な配光補正を行なうことが可能となり、更に光路の断
面の長手方向の殆どの領域に遮光部材をほぼ適正な形状
で配置することが可能となり、局所的に光量の高い領域
が生じることがなくなる。更に、光源の光が無駄となる
こともなくなる。
It is now possible to perform appropriate light distribution correction, and it is also possible to arrange the light shielding member in an almost appropriate shape in most areas in the longitudinal direction of the cross section of the optical path, which prevents the occurrence of locally high light intensity areas. It disappears. Furthermore, the light from the light source is no longer wasted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用した複写機の概略構成図、第2図
は実施例1の配光補正機構の斜視図、第3図は実施例1
の最大遮光時(最小倍率時)の同補正機構の正面図、第
4図はの非遮光時(最大倍率時)の同正面図、第5図は
’cos’θの法則」の説明図、第6図は実施例1の光
源の配光分布の説明図、第7図はその光源の具体的な配
光分布特性図、第8a図〜第8に図は第7図の光源を使
用した場合の各倍率時の感光面の光量分布特性図、第9
図は遮光板による遮光の説明図、第10図(a)〜(C
1は第9図における各光束経路の遮光の説明図、第11
図は実施例1の遮光板の形状を求める計鴛のための説明
図、第12図はその遮光板の具体的な形状を示す平面図
、第13a図〜第13に図は第7図に示した配光分布の
光源を使用し第12図に示した形状の遮光板により配光
補正した場合の各倍率の感光体面の光量分布特性図、第
14図は配光補正しない場合の各倍率の感光面での光量
分布特性図、第15図は実施例1で配光補正した場合の
同光量分布特性図、第16図と第17図は実施例1の配
光補正機構の変形例を示す図、第18図は実施例2の光
源の配光分布特性図、第19図は実施例2の配光補正機
構の最大遮光時(最大倍率時)の正面図、第20図は同
配光補正機構の無遮光時(最小倍率時)の正面図、第2
1と第22図の(a)、(b)は実施例3の遮光板の作
製の説明図、第23図は実施例3の遮光板の斜視図、第
24図(alは実施例3の最小倍率時の遮光板の角度態
様を示す正面図、(b)はの側面図、第25図(alは
実施例3の等倍時の遮光板の角度態様を示す正面図、(
blは側面図、第26図T8)は実施例3の最大倍率時
の遮光板の角度態様を示す正面図1.[b)は側面図、
第27図は従来の遮光説明図である。 1・・・従来の遮光板、2・・・光路、3・・・棒状の
露光走査用光源、4・・・プラテンガラス、5・・・原
稿、6・・・スリット板、7〜9・・・ミラー、10・
・・レンズ機構、11・・・ミラー、12・・・感光体
ドラム、13・・・現像部、14・・・給紙部、15・
・・レジストレーションローラ、16・・・転写極、1
7・・・分離極、18・・・熱定着ローラ、19・・・
排紙部、20・・・クリーニング部、21・・・帯電極
、22・・・配光補正機構、23.24・・・実施例1
の遮光板、25・・・レンズホルダ、26.27・・・
腕、28.29・・・軸、30・・・レンズ、31・・
・レンズ光軸、32・・・回転軸、33・・・連結アー
ム、34・・・カムホロワ、35・・・アーム、36・
・・カム、37・・・実施例1の変形例の遮光板、38
・・・支持部材、39・・・軸、40・・・プーリ、4
1・・・ワイヤ、42・・・実施例1の別の変形例の遮
光板、43・・・軸、44・・・実施例2の遮光板、4
5・・・実施例3の遮光板。 代理人 弁理士 長 尾 常 明 第1図 第3図 最煽り2瞑4特和、) ユリ q 第4図 黒証剛1坪紘) 第5図 第7図 九f―垢1 第8c図 第8d図 第89図 第8h図 第10図 (a)      (b)      (C)A−A’
     B−B’     C−C’第12図 16m −一一一一一一 第139図 第13h図 第14図 IC()           2C[]【〜I−hJ
i誼←鴬) 第15図 1印           Zη th4’−Li、IZ+@fL (wx)第16図 第18図 第23図 第26図 エえ、11゜ 「 手続補正書9..) 特許庁長官 黒 □ 明 雄 殿  昭1″62鴫月2
6E]1、事件の表示 昭和62年特許願第082430号 2、発明の名称 配光補正機構 3、補正をする者 事件との関係  特許出願人 住  所  東京都新宿区西新宿1丁目26番2号名 
 称  (127)  小西六写真工業株式会社4、代
理人 住  所  4B104東京都中央区銀座4丁目12番
1号ミズホ第一ビル 3階 ffi 03−545−8
1506、補正により増加する発明の数   なし7、
補正の対象   明細書の全文 明      細      書 1、発明の名称 配光補正機構 2、特許請求の範囲 (l)、原稿を照明する光源と、該原稿からの像光の断
面形状を規制するスリットをもつ光路規制部材と、上記
像光により与えられる像を担持する像担持体と、上記原
稿と上記像担持体との間の光路に配備された結像用のレ
ンズとを有する像投影機構において、 上記光路規制部材によって断面が長細のスリット状に規
制された光路に対して、該光路の光軸に交差する方向で
且つ上記光路断面の長さ方向に沿った軸を中心として回
転し且つ該回転により上記光路断面の幅方向についての
長さが隣接位置において不均等に変化する薄い板厚の遮
光部材を配備して構成したことを特徴とする配光補正機
構。 (2)、上記光源が上記レンズを通った後の上記像担持
体上での配光分布がある倍率において無遮光で一様とな
る配光分布特性を持ち、且つ上記遮光部材がその面を上
記光軸に対して所定の角度もたせたとき該光軸に直交す
る面に投影した形状が上記倍率より小さいある倍率にお
いて上記像担持体上の配光分布を一様とする形状である
ことを特徴とする特許請求の範囲第1項記載の配光補正
機構。 (3)、上記光源が上記レンズを通った後の上記像担持
体上での配光分布がある倍率において無遮光で一様とな
る配光分布特性を持ち、且つ上記遮光部材がその面を上
記光軸に対して所定の角度もたせたとき該光軸に直交す
る面に投影した形状が上記倍率より大きいある倍率にお
いて上記像担持体上の配光分布を一様とする形状である
ことを特徴とする特許請求の範囲第1項記載の配光補正
機構。 (4)、上記光源が上記レンズを通った後の上記像担持
体上での配光分布がある倍率において無遮光で一様とな
る配光分布特性を持ち、且つ上記遮光部材が所定の角度
をなす複数の平面からなり、その一つの面を上記光軸に
対してある角度を持たせたとき該光軸に直交する面に投
影した形状が上記倍率より大きいある倍率において上記
像担持体上の配光分布を一様とし、他の一つの面を上記
光軸に対して別の角度を持たせたとき該光軸に直交する
面に投影した形状が上記倍率より小さいある倍率におい
て上記像担持体上の配光分布を一様とする形状であるこ
とを特徴とする特許請求の範囲第1項記載の配光補正機
構。 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は、複写機の投影機構に適用される配光補正1a
横に関する。 〔従来技術〕 電子写真複写機の投影機構においては、投影像を像担持
体としての感光体上に結像させるためにレンズが必要不
可欠である。しかし、このレンズ −には、’cos’
θの法則」という「光軸外の像点における光束密度は光
軸上の像点における光束密度のcos’θに比例して減
少する」特性がある。 そこで、変倍可能な電子写真複写機においては、例えば
特開昭52−146630号公報のように、光路規制部
材としてのスリットの一辺を光路に対して進退可能に設
けて配光を調整したり、または特開昭″57−7376
7号公報のように、スリットとは別に遮光部材を設けて
、これをレンズ光軸に垂直に進退可能として配光を調整
している。 しかしながらこれらの機構においては、光路に対して進
退する遮光部材の形状が一定であるので、数多くの投影
倍率に対してそのすべてに良好な光量補正を行なうこと
はできない、特に、スリットによって形成された光路の
断面め長手方向において遮光板の存在しない領域がある
場合(つまり、遮光量が長手方向で不連続な場合)、局
部的に光量の高い部分が生まれてしまう。 また、第27図に示すように、遮光部材1と光路2との
相対位置が上下方向(図中矢印方向)にずれてしまうと
、遮光量が大幅に変化してしまう。 更に、ある倍率から低い倍率へ移行すると、光路の断面
形状は幅、長さともに小さくなるので、遮光部材はその
小さくなった分だけ移動した後、更に配光補正に必要な
量を移動しなければならなく、その機構が複雑となる。 更に、縮小時に縮小倍率が比較的小さい値の場合には、
光路の断面形状は幅、長さともに小さくなっているため
、これに対してiツ正な配光補正を行なうには、遮光部
材の移動量は等倍や拡大時に比較して高い精度が要求さ
れる。 更に、遮光部材の進入が直線的に行われるものは、ガイ
ドレールや多くの節を持ったリンク機構が必要となり、
構成が複雑となる。 更に、従来の配光補正機構は、常に部分的な遮光状態に
あるため、光源が無駄な光を放っていることになり、不
経済である。 以上のような問題点をもつ機構として、上記公報以外に
、特開昭54−136845 、特開昭57−9234
8、特開昭57−154265 、特開昭60−134
226 、特開昭60−80828等の公報で提案され
るものがある。 一方、実開昭57−121953号公報では、光軸に対
して直交するように長方形の遮光板を配備して、その遮
光板を光軸の前後方向に回転できるようにしたものが提
案されている。この技術では、非遮光時に殆ど光量を損
失しないとき利点があるが、形状が長方形であるので、
配光補正を適正に行うことはできないという問題がある
。 〔発明の目的〕 本発明の目的は、上述した欠点を解消し、簡単な構成で
多くの投影倍率に対して充分な配光補正が可能となるよ
うにすることである。 〔発明の構成〕 このために本発明は、原稿を照明する光源と、該原稿か
らの像光の断面形状を規制するスリ7)をもつ光路規制
部材と、上記像光により与えられる像を担持する像担持
体と、上記原稿と上記像担持体との間の光路に配備され
た結像用のレンズとを有する像投影機構において、 上記光路規制部材によって断面が長細のスリット状に規
制された光路に対して、該光路の光軸に交差する方向で
且つ上記光路断面の長さ方向に沿9た軸を中心として回
転し且つ該回転により上記光路断面の幅方向についての
長さが隣接位置において不均等に変化する薄い板厚の遮
光部材を配備して構成した。 〔実施例〕 剋ニス施例1 以下、本発明を変倍可能な電子写真複写機に適用した実
施例によって説明する。第1図はその複写機の概要を示
す図である。矢印X方向に露光走査する棒状(紙面に垂
直方向に長い)の光源3から発射する光はプラテンガラ
ス4上に載せられた原稿5で反射され、そこで原稿像を
担持した反射光(像光)は、光路規制部材としてのスリ
・2ト板6を介してミラー7〜9で光路を変更し、結像
用のレンズ機構10を経由し、ミラー11で更に光路を
変更して、像担持体としての感光体ドラム12に導かれ
て、そこに静電潜像を形成する。 この感光体ドラム12は矢印y方向に上記光源3の走査
と同期して回転しており、上記静電潜像は現像部13で
トナー現像され、給紙部14から給紙される転写紙がレ
ジストレーションローラ15で像先端とタイミングを取
られて給送されると、そこに転写極16によりトナー像
が転写される。 そして、この転写紙は分離極17によって感光体ドラム
12から分離され、熱定着ローラ18に送られてトナー
像が定着され、排紙皿19に排紙される。20はクリー
ニング部、21は帯電極である。 この複写機では、複写倍率を変更すると、レンズ機構1
0及びミラー8.9が適正な位置に移動する0本実施例
では、光源3に後記するように特有の配光分布特性を持
たせ、且つレンズ機構10に配光補正機構22を具備さ
せており、上記倍率変更時に、この配光補正機構22が
動作してその配光補正が行われる。 この配光補正機FJI22は第2図に示すように、薄い
板厚(例えば、0.4鶴)の模形状の金属板で成る2枚
の遮光板23.24を有しており、それら遮光板23.
24の表面にはつや消しの黒色処理が施されている。こ
れらの遮光板23.24は、レンズ機構10のレンズホ
ルダ25から180度の角度間隔で伸びた腕26.27
に軸28.29によって回動可能に取り付けられ、その
先端は相互に離れて対峙している。そして、その回転中
心は、レンズ機構10のレンズ30の光軸31と直角で
しかも上記したスリット板6のスリットの長手方向(紙
面に垂直な方向)の中心軸と平行な軸32である。この
遮光板23.24はその両者が連動して回転するように
連結アーム33で連結され、また先端にカムホロワ34
が取り付けられたアーム35にも連結°されている。3
6は複写機本体に固定されたカムであり、そのカム面3
6aに上記カムホロワ34が常時当接するようになって
いる。よって、レンズ機構10が変倍のために光軸31
に沿って移動すると、カム作用によってアーム33.3
5が回転するので、遮光板23.24の傾き角度が変化
し、光軸31に直交する面に投影した形状が変化する。 そして、遮光板23.24をその面が光路1の光軸31
に対して直交するように回動した場合、第3図に示すよ
うになって、主として光路lの両側の光束が遮蔽される
。また、その面が光軸と平行となるように回動した場合
には、第4図に示すようになり、薄い遮光板23.24
は光束をほとんど遮断しない。 源の配光分布について まず、前述した’cos’θの法則」について説明する
。第5図はその説明のための図であり、原稿5から距離
aだけ離れた位置のレンズ30により、その原稿5の像
をレンズ30から距離すだけ離れた感光体12に結像さ
せるようにした場合、原稿5の点A(光軸31上の点)
の光を投影した感光体12の点A′の光量に比較して、
原稿5の光軸31から離れた点Bの同一光を投影した感
光体12の点B′の光量は、レンズ30の光軸31に対
して点Bからレンズ30に入射する角度をθとすると、
cos’θ (く1)倍となる。つまり、点Bが光軸3
1から離れるほど、感光体12に投影される点B′の光
量はcos’θに比例して減少する。 なお、距glta、bはレンズ4の焦点距離をf、倍率
をmとすると、 a = f  (1+ 1 /m)        −
(11b=f  (1+m)          ・・
・(2)で与えられる。 そこで、本実施例では、光源3(原稿5と光学的に等価
)の配光分布をrレンズ30を通過した後の感光体12
上での光量分布が、ある倍率の条件のとき、無遮光にて
一様(フラット)となるjように設定する。ここでは、
「ある倍率jに、複写機の変倍範囲の最大値を選ぶ。 上記したように原稿5とレンズ30との間の距flda
は式(1)で与えられるが、この式は倍率mが大きくな
ると小さくなり、最大倍率時にレンズ30が原稿5側に
最も近づくことを示す。よって、このときの角度θは最
も大きくなり、上記した’cos’の法則jによる周辺
光量の低下が、この最大倍率に最も顕著となる。 よって、この最大倍率のときに無遮光で感光体12の光
軸31から離れた周辺光量が必要充分な光量となるよう
に、光源3の配光分布を設定すれば、倍率を低下すれば
その周辺光量は増大する傾向のみを示すことになるので
、その増加分を遮光板23.24で遮光して光軸31部
分の光量と同程度に補正して感光体12の面の光量分布
特性をフラットにすれば良いのである。 上記のようにして設定した配光分布の一例を第6図に示
した。曲線Qが光源3(原稿5)の配光分布特性(光軸
31に対称となる。)、直線Rが感光体12の光量分布
特性である。光源3の光軸31中心からの発射光量を最
も小さく (但し、感光体12の光軸部分で必要充分な
光量が得られる値)し、そこから外側に至るほど発射光
量を大きくする配光分布特性とすることにより、感光体
12の面での光量が光軸31からの離れ距離(所定範囲
内)に関係なく一定となっている。 本発明者は、倍率m = 1.55において感光体12
でフラットとなるような第7図に示す特性の配光分布を
持つ光源3を使用し、倍率をm=0.5から0.1刻み
で1.5まで変化させて、遮光を一切行わない場合の感
光体12の面での光量分布特性をシミュレートした。こ
の結果を第8a図〜第8に図に示す。いずれの倍率にお
いても、周辺光量が中心光量に比べて高くなっている。 遮 板の形状について 上記した第8a図〜第8に図に示したように、中心光量
に対する周辺光量の増加割合は、最小倍率において最も
大きくなる。従って、レンズ3゜の感光体12側に設置
する遮光板23.24により遮光する光量は、この最小
倍率のときの最大量となるようにする必要がある。 本実施例では光軸31に直交する方向に遮光板23.2
4を配置して、光軸31の前後方向にその遮光板を回転
させて、光軸31に垂直な面に投影した形状により実効
的遮光を行うようにしたことは前述した。 従って、この遮光板23.24の面が光軸31に対して
なす角度も、最小倍率のときに最大となる。この角度を
αとすると、0〈α≦90″である。よってこの遮光板
23.24の形状は「その面をレンズ光軸に対してある
角度(≠O)をもって配置したときに、その光軸に垂直
な面に投影した形状が、光源の条件を定めた倍率より小
さいある倍率のときの感光面の配光分布をフラットにす
る形状」に設定する。ここでは、複写機の有する変倍範
囲のうち最小の倍率を選ぶ。 例えば、倍率m=0.5を最小倍率とするときは、その
最小倍率時に遮光板をその面が光軸31と直交する(9
0 ’)角度αに配置したとき、感光体12面上の配光
分布がフラットとなる形状とする。 この形状は計算機を使用すれば容易に求めることができ
る。即ち、光軸31に角度θをなして入射する光束に対
して、その光束密度が光軸を通る光束の光束密度と同程
度となるように、遮光tJi23.24における光束内
に占める面積を決定すればよい。第9図では、遮光板2
3.24は光軸31を通るA→A′の経路の光束につい
ては遮光せず(第1O図(a))、経路B、→B′の光
束について若干遮光(第10図色)の斜線部)し、経路
c−c’の光束について大幅に遮光(第10図(C)の
斜線部)している。つまり周辺部はど遮光量が多くなっ
ている。 角度θはレンズ30の位置、つまり倍率によって変化し
、このθの値によって光束の遮光板23.24上の通過
位置は変化するので、θ=0”(遮光板なし)から始め
てθの値を少しづつ増加し、感光体12の面上の光量が
θ=・0°のものと同じになるような遮光板の幅の数値
を求めればよい。 さて、ここで遮光板23.24の形状を求める倍率は最
小であり、また原稿5或いは感光体12の面の大きさに
は限りがある。従って、上記の方法で求めた遮光板の形
状は、この倍率でのみ有効なθの範囲の狭いものと考え
られるかもしれないが、形状を求めるに当たっては、原
稿或いは感光面の大きさは実際のものよりもはるかに大
きいと仮定して、最大倍率の最大画角に相当するθの値
まで計算する(第11図参照)。もちろん、光源の配光
分布もこの範囲まで連続しているものと仮定する。 第12図は上記によって決定した遮光板23.24の平
面形状を示す図である。この第12図に示す遮光板を使
用し、各倍率において所定の角度を与えて配光補正のシ
ュミレートを行ったので、第13a図〜第13に図にそ
の結果の感光体12面の光量分布特性を示す、最大倍率
はm=1.55である。 以上から、露光用光源3と遮光板23.24を配備した
複写機で、最大倍率においては遮光板23.24の面を
レンズ光軸31と平行にして遮光量をほぼ零にすれば、
感光体12面上の配光分布はほぼフラットとなり、また
最小倍率においては遮光板23.24の面と光軸31と
のなす角度を前記のα(本実施例では90°)に設定す
れば、この倍率における感光体12面上の光量分布もほ
ぼフラットとなる。 そして、最大から最小の間の各倍率おいては、カム36
のカム面36aの形状を適宜設定して、遮光板23.2
4と光軸31とのなす角度αを適当に選ぶことにより、
第13a図〜第13に図に示したように、全倍率に亘っ
てほぼ一様な光量分布を得ることができる。また、この
角度αは最小倍率のときに最大の遮光量となり、倍率が
大きくなるに従って遮光量が次第に減少してゆき、どの
倍率においても多少の変動はあるものの、光量分布はほ
ぼフラットとなる。 なお、この実施例1では理論的に厳密性を強調するため
に複写機の変倍範囲の最大値を、光源による感光体12
上での配光分布が無遮光で一様となる倍率に一致させ、
また変倍範囲の最小値を、遮光板23.24による遮光
量が最大で、感光体12上での配光分布が一様となる倍
率としている。 そして、この範囲内に複写機の変倍範囲をとる限り遮光
板23.24と光軸31のなす角度を適当に選ぶことに
よって変倍範囲のどの倍率においても感光体上で一様な
配光分布が得られる。しかし、実用上の観点からすれば
、若干の許容幅があり、例えば最大倍率は、光源による
感光体上での配光分布が無遮光で一様となる倍率よりや
や高い倍率とし、遮光板23.24による遮光量が最大
で、感光体12上での配光分布が一様となる倍率よりや
や低い倍率としても、同様な効果を得ることができる。 即ち、光源の配光分布はrレンズを通過した後の怒光体
面上での配光分布が、ある倍率のとき無遮光にて一様と
なる1条件に設定し、また遮光板の形状はrその面をレ
ンズ光軸に対してある角度(≠0)をもって配置したと
きに、その光軸に垂直な面に投影した形状が、上記ある
倍率より小さい倍率のときの感光面の光量分布を一様に
する形状」に設定し、おおむねこの範囲に含まれる倍率
範囲を複写機の変倍範囲とすれば良い。 そして、この結果においては光量分布の変動がやや太き
(なることがあるものの、実用上はほとんど影響がない
。 以上から、全体が極めて簡単な構成で済み、また倍率の
広い変化範囲に亘って充分な光量補正を行なうことが可
能となる。光路1が第3図に示すように多少上下に変動
しても、光路断面の長手方向の各位置における遮光量は
殆ど変化しないのであまり影響を受けない、また、その
光路lの断面の長手方向における殆どの領域に遮光板2
3.24をほぼ適正な形状で存在させることができるの
で局部的に光量の高い領域が生じることはなくなる。 特に縮小時に光路1の幅が狭くなった場合に有利である
。また、遮光部材は不必要に多く動くことはない。また
、・縮小時、特に縮小倍率が比較的小さい場合には、遮
光板の平面とレンズ光軸とのなす角度は、直角に近くな
り、よって遮光板の形状の精度が良ければ、この角度が
多少ばらついても光路中に占める遮光板の面積にはあま
り影響が出ずに済む、即ち、小さい縮小倍率のとき、高
い精度の配光補正を行なうことができる。等倍時や拡大
時は、遮光されている領域は極く僅かであるので、光源
の光が無駄に遮断されることはない。 以上により、配光補正を行なわない場合には、第14図
に示すように0.5倍の縮小時には光軸付近と周辺部と
で20%を越える光量の差が生まれていたものが、上記
補正により、第15図に示すように光量差が1%以内に
納まった。そして、全倍率(Xo、5〜1.55)を通
じての光量の変動も約lO%程度で、実用上問題となら
なかった。そして、第15図に破線で示したように、縮
小時に光源の光量を高めた場合には、全倍率を通じての
光量の変動も5%以下にまで押さえることができた。 方何1の・5例 なお、上記した実施例では、遮光板23.24がレンズ
30と共に移動する機構となっているが、第16図に示
すように、1枚で構成された遮光板37を複写機本体に
固定された支持部材38に取り付けて、その遮光板37
の軸39にプーリ40を取り付けると共にそのプーリ4
0をワイヤ41でレンズ機構10に連結させて、そのレ
ンズ機構10の移動に伴って遮光板37が回転して配光
補正が行われるようにすることもできる。 また、軸39をモータ等によって駆動可能に構成して、
変倍に応じてその軸39が回転して遮光板37の傾斜角
を調整することもできる。更に、ここで示した遮光板3
7は1枚であるが、このようにすれば、前記した連結ア
ーム33が不要となる。また、遮光板の回転軸は、必ず
しもレンズの光軸と直交する必要はない。 また、第17図に示すように、遮光板42の回転中心軸
43は、遮光板42の上にある必要もなく、またその遮
光板42の形状は必ずしも対称である必要もない、特に
、片側基準の複写機等では、長手方向に関して非対称に
することが良い。 また、遮光部材の位置も、必ずしもレンズと感光体との
間とする必要はなく、原稿とレンズとの間に配備しても
同じ効果は得られる。 (b)、実施例2 複写機に適用する場合の別の実施例として、次のものも
可能である。即ち、原稿を照明する露光光源の配光分布
をrレンズを通った後の感光体面上での配光分布が、あ
る倍率のときに、無遮光にて一様となるjものとし、遮
光板の形状をrその面をレンズ光軸に対してある角度(
≠0)をもって置いたときに、レンズ光軸に垂直な面に
投影した形状が、上記倍率よりも大きい倍率のときの感
光体面の配光分布を一様とする形状」に設定することも
可能である。 これは、上述の実施例1の場合と逆であり、ある倍率に
て無遮光で感光体面上での配光分布が一様な露光光源を
用いると、周辺の光量はこれより大きい倍率にしてゆく
につれて低くなって行く。 言い換えれば、光軸中心の光量が周辺の光量に比較して
高くなって行く。そこで、倍率が大きくなるに従い、相
対的に高くなった中心部の光量を減少させるようにする
。 この場合、遮光板の形状は上述の場合と異なって、中心
部の幅が広く、周辺に向かうに従って狭くなる形状とな
る。そして、上記倍率より大きいある倍率において、光
軸に対して最大の遮光量となる角度αをなし、倍率が小
さくなるに従い遮光量が減少してゆく。 第18図にこの実施例2の場合の露光光源3の配光分布
特性を示し、第19図及び第20図にこの実施例2の場
合の遮光板44を使用した配光補正機構を示した。第1
9図は最大遮光時の角度、第20図は無遮光時の角度状
態である。 無−犬践拠主 更なる第3の実施例として、次のものが考えられる。即
ち、露光光源の配光分布を「レンズを通った後の感光体
面上での配光分布が、ある倍率において、無遮光で一様
となる1分布に設定し、遮光部材を複数の面で構成して
、Tその一つの面をレンズ光軸に対してある角度(≠0
)をもって置いたときに、レンズ光軸に垂直な面に投影
した形状が、上記倍率より大きいある倍率のときの感光
体面上の光量分布を一様にする形状のものjと、「他の
面をレンズ光軸に対して別のある角度〈≠0)をもって
置いたときに、レンズ光軸に垂直な面に投影した形状が
上記倍率より小さいある倍率のときの感光体面上の光量
分布を一様にする形状のもの」の両者を備えるように設
定する。 つまり、前記した実施例1と実施例2の考え方を複合し
たのもであるが、変倍範囲の内、中間的な倍率に等倍を
含むものにおいては、新たな効果が生まれる。それには
、遮光板に次の条件を付は加える。 即ち、第21図(a)に示す実施例1の遮光板23.2
4を回転中心軸32から1方向にのみ存在する第21図
(hlに示す遮光板23′、24′の形状とし、また第
22図に示す実施例2の遮光板44も両様に回転中心軸
32から1方向にのみ存在する第22図山)に示す遮光
板44′の形状に変形する。 なお、実施例1、実施例2の説明の中における「ある角
度」は等しいものとし、この角度αをα≦90°とする
。 そして、上記第21図山)、第22図(b)に示した形
状の遮光板23′、24′、44′を、回転中心軸32
を一致させて、両者のなす角度がαとなるように、第2
3図の符号45で示すように一体的に構成する。 このように構成すれば、回転式の遮光部材としては1個
となり、実施例1における連結アーム33は不要となる
。そして、全変倍範囲を通じての全体光量の変動を、前
記の2つの実施例に比較して小さくすることができるの
である。なぜなら、無遮光の場合、全体光量は等倍にお
いて最大となる。 一方、この遮光板を用いるに当たっては、等倍において
は中心部も周辺部も遮光量は同程度でなければならない
が、このとき、この遮光板の投影面積は最大となり、全
体光量の低下も最大となるからである。 第24図(a)、(b)に拡大側の遮光量最大時の遮光
板45の態様を、第25図(al、(b)に等倍時の態
様を、第26図(a)、(b)に縮小側の遮光量最大時
の態様を示した。 〔発明の効果〕 以上から本発明によれば、全体が極めて簡単な構成で済
み、また倍率の広い変化範囲に亘って充分な配光補正を
行なうことが可能となり、更に光路の断面の長手方向の
殆どの領域に遮光部材をほぼ適正な形状で配置すること
が可能となり、局所的に光量の高い領域が生じることが
なくなる。更に、光源の光が無駄となることもなくなる
。 4、図面の簡単な説明 第1図は本発明を適用した複写機の概略構成図、第2図
は実施例1の配光補正機構の斜視図、第3図は実施例1
の最大遮光時(倍率最小時)の同補正機構の正面図、第
4図は無遮光時(倍率最大時)の同正面図、第5図は’
cos’θの法則jの説明図、第6図は実施例1の光源
の配光分布の説明図、第7図はその光源の具体的な配光
分布特性図、第8a図〜第8に図は第7図の光源を使用
した場合の各倍率時の感光面の光量分布特性図、第9図
は遮光板による遮光の説明図、第10図(a)〜(e)
は第9図における各光束経路の遮光の説明図、第11図
は実施例1の遮光板の形状を求める計算のための説明図
、第12図はその遮光板の具体的な形状を示す平面図、
第13a図〜第13に図は第7図に示した配光分布の光
源を使用し第12図に示した形状の遮光板により配光補
正した場合の各倍率の感光体面の光量分布特性図、第1
4図は配光補正しない場合の各倍率の感光面での光量分
布特性図、第15図は実施例1で配光補正した場合の同
光量分布特性図、第16図と第17図は実施例1の配光
補正機構の変形例を示す図、第18図は実施例2の光源
の配光分布特性図、第19図は実施例2の配光補正機構
の最大遮光時の正面図、第20図は同配光補正機構の無
遮光時の正面図、第21と第22図の(a)、(blは
実施例3の遮光板の作製の説明図、第23図は実施例3
の遮光板の斜視図、第24図(a)は実施例3の縮小側
遮光量最大時の遮光板の角度態様を示す正面図、(b)
は側面図、第25図(a)は実施例3の等倍時の遮光板
の角度態様を示す正面図、(b)は側面図、第26図+
a)は実施例3の拡大側遮光量最大時の遮光板の角度態
様を示す正面図、伽)は側面図、第27図は従来の遮光
説明図である。 1・・・従来の遮光板、2・・・光路、3・・・棒状の
露光走査用光源、4・・・プラテンガラス、5・・・原
稿、6・・・スリット板、7〜9・・・ミラー、10・
・・レンズ機構、11・・・ミラー、12・・・感光体
ドラム、13・・・現像部、14・・・給紙部、15・
・・レジストレーションローラ、16・・・転写極、1
7・・・分離極、18・・・熱定着ローラ、19・・・
排紙部、20・・・クリーニング部、21・・・帯電極
、22・・・配光補正機構、23.24、・・・実施例
1の遮光板、25・・・レンズホルダ、26.27・・
・腕、28.29・・・軸、30・・・レンズ、31・
・・レンズ光軸、32・・・回転軸 33・・・連結ア
ーム、34・・・カムホロワ、35・・・アーム、36
・・・カム、37・・・実施例1の変形例の遮光板、3
8・・・支持部材、39・・・軸、40・・・プーリ、
41・・・ワイヤ、42・・・実施例1の別の変形例の
遮光板、43・・・軸、44・・・実施例2の遮光板、
45・・・実施例3の遮光板。
FIG. 1 is a schematic configuration diagram of a copying machine to which the present invention is applied, FIG. 2 is a perspective view of a light distribution correction mechanism of Embodiment 1, and FIG. 3 is a diagram of Embodiment 1.
Figure 4 is a front view of the same correction mechanism when maximum light is blocked (at minimum magnification), Figure 5 is an explanatory diagram of the 'cos' θ law', Fig. 6 is an explanatory diagram of the light distribution of the light source of Example 1, Fig. 7 is a specific light distribution characteristic diagram of the light source, and Figs. 9th light intensity distribution characteristic diagram of the photosensitive surface at each magnification in the case of
The figure is an explanatory diagram of light shielding by a light shielding plate, and Figures 10(a) to (C
1 is an explanatory diagram of the shielding of each light flux path in FIG.
The figure is an explanatory diagram for calculating the shape of the light-shielding plate in Example 1, FIG. 12 is a plan view showing the specific shape of the light-shielding plate, and the figures in FIGS. A light intensity distribution characteristic diagram on the photoreceptor surface at each magnification when using a light source with the light distribution shown and correcting the light distribution with a light shielding plate having the shape shown in Figure 12, and Figure 14 shows each magnification when the light distribution is not corrected. FIG. 15 is a characteristic diagram of the light quantity distribution on the photosensitive surface, FIG. 15 is a characteristic diagram of the same light quantity distribution when the light distribution is corrected in the first embodiment, and FIGS. 16 and 17 are variations of the light distribution correction mechanism of the first embodiment. Figure 18 is a light distribution characteristic diagram of the light source of Example 2, Figure 19 is a front view of the light distribution correction mechanism of Example 2 at maximum light shielding (at maximum magnification), and Figure 20 is a diagram of the same arrangement. Front view of the light correction mechanism when no light is blocked (at minimum magnification), 2nd
1 and 22 (a) and (b) are explanatory views of the production of the light shielding plate of Example 3, FIG. 23 is a perspective view of the light shielding plate of Example 3, and FIG. FIG. 25 is a front view showing the angular aspect of the light shielding plate at the minimum magnification, (b) is a side view, and FIG.
bl is a side view, and FIG. [b) is a side view,
FIG. 27 is an explanatory diagram of conventional light shielding. DESCRIPTION OF SYMBOLS 1... Conventional light shielding plate, 2... Optical path, 3... Bar-shaped light source for exposure scanning, 4... Platen glass, 5... Original, 6... Slit plate, 7-9.・・Mirror, 10・
... Lens mechanism, 11... Mirror, 12... Photosensitive drum, 13... Developing section, 14... Paper feeding section, 15...
...Registration roller, 16...Transfer pole, 1
7... Separation electrode, 18... Heat fixing roller, 19...
Paper discharge section, 20...Cleaning section, 21...Charging electrode, 22...Light distribution correction mechanism, 23.24...Example 1
Light shielding plate, 25... Lens holder, 26.27...
Arm, 28.29...axis, 30...lens, 31...
・Lens optical axis, 32...Rotation axis, 33...Connection arm, 34...Cam follower, 35...Arm, 36.
...Cam, 37... Light shielding plate of a modification of Example 1, 38
...Support member, 39...Shaft, 40...Pulley, 4
DESCRIPTION OF SYMBOLS 1... Wire, 42... Light shielding plate of another modification of Example 1, 43... Shaft, 44... Light shielding plate of Example 2, 4
5... Light shielding plate of Example 3. Agent Patent Attorney Tsuneaki Nagao Fig. 1 Fig. 3 Saikai 2 Medi 4 Tokwa,) Yuriq Fig. 4 Kuro Seigo 1 Tsubohiro) Fig. 5 Fig. 7 9f-1 Fig. 8c Figure 8d Figure 89 Figure 8h Figure 10 (a) (b) (C) A-A'
B-B'C-C' Fig. 12 16m -11111 Fig. 139 Fig. 13h Fig. 14 IC() 2C[][~IhJ
i 誼←鴬) Fig. 15 1 mark Zη th4'-Li, IZ+@fL (wx) Fig. 16 Fig. 18 Fig. 23 Fig. 26 E, 11゜ "Procedural amendment 9.." Commissioner of the Patent Office Black □ Akio Tono Show 1″62 Shizuki 2
6E] 1. Indication of the case Patent Application No. 082430 filed in 1982 2. Name of the invention Light distribution correction mechanism 3. Person making the amendment Relationship to the case Patent applicant address 1-26-2 Nishi-Shinjuku, Shinjuku-ku, Tokyo Issue name
Name (127) Konishiroku Photo Industry Co., Ltd. 4, Agent address 3rd floor, Mizuho Daiichi Building, 4-12-1 Ginza, Chuo-ku, Tokyo 4B104 ffi 03-545-8
1506, number of inventions increased by amendment None 7,
Subject of amendment All aspects of the specification Particulars 1, Name of the invention Light distribution correction mechanism 2, Claim (l), A light source that illuminates a document and a slit that regulates the cross-sectional shape of image light from the document In an image projection mechanism, the image projection mechanism includes an optical path regulating member, an image carrier that carries an image provided by the image light, and an imaging lens disposed in an optical path between the document and the image carrier, With respect to an optical path whose cross section is regulated by the optical path regulating member in the shape of a long and narrow slit, the light beam rotates about an axis that intersects the optical axis of the optical path and along the length direction of the optical path cross section, and A light distribution correction mechanism comprising a thin light shielding member whose length in the width direction of the cross section of the optical path changes unevenly at adjacent positions due to rotation. (2) The light distribution on the image carrier after the light source passes through the lens has a light distribution characteristic that is uniform with no light blocking at a certain magnification, and the light blocking member covers the surface thereof. When a predetermined angle is made to the optical axis, the shape projected onto a plane perpendicular to the optical axis is a shape that makes the light distribution on the image carrier uniform at a certain magnification smaller than the above magnification. A light distribution correction mechanism according to claim 1, characterized in that: (3) The light distribution on the image carrier after the light source passes through the lens has a light distribution characteristic that is uniform with no light blocking at a certain magnification, and the light blocking member covers that surface. When a predetermined angle is made to the optical axis, the shape projected onto a plane perpendicular to the optical axis is a shape that makes the light distribution on the image carrier uniform at a certain magnification greater than the magnification. A light distribution correction mechanism according to claim 1, characterized in that: (4) The light distribution on the image carrier after the light source passes through the lens has a light distribution characteristic that is uniform with no light blocking at a certain magnification, and the light blocking member is arranged at a predetermined angle. When one of the planes is made at a certain angle to the optical axis, the shape projected onto a plane perpendicular to the optical axis is projected onto the image carrier at a certain magnification that is greater than the above magnification. When the light distribution is uniform and one other surface has a different angle with respect to the optical axis, the shape projected onto the surface perpendicular to the optical axis is smaller than the above magnification, and the above image is The light distribution correction mechanism according to claim 1, characterized in that the light distribution correction mechanism has a shape that makes the light distribution on the carrier uniform. 3. Detailed Description of the Invention [Field of Industrial Application] The present invention provides light distribution correction 1a applied to a projection mechanism of a copying machine.
Regarding the side. [Prior Art] In the projection mechanism of an electrophotographic copying machine, a lens is indispensable in order to form a projected image on a photoreceptor as an image carrier. However, this lens has 'cos'
There is a characteristic called the law of θ, in which the luminous flux density at an image point off the optical axis decreases in proportion to cos'θ of the luminous flux density at an image point on the optical axis. Therefore, in an electrophotographic copying machine capable of variable magnification, one side of a slit serving as an optical path regulating member is provided so as to be movable toward and away from the optical path to adjust the light distribution, as disclosed in Japanese Patent Application Laid-open No. 52-146630, for example. , or Japanese Patent Publication No. 57-7376
As in Publication No. 7, a light shielding member is provided separately from the slit, and the light distribution is adjusted by allowing the light shielding member to move forward and backward perpendicularly to the lens optical axis. However, in these mechanisms, since the shape of the light shielding member that moves forward and backward with respect to the optical path is constant, it is not possible to perform good light intensity correction for all of the many projection magnifications. If there is a region in which no light shielding plate exists in the cross-sectional longitudinal direction of the optical path (that is, if the amount of light shielding is discontinuous in the longitudinal direction), a portion with a locally high amount of light will be created. Furthermore, as shown in FIG. 27, if the relative positions of the light shielding member 1 and the optical path 2 are shifted in the vertical direction (in the direction of the arrow in the figure), the amount of light shielding changes significantly. Furthermore, when moving from a certain magnification to a lower magnification, the cross-sectional shape of the optical path becomes smaller in both width and length, so the light shielding member must be moved by the amount that has become smaller, and then further moved by the amount necessary for light distribution correction. However, the mechanism becomes complicated. Furthermore, if the reduction magnification is a relatively small value during reduction,
Since the cross-sectional shape of the optical path has become smaller in both width and length, in order to correct the light distribution accurately, the amount of movement of the light shielding member must be more accurate than when it is at the same magnification or magnification. be done. Furthermore, if the light shielding member enters in a straight line, a guide rail or link mechanism with many nodes is required.
The configuration becomes complicated. Furthermore, the conventional light distribution correction mechanism is always in a partially shaded state, which means that the light source emits unnecessary light, which is uneconomical. In addition to the above-mentioned publications, mechanisms with the above-mentioned problems include JP-A-54-136845 and JP-A-57-9234.
8, JP-A-57-154265, JP-A-60-134
There are some proposals in publications such as No. 226 and Japanese Unexamined Patent Publication No. 60-80828. On the other hand, Japanese Utility Model Application Publication No. 57-121953 proposes a device in which a rectangular light-shielding plate is arranged perpendicular to the optical axis, and the light-shielding plate can be rotated in the front-rear direction of the optical axis. There is. This technology has the advantage of not losing much light when not shaded, but since the shape is rectangular,
There is a problem that light distribution correction cannot be performed appropriately. [Object of the Invention] An object of the present invention is to eliminate the above-mentioned drawbacks and to enable sufficient light distribution correction for many projection magnifications with a simple configuration. [Structure of the Invention] To this end, the present invention provides a light source for illuminating the original, an optical path regulating member having a slot 7) for regulating the cross-sectional shape of the image light from the original, and a light path regulating member that carries an image given by the image light. In the image projection mechanism, the image projection mechanism includes an image carrier, and an imaging lens disposed in an optical path between the document and the image carrier, the cross section of which is regulated into a long and thin slit shape by the optical path regulating member. rotates about an axis that is perpendicular to the optical axis of the optical path and along the length direction of the cross-section of the optical path, and due to the rotation, the lengths of the cross-sections of the optical path in the width direction are adjacent to each other. It is constructed by disposing a light shielding member with a thin plate thickness that varies unevenly depending on the position. [Example] Varnish Example 1 The present invention will be described below using an example in which the present invention is applied to an electrophotographic copying machine capable of variable magnification. FIG. 1 is a diagram showing an outline of the copying machine. Light emitted from a bar-shaped (long in the direction perpendicular to the paper surface) light source 3 that exposes and scans in the direction of the arrow X is reflected by the document 5 placed on the platen glass 4, where the reflected light carrying the document image (image light) is emitted. The optical path is changed by the mirrors 7 to 9 via the slit plate 6 as an optical path regulating member, the optical path is further changed by the mirror 11 via the lens mechanism 10 for image formation, and the optical path is changed to the image carrier. The photoreceptor drum 12 forms an electrostatic latent image thereon. The photosensitive drum 12 rotates in the direction of the arrow y in synchronization with the scanning of the light source 3, and the electrostatic latent image is developed with toner in the developing section 13, and the transfer paper fed from the paper feeding section 14 is When the toner image is fed by the registration roller 15 in a timing with the leading edge of the image, the toner image is transferred thereto by the transfer pole 16. The transfer paper is separated from the photoreceptor drum 12 by a separation pole 17, sent to a heat fixing roller 18, where the toner image is fixed, and discharged onto a paper discharge tray 19. 20 is a cleaning section, and 21 is a charging electrode. In this copying machine, when the copying magnification is changed, the lens mechanism 1
In this embodiment, the light source 3 has a unique light distribution characteristic as described later, and the lens mechanism 10 is equipped with a light distribution correction mechanism 22. When the magnification is changed, the light distribution correction mechanism 22 operates to correct the light distribution. As shown in FIG. 2, this light distribution corrector FJI22 has two light shielding plates 23 and 24 made of model-shaped metal plates with a thin plate thickness (for example, 0.4 cranes). Board 23.
The surface of 24 is treated with a matte black finish. These light shielding plates 23 and 24 are connected to arms 26 and 27 that extend from the lens holder 25 of the lens mechanism 10 at angular intervals of 180 degrees.
are rotatably mounted by shafts 28, 29, the tips of which are spaced apart and facing each other. The center of rotation is an axis 32 that is perpendicular to the optical axis 31 of the lens 30 of the lens mechanism 10 and parallel to the central axis of the slit in the slit plate 6 in the longitudinal direction (direction perpendicular to the paper surface). The light shielding plates 23 and 24 are connected by a connecting arm 33 so that both of them rotate in conjunction with each other, and a cam follower 33 is attached to the tip.
It is also connected to an arm 35 to which a is attached. 3
6 is a cam fixed to the main body of the copying machine, and its cam surface 3
The cam follower 34 is always in contact with the cam follower 6a. Therefore, the lens mechanism 10 is aligned with the optical axis 31 for zooming.
33.3, the cam action causes the arm 33.3 to move along the
5 rotates, the inclination angle of the light shielding plates 23 and 24 changes, and the shape projected onto a plane perpendicular to the optical axis 31 changes. Then, the light shielding plates 23 and 24 are placed so that their surfaces are aligned with the optical axis 31 of the optical path 1.
When the light beam is rotated perpendicularly to the light beam, as shown in FIG. 3, the light beams on both sides of the optical path 1 are mainly blocked. Moreover, when the surface is rotated so that it becomes parallel to the optical axis, it becomes as shown in FIG.
hardly blocks the luminous flux. Regarding the light distribution of the source, the above-mentioned 'cos' θ law' will be explained first. FIG. 5 is a diagram for explaining this, in which an image of the original 5 is formed by a lens 30 located at a distance a from the original 5 on a photoreceptor 12 located at a distance from the lens 30. In this case, point A on the original 5 (point on the optical axis 31)
Compared to the amount of light at point A' on the photoreceptor 12 on which the light is projected,
The amount of light at point B' on the photoreceptor 12 on which the same light at point B, which is distant from the optical axis 31 of the original 5, is projected is as follows: If the angle of incidence from point B to the lens 30 with respect to the optical axis 31 of the lens 30 is θ, then ,
It becomes cos'θ (×1) times. In other words, point B is optical axis 3
1, the amount of light projected onto the photoreceptor 12 at point B' decreases in proportion to cos'θ. Note that the distance glta, b is a = f (1+ 1 /m) − where f is the focal length of the lens 4 and m is the magnification.
(11b=f (1+m)...
・Given by (2). Therefore, in this embodiment, the light distribution of the light source 3 (optically equivalent to the original 5) is adjusted to the photoreceptor 12 after passing through the r lens 30.
The light amount distribution above is set to be uniform (flat) with no light shielding under a certain magnification condition. here,
``For a certain magnification j, select the maximum value of the variable magnification range of the copying machine.As mentioned above, the distance flda between the original 5 and the lens 30
is given by equation (1), which becomes smaller as the magnification m increases, indicating that the lens 30 is closest to the document 5 side at the maximum magnification. Therefore, the angle θ at this time becomes the largest, and the decrease in the amount of peripheral light due to the above-mentioned 'cos' law j becomes most noticeable at this maximum magnification. Therefore, if the light distribution of the light source 3 is set so that at this maximum magnification, the amount of light in the periphery away from the optical axis 31 of the photoreceptor 12 without light shielding is a necessary and sufficient amount of light, then if the magnification is lowered, the amount of light will be the same. Since the amount of light at the periphery only shows a tendency to increase, the increased amount is blocked by the light shielding plates 23 and 24 and corrected to the same level as the amount of light at the optical axis 31 portion, thereby adjusting the light amount distribution characteristics on the surface of the photoreceptor 12. It is better to make it flat. An example of the light distribution set as described above is shown in FIG. The curve Q is the light distribution characteristic of the light source 3 (original 5) (symmetrical to the optical axis 31), and the straight line R is the light amount distribution characteristic of the photoreceptor 12. A light distribution that minimizes the amount of light emitted from the center of the optical axis 31 of the light source 3 (provided that a sufficient amount of light can be obtained at the optical axis portion of the photoreceptor 12), and increases the amount of light emitted from there toward the outside. Due to this characteristic, the amount of light on the surface of the photoreceptor 12 is constant regardless of the distance from the optical axis 31 (within a predetermined range). The inventor has determined that the photoreceptor 12 at a magnification m = 1.55
A light source 3 having the characteristics of the light distribution shown in Figure 7, which is flat at The light amount distribution characteristics on the surface of the photoreceptor 12 were simulated. The results are shown in Figures 8a-8. At any magnification, the amount of peripheral light is higher than the amount of light at the center. As shown in FIGS. 8a to 8 described above regarding the shape of the shielding plate, the rate of increase in the amount of peripheral light relative to the amount of light at the center is greatest at the minimum magnification. Therefore, the amount of light shielded by the light shielding plates 23 and 24 installed on the photoreceptor 12 side of the lens 3° needs to be the maximum amount at this minimum magnification. In this embodiment, the light shielding plate 23.2 is placed in the direction perpendicular to the optical axis 31.
4, and the light shielding plate is rotated in the front and back direction of the optical axis 31, so that effective light shielding is achieved by the shape projected onto a plane perpendicular to the optical axis 31, as described above. Therefore, the angle that the surfaces of the light shielding plates 23 and 24 make with respect to the optical axis 31 also becomes maximum at the minimum magnification. If this angle is α, then 0〈α≦90''.Therefore, the shape of the light shielding plates 23 and 24 is ``When the surface is placed at a certain angle (≠O) to the optical axis of the lens, the light A shape that flattens the light distribution on the photosensitive surface when the shape projected onto a plane perpendicular to the axis is at a certain magnification smaller than the magnification determined by the light source conditions. Here, the minimum magnification is selected from the variable magnification range of the copying machine. For example, when setting the magnification m=0.5 as the minimum magnification, the light shielding plate is placed so that its surface is orthogonal to the optical axis 31 (9
0') When arranged at an angle α, the light distribution on the surface of the photoreceptor 12 is flat. This shape can be easily determined using a computer. That is, for a light flux incident on the optical axis 31 at an angle θ, the area occupied in the light flux at the shading tJi 23.24 is determined so that the light flux density is approximately the same as the light flux density of the light flux passing through the optical axis. do it. In FIG. 9, the light shielding plate 2
3.24 is a diagonal line that does not block the light beam on the path A→A' passing through the optical axis 31 (Fig. 1O (a)), but slightly blocks the light beam on the path B, →B' (color in Fig. 10). part), and the light beam along the path c-c' is largely blocked (the shaded part in FIG. 10(C)). In other words, the amount of light shielding in the peripheral area is large. The angle θ changes depending on the position of the lens 30, that is, the magnification, and the passing position of the light beam on the light shielding plates 23 and 24 changes depending on the value of θ, so starting from θ = 0'' (no light shielding plate), the value of θ is determined. All you have to do is find the width of the light shielding plate that increases little by little so that the amount of light on the surface of the photoreceptor 12 is the same as that of θ = 0°. The required magnification is the minimum, and the size of the surface of the original 5 or photoreceptor 12 is limited.Therefore, the shape of the light-shielding plate determined by the above method has a narrow range of θ that is effective only at this magnification. Although it may be thought that the size of the original or photosensitive surface is much larger than the actual size, when calculating the shape, calculate the value of θ corresponding to the maximum angle of view at the maximum magnification. (See Fig. 11).Of course, it is assumed that the light distribution of the light source is also continuous within this range. Fig. 12 is a diagram showing the planar shape of the light shielding plates 23 and 24 determined as described above. Using the light shielding plate shown in Fig. 12, we simulated the light distribution correction by giving a predetermined angle at each magnification. Figs. The maximum magnification showing the characteristics is m = 1.55. From the above, in a copying machine equipped with the exposure light source 3 and the light shielding plate 23.24, at the maximum magnification, the surface of the light shielding plate 23.24 is aligned with the lens optical axis. If you make it parallel to 31 and make the amount of light shielding almost zero,
The light distribution on the surface of the photoreceptor 12 becomes almost flat, and at the minimum magnification, if the angle between the surface of the light shielding plate 23, 24 and the optical axis 31 is set to the above α (90° in this embodiment). , the light amount distribution on the surface of the photoreceptor 12 at this magnification is also approximately flat. At each magnification between the maximum and minimum, the cam 36
By appropriately setting the shape of the cam surface 36a of the light shielding plate 23.2,
By appropriately selecting the angle α between 4 and the optical axis 31,
As shown in FIGS. 13a to 13, a substantially uniform light amount distribution can be obtained over the entire magnification. Further, this angle α has the maximum amount of light shielding at the minimum magnification, and as the magnification increases, the amount of light shielding gradually decreases, and although there is some variation at any magnification, the light amount distribution is almost flat. In this first embodiment, in order to emphasize theoretical rigor, the maximum value of the variable magnification range of the copying machine is
Match the magnification so that the light distribution at the top is uniform without shading,
Further, the minimum value of the variable magnification range is set to a magnification at which the amount of light shielded by the light shielding plates 23 and 24 is maximum and the light distribution on the photoreceptor 12 is uniform. As long as the magnification range of the copying machine is within this range, by appropriately selecting the angle between the light shielding plates 23 and 24 and the optical axis 31, uniform light distribution can be achieved on the photoreceptor at any magnification within the range. distribution is obtained. However, from a practical point of view, there is a certain tolerance.For example, the maximum magnification is set to be slightly higher than the magnification at which the light distribution on the photoreceptor by the light source is uniform without light shielding, and the light shielding plate 2 The same effect can be obtained even if the magnification is slightly lower than the magnification at which the amount of light shielding is maximum by .24 and the light distribution on the photoreceptor 12 is uniform. That is, the light distribution of the light source is set to one condition such that the light distribution on the surface of the photoreceptor after passing through the r lens is uniform with no light blocking at a certain magnification, and the shape of the light blocking plate is rWhen the surface is placed at a certain angle (≠0) to the lens optical axis, the light intensity distribution on the photosensitive surface when the shape projected onto the plane perpendicular to the optical axis has a magnification smaller than the above certain magnification. It is sufficient that the magnification range approximately included in this range is set as the magnification range of the copying machine. In this result, the variation in the light intensity distribution is a little thick (although it may become so, it has almost no effect in practice.) From the above, the overall configuration is extremely simple, and it can be used over a wide range of magnification changes. It is possible to perform sufficient light amount correction.Even if the optical path 1 changes up and down a little as shown in Figure 3, the amount of light shielded at each position in the longitudinal direction of the optical path cross section hardly changes, so it is not affected much. There is no light shielding plate 2 in most of the longitudinal direction of the cross section of the optical path l.
3.24 can be made to exist in a substantially appropriate shape, so there will be no localized region with a high amount of light. This is especially advantageous when the width of the optical path 1 becomes narrow during reduction. Further, the light shielding member does not move unnecessarily. Also, during reduction, especially when the reduction magnification is relatively small, the angle between the plane of the light shielding plate and the optical axis of the lens becomes close to a right angle. Therefore, if the precision of the shape of the light shielding plate is good, this angle Even if there is some variation, the area occupied by the light shielding plate in the optical path is not affected much, that is, when the reduction magnification is small, highly accurate light distribution correction can be performed. When the image is at the same magnification or enlarged, the area that is blocked is extremely small, so the light from the light source is not unnecessarily blocked. As a result, when light distribution correction is not performed, as shown in Figure 14, when the reduction is 0.5 times, there is a difference in light amount of more than 20% between the optical axis vicinity and the peripheral area, but the above As a result of the correction, the difference in light amount was within 1% as shown in FIG. Further, the variation in the amount of light throughout the entire magnification (Xo, 5 to 1.55) was about 10%, which did not pose a practical problem. As shown by the broken line in FIG. 15, when the light intensity of the light source was increased during reduction, the variation in light intensity throughout all magnifications could be suppressed to 5% or less. Examples 1 and 5 In the above-described embodiments, the light shielding plates 23 and 24 move together with the lens 30, but as shown in FIG. is attached to the support member 38 fixed to the copying machine main body, and the light shielding plate 37
A pulley 40 is attached to the shaft 39 of the
0 can be connected to the lens mechanism 10 by a wire 41, and the light shielding plate 37 can be rotated as the lens mechanism 10 moves, thereby correcting the light distribution. Further, the shaft 39 is configured to be able to be driven by a motor or the like,
The inclination angle of the light shielding plate 37 can also be adjusted by rotating the shaft 39 in accordance with the magnification change. Furthermore, the light shielding plate 3 shown here
7 is one piece, but if this is done, the above-mentioned connecting arm 33 becomes unnecessary. Further, the rotation axis of the light shielding plate does not necessarily need to be orthogonal to the optical axis of the lens. Furthermore, as shown in FIG. 17, the rotation center axis 43 of the light shielding plate 42 does not need to be above the light shielding plate 42, and the shape of the light shielding plate 42 does not necessarily have to be symmetrical, especially on one side. In a standard copying machine or the like, it is preferable to make it asymmetrical in the longitudinal direction. Further, the position of the light shielding member does not necessarily need to be between the lens and the photoreceptor, and the same effect can be obtained even if it is placed between the document and the lens. (b), Embodiment 2 As another embodiment when applied to a copying machine, the following is also possible. That is, it is assumed that the light distribution of the exposure light source that illuminates the original is such that the light distribution on the surface of the photoreceptor after passing through the r lens is uniform with no light shielding at a certain magnification, and the light shielding plate The shape of r is set at a certain angle (
≠0), the shape projected onto a plane perpendicular to the lens optical axis can be set to a shape that makes the light distribution on the photoreceptor surface uniform when the magnification is larger than the above magnification. It is. This is the opposite of the case of Example 1 above, and if an exposure light source with no shading and uniform light distribution on the photoreceptor surface is used at a certain magnification, the amount of light in the periphery will be reduced at a higher magnification. It gets lower as it goes. In other words, the amount of light at the center of the optical axis becomes higher than the amount of light at the periphery. Therefore, as the magnification increases, the amount of light at the center, which has become relatively high, is reduced. In this case, the shape of the light shielding plate differs from the above case in that it is wide at the center and narrows toward the periphery. Then, at a certain magnification greater than the above magnification, an angle α is formed with respect to the optical axis that provides the maximum amount of light shielding, and as the magnification decreases, the amount of light shielding decreases. FIG. 18 shows the light distribution characteristics of the exposure light source 3 in this embodiment 2, and FIGS. 19 and 20 show the light distribution correction mechanism using the light shielding plate 44 in this embodiment 2. . 1st
FIG. 9 shows the angle at maximum light shielding, and FIG. 20 shows the angle state at no light shielding. As a further third embodiment of the non-dog owner, the following can be considered. In other words, the light distribution of the exposure light source is set to ``one distribution in which the light distribution on the photoreceptor surface after passing through the lens is uniform with no light blocking at a certain magnification, and the light blocking member is set on multiple surfaces. , one surface of T is at a certain angle (≠0
), the shape projected onto a plane perpendicular to the optical axis of the lens is a shape that uniformizes the light intensity distribution on the photoreceptor surface at a certain magnification greater than the above magnification, and is placed at a different angle (≠0) to the lens optical axis, and the light intensity distribution on the photoreceptor surface is uniform when the shape projected onto a plane perpendicular to the lens optical axis has a certain magnification smaller than the above magnification. It will be set up so that it has both of the following: In other words, this is a combination of the concepts of the first and second embodiments described above, but a new effect is produced when the intermediate magnification includes equal magnification within the variable magnification range. To do this, add the following conditions to the light shielding plate. That is, the light shielding plate 23.2 of Example 1 shown in FIG. 21(a)
The shapes of the light shielding plates 23' and 24' shown in FIG. 21 (hl) exist only in one direction from the rotational center axis 32, and the light shielding plates 44 of the second embodiment shown in FIG. The light shielding plate 44' is deformed into the shape of the light shielding plate 44' shown in FIG. Note that "a certain angle" in the description of the first embodiment and the second embodiment is assumed to be the same, and this angle α is assumed to be α≦90°. Then, the light-shielding plates 23', 24', and 44' having the shapes shown in FIG.
match, and the second
It is integrally constructed as shown by the reference numeral 45 in FIG. With this configuration, there is only one rotary light shielding member, and the connecting arm 33 in the first embodiment becomes unnecessary. Furthermore, the variation in the overall light amount over the entire zoom range can be made smaller than in the two embodiments described above. This is because, in the case of no light shielding, the total light amount is maximum at the same magnification. On the other hand, when using this light shielding plate, the amount of light shielding must be the same in the center and the periphery at the same magnification, but in this case, the projected area of this light shielding plate is the maximum, and the decrease in the overall light amount is also the largest. This is because. 24(a) and 24(b) show the appearance of the light shielding plate 45 when the amount of light blocking on the enlarged side is at its maximum, FIGS. (b) shows the state when the amount of light shielding on the reduction side is at its maximum. [Effects of the Invention] As described above, according to the present invention, the entire structure is extremely simple, and the magnification can be sufficiently changed over a wide range of changes. It becomes possible to perform light distribution correction, and furthermore, it becomes possible to arrange the light-shielding member in a substantially appropriate shape in most regions in the longitudinal direction of the cross section of the optical path, so that regions with a locally high amount of light do not occur. Furthermore, the light from the light source is not wasted. 4. Brief description of the drawings Fig. 1 is a schematic configuration diagram of a copying machine to which the present invention is applied, and Fig. 2 is a perspective view of the light distribution correction mechanism of Embodiment 1. Figure 3 is Example 1
Figure 4 is a front view of the correction mechanism when maximum light is blocked (at minimum magnification), Figure 4 is a front view of the same correction mechanism when no light is shielded (at maximum magnification), and Figure 5 is '
An explanatory diagram of the law j of cos'θ, FIG. 6 is an explanatory diagram of the light distribution of the light source of Example 1, FIG. 7 is a specific diagram of the light distribution characteristic of the light source, and FIGS. The figure is a characteristic diagram of the light intensity distribution on the photosensitive surface at each magnification when the light source shown in Figure 7 is used, Figure 9 is an explanatory diagram of light shielding by a light shielding plate, and Figures 10 (a) to (e).
is an explanatory diagram of the shading of each light beam path in FIG. 9, FIG. 11 is an explanatory diagram for calculating the shape of the shading plate in Example 1, and FIG. 12 is a plane showing the specific shape of the shading plate. figure,
Figures 13a to 13 are light intensity distribution characteristic diagrams on the photoreceptor surface at each magnification when a light source with the light distribution shown in Figure 7 is used and the light distribution is corrected by a light shielding plate having the shape shown in Figure 12. , 1st
Figure 4 is a characteristic diagram of the light quantity distribution on the photosensitive surface at each magnification without light distribution correction, Figure 15 is the same light quantity distribution characteristic diagram when light distribution is corrected in Example 1, and Figures 16 and 17 are the characteristic diagrams after implementation. A diagram showing a modification of the light distribution correction mechanism of Example 1, FIG. 18 is a light distribution characteristic diagram of the light source of Example 2, and FIG. 19 is a front view of the light distribution correction mechanism of Example 2 at maximum light shielding. FIG. 20 is a front view of the same light distribution correction mechanism when no light is blocked, FIGS. 21 and 22 (a) and (bl are explanatory diagrams of the fabrication of the light shielding plate of Example 3, and FIG. 23 is Example 3)
FIG. 24(a) is a perspective view of the light shielding plate of Example 3, FIG.
is a side view, FIG. 25(a) is a front view showing the angular aspect of the light shielding plate at the same magnification in Example 3, FIG. 26(b) is a side view, and FIG. 26+
a) is a front view showing the angular aspect of the light shielding plate when the amount of light shielding on the enlarged side is maximum in Example 3, FIG. 27 is a side view, and FIG. 27 is an explanatory diagram of conventional light shielding. DESCRIPTION OF SYMBOLS 1... Conventional light shielding plate, 2... Optical path, 3... Bar-shaped light source for exposure scanning, 4... Platen glass, 5... Original, 6... Slit plate, 7-9.・・Mirror, 10・
... Lens mechanism, 11... Mirror, 12... Photosensitive drum, 13... Developing section, 14... Paper feeding section, 15...
...Registration roller, 16...Transfer pole, 1
7... Separation electrode, 18... Heat fixing roller, 19...
Paper discharge section, 20...Cleaning section, 21...Charging electrode, 22...Light distribution correction mechanism, 23.24...Light blocking plate of Example 1, 25...Lens holder, 26. 27...
・Arm, 28.29...axis, 30...lens, 31・
... Lens optical axis, 32 ... Rotation axis 33 ... Connection arm, 34 ... Cam follower, 35 ... Arm, 36
... Cam, 37 ... Light shielding plate of a modification of Example 1, 3
8... Support member, 39... Shaft, 40... Pulley,
41... Wire, 42... Light shielding plate of another modification of Example 1, 43... Shaft, 44... Light shielding plate of Example 2,
45... Light shielding plate of Example 3.

Claims (4)

【特許請求の範囲】[Claims] (1)、原稿を照明する光源と、該原稿からの像光の断
面形状を規制するスリットをもつ光路規制部材と、上記
像光により与えられる像を担持する像担持体と、上記原
稿と上記像担持体との間の光路に配備された結像用のレ
ンズとを有する像投影機構において、 上記光路規制部材によって断面が長細のスリット状に規
制された光路に対して、該光路の光軸に交差する方向で
且つ上記光路の長さ方向に沿った軸を中心として回転し
且つ該回転により上記光路の幅方向の長さが隣接位置に
おいて不均等に変化する薄い板厚の遮光部材を配備して
構成したことを特徴とする配光補正機構。
(1) a light source that illuminates the original, an optical path regulating member having a slit that regulates the cross-sectional shape of the image light from the original, an image carrier that carries an image given by the image light, the original and the above; In an image projection mechanism having an imaging lens disposed in an optical path between the image carrier and the image carrier, the light of the optical path is regulated by the optical path regulating member to have a long and thin slit-like cross section. A thin light shielding member that rotates about an axis in a direction intersecting the axis and along the length direction of the optical path, and whose length in the width direction of the optical path changes unevenly at adjacent positions due to the rotation. A light distribution correction mechanism characterized in that it is configured by being deployed.
(2)、上記遮光部材が上記レンズと上記像担持体との
間の光路に配備され、且つ上記光源が上記レンズを通っ
た後の上記像担持体上での配光分布が最大又はその近傍
の倍率において無遮光で一様となる配光分布特性を持ち
、且つ上記遮光板がその面を上記光軸に対して所定の角
度もたせたとき該光軸に直交する面に投影した形状が最
小又はその近傍の倍率において上記像担持体上の配光分
布を一様とする形状であることを特徴とする特許請求の
範囲第1項記載の配光補正機構。
(2) the light shielding member is disposed in the optical path between the lens and the image carrier, and the light distribution on the image carrier after the light source passes through the lens is at or near a maximum; When the light shielding plate has a uniform light distribution characteristic with no light blocking at a magnification of 2. The light distribution correcting mechanism according to claim 1, wherein the light distribution correction mechanism has a shape that makes the light distribution on the image carrier uniform at a magnification of or near the magnification.
(3)、上記遮光部材が上記レンズと上記像担持体との
間の光路に配備され、且つ上記光源が上記レンズを通っ
た後の上記像担持体上での配光分布が最小又はその近傍
の倍率において無遮光で一様となる配光分布特性を持ち
、且つ上記遮光板がその面を上記光軸に対して所定の角
度もたせたとき該光軸に直交する面に投影した形状が最
大またはその近傍の倍率において上記像担持体上の配光
分布を一様とする形状であることを特徴とする特許請求
の範囲第1項記載の配光補正機構。
(3) the light shielding member is disposed on the optical path between the lens and the image carrier, and the light distribution on the image carrier after the light source passes through the lens is at or near a minimum; When the light shielding plate has a uniform light distribution characteristic with no light blocking at a magnification of 2. The light distribution correcting mechanism according to claim 1, wherein the light distribution correction mechanism has a shape that makes the light distribution on the image carrier uniform at a magnification of or near the magnification.
(4)、上記遮光部材が上記レンズと上記像担持体との
間の光路に配備され、且つ上記光源が上記レンズを通っ
た後の上記像担持体上での配光分布が全倍率範囲の内の
中間的な倍率において無遮光で一様となる配光分布特性
を持ち、且つ上記遮光板がその面を上記光軸に対してあ
る角度を持たせたとき該光軸に直交する面に投影した形
状が最大又はその近傍の倍率において上記像担持体上の
配光分布を一様とし、その面を上記光軸に対して別の角
度を持たせたとき該光軸に直交する面に投影した形状が
最小又はその近傍の倍率において上記像担持体上の配光
分布を一様とする形状であることを特徴とする特許請求
の範囲第1項記載の配光補正機構。
(4) The light shielding member is disposed in the optical path between the lens and the image carrier, and the light distribution on the image carrier after the light source passes through the lens is within the entire magnification range. It has a light distribution characteristic that is uniform with no light blocking at an intermediate magnification within When the projected shape has a uniform light distribution on the image carrier at a maximum magnification or a magnification close to the maximum magnification, and when the surface has a different angle to the optical axis, it becomes a surface perpendicular to the optical axis. 2. The light distribution correction mechanism according to claim 1, wherein the projected shape is a shape that makes the light distribution on the image carrier uniform at a minimum magnification or a magnification close to the minimum magnification.
JP8243087A 1986-05-14 1987-04-03 Variable magnification image forming device Expired - Lifetime JPH07122730B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10854386 1986-05-14
JP61-108543 1986-05-14

Publications (2)

Publication Number Publication Date
JPS63106639A true JPS63106639A (en) 1988-05-11
JPH07122730B2 JPH07122730B2 (en) 1995-12-25

Family

ID=14487488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8243087A Expired - Lifetime JPH07122730B2 (en) 1986-05-14 1987-04-03 Variable magnification image forming device

Country Status (1)

Country Link
JP (1) JPH07122730B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5355198A (en) * 1992-08-31 1994-10-11 Konica Corporation Exposure device having light shading members for correcting light distribution of a projection mechanism in a copier
JPH08166639A (en) * 1995-04-03 1996-06-25 Asahi Optical Co Ltd Variable magnification optical device for copying machine
JP2008076924A (en) * 2006-09-25 2008-04-03 Hitachi High-Technologies Corp Exposure device, exposure method and method of manufacturing panel substrate for display

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5355198A (en) * 1992-08-31 1994-10-11 Konica Corporation Exposure device having light shading members for correcting light distribution of a projection mechanism in a copier
JPH08166639A (en) * 1995-04-03 1996-06-25 Asahi Optical Co Ltd Variable magnification optical device for copying machine
JP2008076924A (en) * 2006-09-25 2008-04-03 Hitachi High-Technologies Corp Exposure device, exposure method and method of manufacturing panel substrate for display

Also Published As

Publication number Publication date
JPH07122730B2 (en) 1995-12-25

Similar Documents

Publication Publication Date Title
JP4126877B2 (en) Illumination optical system and image projection apparatus
JPS63106639A (en) Light distribution correcting mechanism
JPS60244942A (en) Automatic exposure adjusting device
KR101662882B1 (en) Exposure apparatus, and method of manufacturing article
JP2816690B2 (en) Light amount correction device for copier
JPH0682931A (en) Exposing device
JPS63163837A (en) Illuminance speckle correcting device for slit exposure type optical system
JP2687523B2 (en) Illuminance unevenness correction device for exposure equipment
JPS608832A (en) Optical scanning exposure device
JPS60134226A (en) Control device for exposure of slit exposing type variable power copying machine
JPS63163836A (en) Illuminance speckle corrector for slit exposure type optical system
JPS6029101B2 (en) Exposure method in electronic copying machine
JPS6046538A (en) Adjusting device for quantity of light of variable magnification optical system of copying machine
JPS6052838A (en) Exposing device of copying machine
JP2618673B2 (en) Image forming device
JPH0652374B2 (en) Light quantity adjusting device for variable magnification optical system of copier
JPS595858Y2 (en) Slit exposure type copying machine
JPS60134227A (en) Control device for exposure of slit exposing type variable power copying machine
TW202032287A (en) Exposure device
JP2651539B2 (en) Original illumination device for copier
JPS595861Y2 (en) Slit mechanism in moving lens electrostatic copying machine
JPS6055326A (en) Correcting device of uneven illuminance in variable magnification copying machine
JPS61254902A (en) Correcting lens for quantity of light
JPH0325427A (en) Illuminance ununiformity correcting instrument of variable power copier
JPS5824167A (en) Optical scanning and exposing device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071225

Year of fee payment: 12