JPS63105301A - Deaerator water-level controller - Google Patents

Deaerator water-level controller

Info

Publication number
JPS63105301A
JPS63105301A JP24969686A JP24969686A JPS63105301A JP S63105301 A JPS63105301 A JP S63105301A JP 24969686 A JP24969686 A JP 24969686A JP 24969686 A JP24969686 A JP 24969686A JP S63105301 A JPS63105301 A JP S63105301A
Authority
JP
Japan
Prior art keywords
deaerator
water
pressure
water supply
supply pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24969686A
Other languages
Japanese (ja)
Inventor
野中 節雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24969686A priority Critical patent/JPS63105301A/en
Publication of JPS63105301A publication Critical patent/JPS63105301A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は火力、原子カプラントの脱気器水位制御に係り
、特に、タービンの負荷急減中、又は、負荷遮断後の水
位制御に好適な脱気器水位制御装置に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to deaerator water level control for thermal power plants and nuclear couplants, and in particular, to a deaerator water level control suitable for controlling the water level during a sudden load reduction of a turbine or after load shedding. Related to air water level control device.

〔従来の技術〕[Conventional technology]

火力、原子カプラントの脱気器は、蒸気発生器の水系統
、及び、蒸気系統の内部腐蝕の原因となる溶存酸素を除
去するために、蒸気発生器への給水系統に設けられてお
り、復水器から供給される復水に蒸気を吹込んで加熱脱
気しこれを蒸気発生器用給水として送り出す、復水の加
熱用の蒸気はタービンからの油気、あるいは、補助蒸気
などが用いられ、これら加熱用蒸気は脱気器の脱気室で
復水の一部と接触して凝縮し、脱気器貯水タンクに貯え
られ、蒸気発生器への給水の一部となる。
Deaerators for thermal power plants and nuclear power plants are installed in the water system of the steam generator and in the water supply system to the steam generator in order to remove dissolved oxygen that causes internal corrosion of the steam system. Steam is injected into the condensate supplied from the water heater, heated and degassed, and then sent out as feed water for the steam generator.The steam used to heat the condensate is oil from the turbine or auxiliary steam. The heating steam comes into contact with a portion of the condensate in the degassing chamber of the deaerator, condenses, and is stored in the deaerator water storage tank, where it becomes part of the water supply to the steam generator.

脱気器貯水タンクに貯えられた水は脱気器降水管を流動
して給水ポンプに導かれ、加圧されて蒸気発生器に送ら
れる。
The water stored in the deaerator water tank flows through the deaerator downcomer pipe, is led to the water supply pump, is pressurized, and is sent to the steam generator.

タービン負荷急減時、又は、負荷遮断時には、脱気器入
口側に設けた低圧給水加熱器加熱用のり−ビン油気が急
減少し、脱気器に流入する復水の温度は急低下し、さら
に、脱気器加熱用の油気もなくなるため、脱気器の器内
圧力は急低下する。
When the turbine load suddenly decreases or when the load is cut off, the amount of oil in the glue bottle for heating the low-pressure feed water heater installed at the inlet of the deaerator suddenly decreases, and the temperature of the condensate flowing into the deaerator rapidly decreases. Since the oil for heating the deaerator is also exhausted, the pressure inside the deaerator drops rapidly.

貯水タンクより流出した水は脱気器降水管を通って給水
ポンプに流入するが、脱気器からポンプ迄の流動には約
−〜三分間かかるため、タービン負荷急減時には脱気器
内の温度よりポンプ入口水の方が高温になる傾向があり
、ポンプ入口で水が自己フラッシュを生じポンプはキャ
ビテーションを発生しやすくなる。キャビテーションの
発生を防止するため、従来技術では、例えば、特公開昭
59−81402号公報のように、脱気器々内圧力より
給水ポンプ入口流体の飽和温度に対する指標を求め、実
測したポンプ入口の流体温度と前記の指標とを比較し、
必要に応じ脱気器に流入する復水流量を調節する方法が
あったが、脱気器から給水ポンプ迄のレベル差は20〜
30mあり、且つ、脱気器降水管中の流体の比重は時々
刻々変化するため、脱気器圧力から給水ポンプ入口流体
の飽和温度を精度良く求めることができず、温度測定器
には時定数で約1分の一次応答遅れがあるため、給水ポ
ンプ入口で温度を測定したのでは5時間的なづれが生じ
るため、復水流量を効果的に調節できない問題があった
The water flowing out from the water storage tank flows into the water supply pump through the deaerator downpipe, but it takes about three minutes for the water to flow from the deaerator to the pump, so when the turbine load suddenly decreases, the temperature inside the deaerator may drop. The water at the pump inlet tends to be at a higher temperature, and the water self-flashes at the pump inlet, making the pump more susceptible to cavitation. In order to prevent the occurrence of cavitation, in the prior art, for example, as in Japanese Patent Publication No. 59-81402, an index for the saturation temperature of the water pump inlet fluid is obtained from the pressure inside the deaerators, and the actual measured pump inlet temperature is calculated. Compare the fluid temperature with the aforementioned indicators,
There was a method to adjust the flow rate of condensate flowing into the deaerator as needed, but the level difference between the deaerator and the feed water pump was 20~
The length of the deaerator downpipe is 30 m, and the specific gravity of the fluid in the deaerator downpipe changes from time to time, so the saturation temperature of the feed water pump inlet fluid cannot be determined accurately from the deaerator pressure, and the temperature measuring device has a time constant. Since there is a primary response delay of approximately 1 minute, measuring the temperature at the inlet of the water supply pump would result in a 5-hour lag, making it impossible to effectively adjust the condensate flow rate.

[発明が解決しようとする問題点〕 上記従来技術は、温度検出器の応答遅れとタービン負荷
急減、又は、負荷遮断時における脱気器降水管中の流体
の比重変化について考慮がなされておらず、タービン負
荷急減、又は、遮断時に脱気器に流入する復水を効果的
に調節できないため。
[Problems to be Solved by the Invention] The above-mentioned prior art does not take into account the response delay of the temperature sensor, the sudden decrease in turbine load, or the change in the specific gravity of the fluid in the deaerator downcomer at the time of load cutoff. , due to the inability to effectively control the condensate flowing into the deaerator when the turbine load suddenly decreases or when the turbine is shut off.

給水ポンプでのキャビテーション防止が充分でない問題
があった。
There was a problem that cavitation prevention in the water pump was not sufficient.

本発明の目的は、タービン負荷急減、又は、遮断時に給
水ポンプのキャビテーション防止を効果的に行うことに
ある。
An object of the present invention is to effectively prevent cavitation of a water supply pump when the turbine load suddenly decreases or is shut off.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は脱気器降水管を経て給水ポンプを通る流量を
測定し、この流量をもとに、流体が脱気器出口から給水
ポンプ迄流動する時間を算出し、温度検出器の応答遅れ
特性と、脱気器出口部の流体温度から流体が給水ポンプ
入口に到達した時の温度を事前に予測し、この温度から
、給水ポンプ入口水の予測飽和圧力を求め、この予測飽
和圧力と、給水ポンプ入口圧力の実測値を比較し、必要
により脱気器に流入する復水流量を制限し脱気器圧力の
急低下を防止することによって達成される。
The above purpose is to measure the flow rate passing through the deaerator downcomer pipe and the feed water pump, and based on this flow rate, calculate the time it takes for the fluid to flow from the deaerator outlet to the feed water pump, and calculate the response delay characteristics of the temperature sensor. Then, predict in advance the temperature when the fluid reaches the water supply pump inlet from the fluid temperature at the deaerator outlet, calculate the predicted saturation pressure of the water at the water supply pump inlet from this temperature, and calculate the predicted saturation pressure of the water at the water supply pump inlet from this temperature. This is achieved by comparing the measured values of pump inlet pressure and, if necessary, restricting the flow rate of condensate flowing into the deaerator to prevent a sudden drop in deaerator pressure.

〔作用〕[Effect]

温度検出器は応答遅れが大きく、一般に、約−分の時定
数をもつ一次遅れ特性をもつが、流体温度は脱気器出口
の脱気器降水管で温度を測定し。
Temperature detectors have a large response delay and generally have first-order lag characteristics with a time constant of about -minutes, but the fluid temperature is measured at the deaerator downcomer at the deaerator outlet.

流体はここから給水ポンプ迄−〜三分間かかつて流動す
るが、流動に必要な流動遅れ時間は、脱気器降水管での
流量に反比例する。このため、給水ポンプの流量を測定
し、温度検出器で測定した温度が、流動遅れ時間のデッ
ドタイム後に、給水ポンプ入口流体温度となることを利
用し1時々刻々変化するポンプ入口の飽和圧力を時間お
くれ無く予測する。
The fluid flows from here to the feed pump for up to three minutes or so, and the flow lag time required for flow is inversely proportional to the flow rate in the deaerator downcomer. Therefore, by measuring the flow rate of the water supply pump and using the fact that the temperature measured by the temperature detector becomes the water supply pump inlet fluid temperature after the dead time of the flow delay time, we can calculate the saturation pressure at the pump inlet that changes moment by moment. Predict without delay.

給水ポンプ入口圧力を実測し、S圧力と比較し。Measure the water supply pump inlet pressure and compare it with the S pressure.

実測圧力の方が低圧の場合は、脱気器に流入する復水流
量を制限することによって、脱気器の圧力降下が、緩や
かになり、給水ポンプ入口圧力の低下が止るため、常に
、実測圧力の方が高圧となり、給水ポンプでキャビテー
ションが発生することを防ぐことができる。
If the actual measured pressure is lower, by restricting the flow rate of condensate flowing into the deaerator, the pressure drop in the deaerator will be gradual and the water pump inlet pressure will stop decreasing. The pressure is higher, which prevents cavitation from occurring in the water pump.

〔実施例〕〔Example〕

以下、本発明の一実施例の配管系統を第1図により説明
する。復水器6はタービン4の排気を冷却水によって冷
却し復水とし、復水ポンプ7によって加圧する。復水ポ
ンプ7よりの吐出水は脱気器水位調節弁8を経て低圧給
水加熱器9に送られ、タービン油気によって復水を加熱
昇温の後、復水流量計10を経て脱気器11の脱気室1
1aに送られる。脱気器11は脱気室11aと貯水タン
ク11bと連絡管licと均圧管lidによって構成さ
れる。
Hereinafter, a piping system according to an embodiment of the present invention will be explained with reference to FIG. The condenser 6 cools the exhaust gas of the turbine 4 with cooling water, converts it into condensate, and pressurizes it with a condensate pump 7 . Water discharged from the condensate pump 7 is sent to the low-pressure feed water heater 9 via the deaerator water level control valve 8, where the condensate is heated and heated by turbine oil air and then passed through the condensate flow meter 10 to the deaerator. 11 degassing chambers 1
Sent to 1a. The deaerator 11 includes a deaeration chamber 11a, a water storage tank 11b, a communication pipe LIC, and a pressure equalization pipe LID.

タービン4の油気は油気管2bによって脱気室11aに
導入し、脱気室に送られた復水と接融し、混合加熱、脱
気し蒸気発生器1への給水として貯水タンクllbに貯
えられる。
Oil from the turbine 4 is introduced into the deaeration chamber 11a through the oil air pipe 2b, fused with condensate sent to the deaeration chamber, mixed and heated, deaerated, and sent to the water storage tank llb as water supply to the steam generator 1. Can be stored.

貯えられた貯水は、降水管25と温度検出器14と圧力
検出器15を経て給水ポンプ18に導かれ加圧され流量
検出器19を経た後で配管27と高圧給水加熱器2oと
給水流量検出器21を経て蒸気発生器1へ送られる。
The stored water is led to the water supply pump 18 through the downcomer pipe 25, the temperature sensor 14, and the pressure detector 15, is pressurized, and passes through the flow rate detector 19, and then passes through the piping 27, the high-pressure water supply heater 2o, and the water supply flow rate detection. The steam is sent to the steam generator 1 via the steam generator 21.

蒸気発生器1で発生した蒸気は配管22と加減弁3を経
てタービン4に送られ仕事をした後、復水器6に送られ
て冷却されて復水となり再び循環する。
The steam generated in the steam generator 1 is sent to the turbine 4 via the piping 22 and the control valve 3 to perform work, and then sent to the condenser 6 where it is cooled and becomes condensed water and circulated again.

第2図では、脱気器出口の流体温度を温度検出器14で
検出し、遅れ演算器35に伝える。
In FIG. 2, the temperature of the fluid at the outlet of the deaerator is detected by the temperature detector 14 and transmitted to the delay calculator 35.

給水ポンプ18の出口流量を流量検出器19で検出し、
遅れ時間予測演算器34に伝える。ここで温度検出器1
4から、給水ポンプ18迄の流動遅れ時間を予測し、温
度検出器14での一次応答遅れ時間を差し引いて、総合
的な遅れ時間を予測演算し、出力信号を遅れ演算器35
に伝える。
Detecting the outlet flow rate of the water supply pump 18 with a flow rate detector 19,
It is transmitted to the delay time prediction calculator 34. Here temperature sensor 1
4, predict the flow delay time up to the water supply pump 18, subtract the primary response delay time at the temperature detector 14, predict the overall delay time, and convert the output signal to the delay calculator 35.
tell to.

遅れ演算器35は温度検出器14からの信号を、遅れ時
間予測演算器34の出力信号に見合って遅らせて出力し
、給水ポンプ18の入口に流動した時の温度を適確に予
測し、出力を飽和圧力演算器36に伝える。給水ポンプ
18の入口部圧力を圧力検出器15で検出し減算器37
mに伝え、飽和圧力演算器36からの信号から圧力検出
器15の信号を減算し、給水ポンプ入口の予測飽和圧力
と実測圧力の偏差信号を弁開度制限演算器48に伝える
。弁開度制限演算器48は、入力信号がマイナスの場合
にはその出力を100%とし入力信号がプラスの場合に
はその入力信号見合って出力信号が減少するようになっ
ている。弁開度制限演算器48の出力を低位信号選択器
49に伝える。
The delay calculator 35 delays and outputs the signal from the temperature detector 14 in accordance with the output signal of the delay time prediction calculator 34, accurately predicts the temperature when the water flows to the inlet of the water supply pump 18, and outputs the signal. is transmitted to the saturation pressure calculator 36. The inlet pressure of the water supply pump 18 is detected by the pressure detector 15 and the subtractor 37
m, the signal from the pressure detector 15 is subtracted from the signal from the saturation pressure calculator 36, and the deviation signal between the predicted saturation pressure at the inlet of the water supply pump and the measured pressure is transmitted to the valve opening limit calculator 48. The valve opening limit calculator 48 is configured such that when the input signal is negative, the output is 100%, and when the input signal is positive, the output signal is decreased in proportion to the input signal. The output of the valve opening limit calculator 48 is transmitted to the low level signal selector 49.

脱気器11の貯水タンクllbの水位を水位検出器28
で検出し、水位調節計42の減算器42aに伝達し、設
定器42cとの偏差を求めて比例f積分動作開演算器4
2bに伝え、その演算結果は低位信号選択器49に伝達
される。
The water level detector 28 detects the water level in the water storage tank llb of the deaerator 11.
, and transmits it to the subtracter 42a of the water level controller 42, and calculates the deviation from the setting device 42c to calculate the proportional f-integral operation opening calculator 4.
2b, and the calculation result is transmitted to the low-order signal selector 49.

設定器42cの設定水位より貯水タンクllbの水位が
高い場合は脱気器水位調節計42の出力は減少し、貯水
タンクllbの水位が低い場合は脱気器水位調節計42
の出力は増加し、低位信号選択器49は弁開度制限演算
器48の信号と脱気器水位調節計42の出力信号を比較
し、低位の信号を選択し、脱気器水位調節弁8に伝達し
1通常運転中ば脱気器水位調節計42の出力信号で脱気
器水位調節弁8は制御され、貯水タンクllbの水位は
一定に制御される。
When the water level in the water storage tank llb is higher than the water level set by the setting device 42c, the output of the deaerator water level controller 42 decreases, and when the water level in the water storage tank llb is lower, the output of the deaerator water level controller 42 decreases.
The output of the deaerator water level control valve 8 increases, and the low level signal selector 49 compares the signal of the valve opening limit calculator 48 with the output signal of the deaerator water level controller 42, selects the low level signal, and During normal operation, the deaerator water level control valve 8 is controlled by the output signal of the deaerator water level controller 42, and the water level in the water storage tank llb is controlled to be constant.

タービン負荷急減時や負荷遮断時において飽和圧力演算
器36により予測した圧力信号よりも実測した圧力検出
器15の圧力信号の方が低くなった場合、又は、圧力差
が規定値αより少くなった場合、弁開度制限演算器48
と低位信号選択器゛49によって脱気器水位調節弁の開
度を制限する′ ように動作する。
When the pressure signal actually measured by the pressure detector 15 becomes lower than the pressure signal predicted by the saturation pressure calculator 36 when the turbine load suddenly decreases or when the load is cut off, or when the pressure difference becomes less than the specified value α. In this case, the valve opening limit calculator 48
and a low level signal selector 49 to limit the opening degree of the deaerator water level control valve.

本実施例によれば、タービン負荷急減少時、又は、負荷
遮断時にも、給水ポンプでキャビテーションを発生する
ことなく、脱気器水位を安定して制御することができる
According to this embodiment, even when the turbine load suddenly decreases or when the load is cut off, the deaerator water level can be stably controlled without cavitation occurring in the water supply pump.

第3図は別の一実施例を示す配管気組である。FIG. 3 shows a piping assembly showing another embodiment.

復水器6はタービン4の排気を冷却水によって冷却して
復水とし、復水ポンプ7によって加圧する。
The condenser 6 cools the exhaust gas of the turbine 4 with cooling water to form condensate water, which is then pressurized by a condensate pump 7 .

復水ポンプ7よりの吐出水は脱気器水位調節弁8を経て
低圧給水加熱器9に送られ、タービン油気によって復水
を加熱昇温の後、復水流量計10を経て脱気器11の脱
気室11aに送られる。脱気器11は脱気室11aと貯
水タンクllbと連絡管11cと均圧管lidによって
構成している。
Water discharged from the condensate pump 7 is sent to the low-pressure feed water heater 9 via the deaerator water level control valve 8, where the condensate is heated and heated by turbine oil air and then passed through the condensate flow meter 10 to the deaerator. It is sent to the deaeration chamber 11a of No. 11. The deaerator 11 includes a deaeration chamber 11a, a water storage tank llb, a communication pipe 11c, and a pressure equalization pipe lid.

タービン4の油気は油気管2bによって脱気室11aに
導入し、脱気室に送られた復水と接触し、混合加熱、脱
気し蒸気発生器1への給水として貯水タンクllbに貯
えられる。
The oil from the turbine 4 is introduced into the deaeration chamber 11a through the oil air pipe 2b, contacts the condensate sent to the deaeration chamber, is mixed and heated, deaerated, and is stored in the water storage tank llb as water to be supplied to the steam generator 1. It will be done.

貯えられた貯水は三系統の脱気器降水器25a。The stored water is stored in three systems of deaerator precipitation equipment 25a.

♀5b、25cと温度検出器14a、14b。♀5b, 25c and temperature detectors 14a, 14b.

14cと圧力検出器15a、15b、15cを経て給水
ポンプ18a、18b* 18cに導かれ、加圧され、
流量検出器19 a r 19 b + 19 cを経
た後で合流し配管27と高圧給水加熱器2oと給水流量
検出器21を経て蒸気発生器1へ送られる。
14c and pressure detectors 15a, 15b, 15c, the water is led to water supply pumps 18a, 18b* 18c, and is pressurized.
After passing through the flow rate detectors 19 a r 19 b + 19 c, the water joins and is sent to the steam generator 1 via the pipe 27 , the high pressure feed water heater 2 o and the feed water flow rate detector 21 .

蒸気発生器1で発生した蒸気は配管22と加減弁3を経
てタービン4に送られて仕事をした後、復水器6に送ら
れ冷却されて復水となり、再び循環する。さらに、ター
ビン負荷急減少時等には。
The steam generated in the steam generator 1 is sent to the turbine 4 via the piping 22 and the control valve 3 to do work, and then sent to the condenser 6 where it is cooled and becomes condensed water, which is circulated again. Furthermore, when the turbine load suddenly decreases, etc.

脱気器降水管25a、25b、25cの熱水を冷水と置
換するため、給水ポンプ18 a e b + cの入
口より分岐し、熱水置換弁16 a * 16 b *
16’cを経て熱水置換ポンプ17によって加圧し。
In order to replace the hot water in the deaerator downcomer pipes 25a, 25b, 25c with cold water, the hot water replacement valves 16a*16b* branch from the inlet of the water supply pumps 18a e b + c.
16'c and then pressurized by the hot water displacement pump 17.

配管24と23を経て脱気室11aに循環する。It circulates through the pipes 24 and 23 to the deaeration chamber 11a.

第4図に示すように、脱気器出口の流体温度を温度換出
器14aで検出し、遅れ演算器35aに伝える。
As shown in FIG. 4, the fluid temperature at the deaerator outlet is detected by a temperature exchanger 14a and transmitted to a delay calculator 35a.

給水ポンプ18aの出口流量を流量検出器19aで検出
し加算器33aに伝え、さらに、熱水置換ポンプ17を
運転している場合は熱水置換ポンプ相当流量の33.3
%相当の信号を出力する信号発生器32aと出力信号と
加算の上、遅れ時間予測演算器34aに伝える。ここで
温度検出器14aから、給水ポンプ18a迄の流動遅れ
時間を予測し、温度検出器14aでの一次応答遅れ時間
を差引いて、総合的な遅れ時間を予測演算し出力信号を
遅れ演算@ 35 aに伝える。
The outlet flow rate of the water supply pump 18a is detected by the flow rate detector 19a and transmitted to the adder 33a. Furthermore, when the hot water displacement pump 17 is operated, the flow rate equivalent to the hot water displacement pump is 33.3.
The output signal is added to the signal generator 32a which outputs a signal corresponding to %, and the resultant signal is transmitted to the delay time prediction calculator 34a. Here, the flow delay time from the temperature sensor 14a to the water supply pump 18a is predicted, the primary response delay time at the temperature sensor 14a is subtracted, the overall delay time is predicted, and the output signal is delayed. Tell a.

遅れ演算器35aは温度検出器14aからの信号を遅れ
時間予測演算器34aの出力信号に見合って遅らせて出
力し、給水ポンプ18aの入口に流動した時の温度を6
秒早めに予測し、出力を飽和圧力演算器36aに伝える
。給水ポンプ18aの入口部圧力を圧力検出器15aで
検出し、減算器37aに伝え、飽和圧力演算器36aか
らの信号から圧力検出器15aの信号を減算し、給水ポ
ンプ入口の6秒早めの予測飽和圧力と実測圧力の偏差信
号を高位選択器38に伝える。高位信号選択38は三系
統の給水ポンプ18a、18b。
The delay calculator 35a delays and outputs the signal from the temperature detector 14a in accordance with the output signal of the delay time prediction calculator 34a, and sets the temperature when the water flows to the inlet of the feed pump 18a by 6.
The prediction is made a second in advance and the output is transmitted to the saturation pressure calculator 36a. The pressure at the inlet of the water supply pump 18a is detected by the pressure detector 15a, and transmitted to the subtractor 37a, which subtracts the signal from the pressure detector 15a from the signal from the saturation pressure calculator 36a to predict the inlet of the water supply pump 6 seconds earlier. A deviation signal between the saturation pressure and the measured pressure is transmitted to the high-level selector 38. The high-level signal selection 38 has three systems of water supply pumps 18a and 18b.

18cについてそれぞれ求めた予測飽和圧力信号より実
測圧力信号を減算した信号のうち、最も高圧側の信号を
選択して出力し、復水流量制限調節計41の減算器41
aに伝え、設定器41cとの偏差を求め比例+積分動板
演算部41bに伝えその出力信号は低位信号選択器44
に伝達される。
Among the signals obtained by subtracting the measured pressure signal from the predicted saturation pressure signal obtained for each of 18c, the signal on the highest pressure side is selected and output, and the subtracter 41 of the condensate flow rate restriction controller 41
a, the deviation from the setting device 41c is determined, and the output signal is sent to the proportional + integral moving plate calculation unit 41b, which outputs the signal to the low-level signal selector 44.
transmitted to.

復水流量制fIMi!i1節計41は、給水ポンプ入口
の実測した圧力が飽和圧力予測より高圧の場合に出力は
増加し、飽和圧力予測より低圧の場合に出力が減少する
Condensate flow control fIMi! The output of the i1 meter 41 increases when the actually measured pressure at the inlet of the water supply pump is higher than the predicted saturation pressure, and decreases when the pressure is lower than the predicted saturation pressure.

脱気器貯水タンクllbの水位は脱気器水位検出器28
で検出し脱気器水位調節計42の減算器42aに伝え、
H定器42cとの偏差を求め比例+積分動板演算器42
bに伝えその演算結果は加算器43に伝達される。設定
器42cの設定水位より貯水タンクllbの水位が高い
場合は、脱気器水位調節計42の出力は減少し、貯水タ
ンク11bの水位が低い場合は脱気器水位調節計42の
出力は増す。
The water level in the deaerator water storage tank llb is determined by the deaerator water level detector 28.
is detected and transmitted to the subtractor 42a of the deaerator water level controller 42,
Calculate the deviation from the H constant device 42c and use the proportional + integral moving plate calculator 42
b, and the calculation result is transmitted to the adder 43. When the water level of the water storage tank llb is higher than the set water level of the setting device 42c, the output of the deaerator water level controller 42 decreases, and when the water level of the water storage tank 11b is lower, the output of the deaerator water level controller 42 increases. .

蒸気発生器1への給水流量検出器21の出力信号を加算
器43に伝え、ここで脱気水位調節部42の出力信号と
加算し、脱気器への流入目標流入信号として低位選択器
44を経て復水流量調節計45の減算器45aに伝達す
る。低位信号選択器44は、加算器43の出力信号と復
水流量制限調節計41bの出力信号を比較し、低位の流
量信号を選択し、復水流量調節計45に伝達する。
The output signal of the water supply flow rate detector 21 to the steam generator 1 is transmitted to the adder 43, where it is added to the output signal of the deaerator water level controller 42, and the signal is sent to the low level selector 44 as a target inflow signal for the inflow to the deaerator. It is transmitted to the subtractor 45a of the condensate flow rate controller 45 through the . The low-level signal selector 44 compares the output signal of the adder 43 and the output signal of the condensate flow rate limiting controller 41b, selects a low-level flow rate signal, and transmits it to the condensate flow rate controller 45.

脱気器11に流入する復水流量は熱水置換ポンプよりの
流量を含まないよう低圧給水加熱器9の出口側に設けた
復水流量計10によって検出し復水流量調節部45の減
算器45aに伝え、低位信号選択器44との偏差を求め
、比例+積分動板演算器45bに伝え、その出力は脱気
器水位調節弁8に伝達する。復水流量調節部45は低位
信号選択44の出力信号を目標値とし、復水流量検出器
10の信号が目標値より少い場合は出力信号が増加して
脱気器水位調節弁8の開度を増加させ、復水流量検出器
10の信号が目標値より多い場合は、出力信号が減少し
て脱気器水位調節弁8の開度を減少させて脱気器水位が
常に設定値になるように制御する。
The flow rate of condensate flowing into the deaerator 11 is detected by a condensate flow meter 10 provided on the outlet side of the low-pressure feed water heater 9 so as not to include the flow rate from the hot water displacement pump, and is detected by a subtractor of the condensate flow rate adjustment section 45. 45a, the deviation with the low-level signal selector 44 is determined, and the result is transmitted to the proportional + integral moving plate calculator 45b, whose output is transmitted to the deaerator water level control valve 8. The condensate flow rate regulator 45 uses the output signal of the low level signal selection 44 as a target value, and when the signal of the condensate flow rate detector 10 is lower than the target value, the output signal increases and the deaerator water level control valve 8 is opened. If the signal from the condensate flow rate detector 10 is higher than the target value, the output signal decreases and the opening degree of the deaerator water level control valve 8 is decreased so that the deaerator water level always remains at the set value. control so that

本実施例によれば、王台の給水ポンプと、熱水置換ポン
プをもつ場合に、いずれの給水ポンプ入口でもキャビテ
ーションを発生することなく脱気器水位を安定して制御
することができる。
According to this embodiment, in the case of having a royal water supply pump and a hot water displacement pump, it is possible to stably control the deaerator water level without causing cavitation at the inlet of any of the water supply pumps.

第5図は本発明のさらに別の実施例を示す制御気統図で
ある。
FIG. 5 is a control flow diagram showing still another embodiment of the present invention.

脱気器水位検出器28で貯水タンクllbの水位を検出
し脱気器水位調節計42の減算器42aに伝え、水位設
定演算器46よりの設定信号との偏差を求め比例+積分
動板演算器42bに伝え。
The water level in the water storage tank llb is detected by the deaerator water level detector 28 and transmitted to the subtractor 42a of the deaerator water level controller 42, and the deviation from the setting signal from the water level setting calculator 46 is determined and proportional + integral moving plate calculation is performed. Tell the vessel 42b.

その出力は加算器43に伝達する。Its output is transmitted to adder 43.

高位信号選択器38は、第4図とまったく同様に、三系
統の給水ポンプ18a、18b、18cについてそれぞ
れ求めた予測圧力信号より実測圧力信号を減算した信号
のうち、最も高圧側の信号を選択して出力するもので、
水位設定演算器46は、入力信号がプラスの場合は、出
力信号は50%とし、脱気器水位調節計42を常用水位
に設定し、入力信号がマイナスか、又は規定値β以下の
場合は5出力信号を50%以下とし、入力信号に見合っ
て出力信号を減少させ、脱気器水位調節計42の設定水
位を低く設定するため、給水ポンプ入口圧力が予測した
飽和圧力より実測した圧力が、低圧になる場合は脱気器
水位調節計の設定水位を下げることにより復水流量調節
計の目標流量を下げ。
The high-level signal selector 38 selects the highest pressure signal among the signals obtained by subtracting the measured pressure signal from the predicted pressure signal obtained for each of the three water supply pumps 18a, 18b, and 18c, just as shown in FIG. and outputs,
The water level setting calculator 46 sets the output signal to 50% when the input signal is positive, sets the deaerator water level controller 42 to the regular water level, and when the input signal is negative or below the specified value β. 5 The output signal is set to 50% or less, the output signal is decreased in proportion to the input signal, and the set water level of the deaerator water level controller 42 is set lower, so that the actually measured pressure is lower than the predicted saturation pressure at the water supply pump inlet pressure. If the pressure is low, lower the target flow rate of the condensate flow rate controller by lowering the set water level of the deaerator water level controller.

実質的に脱気器水位調節弁開度を減少させる。Substantially reduces the opening of the deaerator water level control valve.

本実施例によれば、王台の給水ポンプと、熱水置換ポン
プを設けた場合において、いずれの給水ポンプ入口でも
キャビテーションを発生することなく、脱気器水位を安
定して制御することができる。
According to this embodiment, when a royal water supply pump and a hot water displacement pump are installed, the deaerator water level can be stably controlled without cavitation occurring at the inlet of any of the water supply pumps. .

〔発明の効果〕〔Effect of the invention〕

本発明によれば、給水ポンプ入口の流体の飽和圧力を時
間遅れなく予測することができるため。
According to the present invention, the saturation pressure of the fluid at the inlet of the water pump can be predicted without any time delay.

給水ポンプでキャビテーション発生、及び、給水ポンプ
入口での自己フラッシュ発生を事前に防止することがで
きる。
Cavitation occurrence at the water supply pump and self-flushing at the water supply pump inlet can be prevented in advance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す脱気器廻りの御系統図
である。 1・・・蒸気発生器、4・・・タービン、6・・・復水
器、8・・・脱気器水位調節弁。          
    、工。 束1図 18−一一世不j■ソフ一 四−−−睨気屈、玲水盲 來4図
FIG. 1 is a system diagram around a deaerator showing an embodiment of the present invention. 1... Steam generator, 4... Turbine, 6... Condenser, 8... Deaerator water level control valve.
, Eng. Bundle 1 Figure 18 - 11th generation Fuj ■ Soph 14 --- Staring, Reisui Blind Coming Figure 4

Claims (1)

【特許請求の範囲】 1、タービン排気を復水器で復水とし脱気器の水位調節
弁を経て前記脱気器に導いて脱気し、前記脱気器の下側
に設けた給水ポンプへ降水管によつて導き、前記給水ポ
ンプで加圧し蒸気発生器に給水するものにおいて、 前記脱気器の出口部の温度と、前記給水ポンプの流量か
ら前記給水ポンプの入口部の飽和圧力を演算によつて予
測し、実測した前記給水ポンプの入口圧力と比較し、そ
の結果、実測した前記給水ポンプの入口圧力の方が低圧
か、又は、圧力差が規定値より少なくなつた場合に前記
脱気器へ流入する復水量を減少させ、前記脱気器の内部
圧力の降下率を低下させることを特徴とする脱気器水位
制御装置。
[Scope of Claims] 1. Turbine exhaust gas is condensed in a condenser and guided to the deaerator through a water level control valve of the deaerator for deaeration, and a water supply pump provided below the deaerator. In the system where water is introduced through a downcomer pipe, pressurized by the water supply pump, and supplied to the steam generator, the saturation pressure at the inlet of the water supply pump is determined from the temperature at the outlet of the deaerator and the flow rate of the water supply pump. The predicted by calculation is compared with the actually measured inlet pressure of the water supply pump, and as a result, if the actually measured inlet pressure of the water supply pump is lower pressure or the pressure difference is less than the specified value, the above A deaerator water level control device that reduces the amount of condensate flowing into the deaerator and reduces the rate of decrease in the internal pressure of the deaerator.
JP24969686A 1986-10-22 1986-10-22 Deaerator water-level controller Pending JPS63105301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24969686A JPS63105301A (en) 1986-10-22 1986-10-22 Deaerator water-level controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24969686A JPS63105301A (en) 1986-10-22 1986-10-22 Deaerator water-level controller

Publications (1)

Publication Number Publication Date
JPS63105301A true JPS63105301A (en) 1988-05-10

Family

ID=17196843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24969686A Pending JPS63105301A (en) 1986-10-22 1986-10-22 Deaerator water-level controller

Country Status (1)

Country Link
JP (1) JPS63105301A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202374A (en) * 2011-03-28 2012-10-22 Kobe Steel Ltd Power generation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202374A (en) * 2011-03-28 2012-10-22 Kobe Steel Ltd Power generation device

Similar Documents

Publication Publication Date Title
US8757105B2 (en) System and method for controlling liquid level in a vessel
TWI510744B (en) Method for operating a heat recovery steam generator,heat recovery steam generator and gas and steam turbine system
WO2016129395A1 (en) Boiler feed-water system, boiler provided with said system, and boiler feed-water method
US20160125965A1 (en) Power Plant
KR20050010328A (en) Feedwater Control System in Nuclear Power Plant Considering Feedwater Control Valve Pressure Drop and Control Method thereof
CN114242284A (en) Nuclear reactor thermal hydraulic test system and regulation and control method
US20170284228A1 (en) Steam turbine plant
JPS63105301A (en) Deaerator water-level controller
CN112908500B (en) Volume control method for non-condensable gas at top of pressure vessel
JP2923040B2 (en) Power plant and water level control method and apparatus
JPS61138007A (en) Controller for water level and pressure of deaerator
JP7223654B2 (en) Waste heat recovery boiler
EP1770716A2 (en) Improved on-line steam flow measurement device and method
JPS582503A (en) Controller for water level of feedwater heater
JPS6138763B2 (en)
JPS61289203A (en) Method and device for controlling water level
JPS5888505A (en) Temperature dropping controller for turbine bypass system
JPS61205307A (en) Water level controller of deaerator
JPS5865913A (en) Water level controller of feed water heater in power plant
JP2023083078A (en) Leakage monitoring device for auxiliary cooling water system
JP2625422B2 (en) Boiler control device
JPS6154122B2 (en)
JPS6023699A (en) Hammering inhibiting controller for emergency drain discharge system
JPS6017604A (en) Controller for water level of deaerator
JPH07103406A (en) Water level controller in aeration device