JPS63104789A - Production of stainless clad steel - Google Patents

Production of stainless clad steel

Info

Publication number
JPS63104789A
JPS63104789A JP25072386A JP25072386A JPS63104789A JP S63104789 A JPS63104789 A JP S63104789A JP 25072386 A JP25072386 A JP 25072386A JP 25072386 A JP25072386 A JP 25072386A JP S63104789 A JPS63104789 A JP S63104789A
Authority
JP
Japan
Prior art keywords
rolling
steel
stainless steel
thickness
stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25072386A
Other languages
Japanese (ja)
Other versions
JPH0647180B2 (en
Inventor
Yoichi Hirose
洋一 広瀬
Kenji Ishii
石井 顕治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP25072386A priority Critical patent/JPH0647180B2/en
Publication of JPS63104789A publication Critical patent/JPS63104789A/en
Publication of JPH0647180B2 publication Critical patent/JPH0647180B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/04Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a rolling mill

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To improve productivity, yield and product quality by performing the rolling at the rolling speed more than the rolling reduction calculated from a specific formula as a function of the heating temperature and further, more than the rolling speed as shown with a prescribed formula. CONSTITUTION:The heating temperature at the time of hot-rolling is denoted by T deg.C and the rolling is performed at the rolling speed more than the rolling reduction (r) shown with the formula I in diagram and the rolling speed V at that time is set to more than the rolling speed calculated from the formula II as the function of the roll radius R, the whole thickness H of material to be rolled, the thickness (h) of clad materials and the rolling reduction (r). Under these set conditions, the stainless steel clad materials 1a and 1b are drawn out from uncoilers 9, 8a and 8b respectively with respect to base metal 2 and heated by an inert gas atmosphere direct electrification heating furnace 10 and subjected to the rolling with hot rolling rolls 7. Since the clad materials 1a and 1b can be thoroughly thinned, the productivity, the yield and the product quality are improved by this method.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、歩留りが良好で、生産性の良い薄板ステンレ
スクラッド鋼の連続的製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for continuously manufacturing thin plate stainless clad steel with good yield and productivity.

[従来の技術] 従来、薄板ステンレスクラッド鋼の多くは、組立圧延法
、爆着圧延法あるいは鋳込圧延法によって製造されてき
た。しかしながら、これらの方法では素材の前処理が複
雑であったり、歩留りが悪いといった問題があるため、
ステンレス鋼ソリッド材に比べて、十分安価に製造する
ことは不可能であった。
[Prior Art] Conventionally, most thin stainless clad steel sheets have been manufactured by assembly rolling, explosion rolling, or cast rolling. However, these methods have problems such as complicated material pretreatment and poor yield.
Compared to solid stainless steel materials, it has not been possible to manufacture them sufficiently cheaply.

以下に、これら従来法の各々について、その概要と問題
点をより詳細に説明する。
Below, the outline and problems of each of these conventional methods will be explained in more detail.

(、)  組立圧延法 合わせ材のステンレス鋼板と母材鋼板を重ね合わせて、
両者間の空気を除去してから全周を溶接し、これを加熱
、圧延して製品とする方法である。
(,) Assembling and rolling method The stainless steel plate of the laminated material and the base steel plate are overlapped,
This method involves removing the air between the two, welding the entire circumference, then heating and rolling it to create a product.

この方法によればクラッド比の安定した良好な製品が得
られるが、溶接施行に相当の手間がかかること、圧延後
、周囲を切り落とす必要があること、さらに、前半はシ
ート状態での圧延のため、生産性が悪いなどの問題点が
ある。
According to this method, a good product with a stable cladding ratio can be obtained, but it takes a considerable amount of time to weld, the periphery needs to be cut off after rolling, and the first half is rolled in sheet form. , there are problems such as poor productivity.

(b)  爆着圧延法 まず、通常の爆着クラッド法により、ステンレス鋼と母
材となる鋼材との厚目のクラッド材を得て、その後は、
(−)と同様にして、これを加熱、圧延して製品とする
方法である。この場合も比較的良好な品質の製品が得ら
れるが、爆着そのものがかなりコスト高であること、や
はシ前半はシート状態での圧延のため、生産性が悪いな
どの問題点が指摘しうる。
(b) Explosion rolling method First, a thick cladding material of stainless steel and base steel is obtained by the usual explosion cladding method, and then,
In the same way as (-), this is heated and rolled into a product. Although products of relatively good quality can be obtained in this case, problems such as the high cost of explosive bonding itself and poor productivity as the first half of the process is rolled in sheet form have been pointed out. sell.

(c)鋳込み圧延法 例えば、3層クラッド材の場合、母材を鋳型中央部にセ
ットして、ステンレス溶鋼を下注ぎ鋳込することによシ
、まずクラッド鋼塊を製造する。
(c) Cast rolling method For example, in the case of a three-layer clad material, a clad steel ingot is first manufactured by setting the base material in the center of the mold and under-pouring molten stainless steel.

あるいはステンレス鋼を鋳型内にセットして、母材溶鋼
を鋳込む場合もある。ついで、これに分塊圧延、熱間圧
延、さらに必要に応じて冷間圧延を施して製品とする。
Alternatively, stainless steel may be set in a mold and the base material molten steel may be cast. Then, the product is subjected to blooming rolling, hot rolling, and, if necessary, cold rolling.

この場合、鋳造時の溶は込みのだめクラッド比を一定に
するのが難しいこと、鋼塊の頭部、底部、側面の切り捨
て量が多いため歩留シが悪いなどの問題点がある。
In this case, there are problems such as it is difficult to maintain a constant cladding ratio during casting, and the yield is poor because a large amount of the head, bottom, and side surfaces of the steel ingot are cut off.

[発明が解決しようとする問題点] 生産性と歩留りを向上させるためには、コイル同志での
圧延クラッド法が最適であり、さらに、母材と合わせ材
の接合強度を増すためには熱間圧接法がより好ましい。
[Problems to be solved by the invention] In order to improve productivity and yield, the rolling cladding method using coils together is optimal, and furthermore, in order to increase the bonding strength between the base material and the composite material, hot rolling cladding is the most suitable method. A pressure welding method is more preferred.

ところで、コイルで取り扱かうためには、母材、合わせ
材ともに板厚に制限があシ、厚くなるとコイルでのロー
ルへの供給が難しくなる。また、安価なステンレスクラ
ッド鋼を製造しようとする場合、材料費の節約の意味で
クラッド比は極力小さ目とする必要がある。
By the way, in order to handle the material in a coil, there is a limit to the thickness of both the base material and the laminated material, and the thicker the material, the more difficult it becomes to feed it to the rolls in the coil. Furthermore, when attempting to manufacture inexpensive stainless clad steel, the cladding ratio needs to be as small as possible in order to save material costs.

以上の諸条件を考慮して、安価なステンレスクラッド鋼
をコイル同志の熱間圧延法で製造しようとすると合わせ
材の板厚は、かなり薄くならざるを得ない。例えばコイ
ルで取扱い易い厚さの4,5111+の母材にクラッド
比10%で、合わせ材のステンレス鋼を張り合わせる場
合、合わせ材の厚さは0.5龍とかなシ薄くなる。この
ような組み合わせのものを熱間圧延法でクラッド材に加
工しようとしても、圧接が不可能であったり、圧接して
も十分な接合強度が得られない等の問題点があった。
In consideration of the above conditions, if an inexpensive stainless clad steel is to be manufactured by hot rolling of coils together, the thickness of the laminated material must be considerably thinner. For example, when laminating stainless steel as a laminated material with a cladding ratio of 10% to a base material of 4,5111+, which has a thickness that is easy to handle in a coil, the thickness of the laminated material will be about 0.5 mm thinner. Even if an attempt was made to process such a combination into a cladding material using a hot rolling method, there were problems such as it being impossible to press-bond them, or even if they were press-bonded, sufficient bonding strength could not be obtained.

本発明者等はこのような薄板材の熱間圧延クラッド法の
問題点を解決すべく研究を行なった結果、■ 圧延時の
接合界面の温度低下が無視できるような比較的厚い合わ
せ材を用いた熱間圧延クラッド試験の結果、圧接して十
分な接合強度を得るためには、ある一定の圧下率を与え
る必要があり、その圧下率は高温程小さくなること。
The present inventors conducted research to solve the problems of the hot rolled cladding method for thin sheet materials, and found that: The results of hot-rolled cladding tests revealed that in order to obtain sufficient joint strength through pressure welding, it is necessary to apply a certain rolling reduction rate, and that rolling reduction rate decreases as the temperature increases.

■ 圧接が不可能であったり、圧接しても十分な接合強
度が得られない原因は、合わせ材が薄い場合、合わせ材
からロールへの接舷熱伝導により、接合界面の温度低下
が著しいためであり。
■ The reason why pressure welding is not possible or sufficient joint strength cannot be obtained even if pressure welding is done is that if the laminated material is thin, the temperature at the bonding interface will drop significantly due to heat conduction from the laminated material to the roll. Yes.

■ 接合界面の温度低下を防止するため、前述の圧接に
必要な圧下率を与えるまでの、被圧延材とロールとの接
触時間が短かくなるよう、合わせ材の板厚に応じて、圧
延速度等の圧延条件を厳密に制御することによって、十
分な接合強度が得られることを見い出し本発明に至った
ものである。
■ In order to prevent a drop in temperature at the bonding interface, the rolling speed is adjusted according to the thickness of the laminated material so that the contact time between the rolled material and the roll is shortened until the reduction rate required for the above-mentioned pressure welding is achieved. The inventors have discovered that sufficient bonding strength can be obtained by strictly controlling rolling conditions such as the following, leading to the present invention.

[問題点を解決するための手段] 〈接合界面の温度低下が無視できる条件下での熱間圧延
クラッド条件〉 本発明者は合わせ材としてオーステナイト系ステンレス
鋼である5US304とフェライト系ステンレス鋼であ
る5US444、母材として軟鋼を選び、第1図に示す
試験片(a)と実験装置(b)を用いて、種種の条件下
での熱間クラッド圧延実験を行なった。
[Means for solving the problem] <Hot-rolled cladding conditions under conditions where the temperature drop at the joining interface can be ignored> The present inventor used 5US304, which is an austenitic stainless steel, and a ferritic stainless steel as the bonding materials. 5US444, mild steel was selected as the base material, and hot clad rolling experiments were conducted under various conditions using the test piece (a) and experimental apparatus (b) shown in FIG.

なお、圧延機のロール径は210111であり、加熱時
のシールドがスとしてArガスを用いた。
The roll diameter of the rolling mill was 210111 mm, and Ar gas was used as a shield gas during heating.

合わせ材の厚さ2絹、母材の厚さ4 m 、圧延速度0
.2m/secで熱間圧延クラッド試験を行ない、接合
の可否、程度を加熱温度と圧下率の関係で整理して第2
図に示した。合わせ材が、5US304の場合、加熱温
度をT (℃) 、圧下率をrとしてr=−8X10 
 XT+0.99       (3)で示される直線
ABよりも高温度、高圧下率側で圧接可能であり、かつ
十分な接合強度が得られることが分かった。
Laminated material thickness: 2 silk, base material thickness: 4 m, rolling speed: 0
.. A hot rolled cladding test was conducted at 2 m/sec, and the feasibility and degree of bonding were determined based on the relationship between heating temperature and rolling reduction.
Shown in the figure. When the laminated material is 5US304, the heating temperature is T (℃) and the rolling reduction is r = -8X10
It was found that pressure welding was possible at a higher temperature and higher rolling reduction than the straight line AB shown by XT+0.99 (3), and that sufficient bonding strength could be obtained.

5US444については第2図に示すように5US30
4の場合の直線ABよりもやや下側に位置する直線CD
より、高温度、高圧下率側で圧接可能であり、かつ十分
な接合強度が得られることが分かった。
For 5US444, 5US30 as shown in Figure 2.
Straight line CD located slightly below straight line AB in case 4
It was found that pressure welding is possible at high temperatures and high rolling reductions, and that sufficient bonding strength can be obtained.

従って、いずれの場合においても、(3)式で示される
直線ABよりも高温度、高圧下率側で接合可能であり、
十分な接合強度が得られる。
Therefore, in any case, it is possible to join at a higher temperature and a higher reduction rate than the straight line AB shown by equation (3),
Sufficient bonding strength can be obtained.

さらに、圧延速度を0.2m/secから0.1m/s
ecと小さくした場合、あるいは圧延速度を変えずに、
合わせ材の厚さのみを2絹から1朋と薄くした場合、す
なわち、圧延時の被圧延材からロールへの熱伝導により
接合界面の低下がより起こり易い条件下でも同様な実験
を行ない、5US304と5US444について、接合
のだめの加熱温度と圧下率との関係は、それぞれの鋼種
について、第2図の直線AB及び直線CDとほとんど変
らないことを確認した。従って、前述の第2図を求める
だめの圧延条件、すなわち、合わせ材の厚さ2朋、圧延
速度0.2m/secでは、被圧延材とロールの接触時
間内における、熱伝導による温度低下は接合界面まで達
しておらず、第2図は、そのような温度低下が生じない
条件下での接合条件を示していることが分かる。
Furthermore, the rolling speed was changed from 0.2 m/sec to 0.1 m/s.
If the rolling speed is reduced to ec or without changing the rolling speed,
Similar experiments were conducted when the thickness of the laminated material was reduced from 2 silk to 1 mm, that is, under conditions where the bonding interface was more likely to deteriorate due to heat conduction from the rolled material to the roll during rolling, and 5US304 It was confirmed that for each steel type, the relationship between the heating temperature of the welding pool and the rolling reduction ratio was almost the same as the straight line AB and the straight line CD in FIG. 2 for 5US444 and 5US444. Therefore, under the rolling conditions for obtaining the above-mentioned figure 2, that is, the thickness of the laminated material is 2 mm, and the rolling speed is 0.2 m/sec, the temperature decrease due to heat conduction during the contact time between the rolled material and the rolls is It can be seen that the bonding interface has not been reached, and FIG. 2 shows the bonding conditions under conditions where such a temperature drop does not occur.

く接合界面の温度低下を防止するだめの圧延クラッド製
造条件〉 熱間圧延時の接合界面の温度変化は、 (、)  ワークとロールの接触熱伝導による温度低下
の他に、 (b)  塑性加工と界面の上り現象による発熱、とい
っだ現象をともない厳密にはかなり複雑である。しかし
ながら、発明者等は特に合わせ材の板厚が薄い場合の圧
延では(a)の要因が最も重要であると考え、さらに、
第一近似として、圧延時の形状変化全無視した状態にお
ける非定常熱伝導の現象として問題をとらえ、次にその
ような仮定の妥当性を実験で確認することとした。
Manufacturing conditions for rolled cladding to prevent temperature drop at the joint interface〉 Temperature changes at the joint interface during hot rolling include (a) In addition to the temperature drop due to contact heat conduction between the workpiece and the roll, (b) plastic working Strictly speaking, it is quite complex, involving phenomena such as heat generation and heat generation due to the rising phenomenon of the interface. However, the inventors believe that factor (a) is the most important especially in rolling when the thickness of the laminated material is thin, and furthermore,
As a first approximation, we considered the problem as a phenomenon of unsteady heat conduction while ignoring all shape changes during rolling, and then confirmed the validity of such an assumption through experiments.

上記仮定のもとに、さらに、被圧延材とロールの接触時
には被圧延材の表面は被圧延材の加熱温度とロール表面
温度との中間のある一定温度に保たれると仮定すると、
接合界面に垂直方向の非定常熱伝導を考えることによっ
て、界面の温度低下を抑制するためには、c′全定数と
して、h≧c ’ 、f’ifi’F        
    (4)の条件が取立すれば良いと予想される。
Based on the above assumptions, and further assuming that the surface of the rolled material is maintained at a certain temperature between the heating temperature of the rolled material and the roll surface temperature when the rolled material and the roll are in contact,
By considering unsteady heat conduction in the direction perpendicular to the bonding interface, in order to suppress the temperature drop at the interface, h≧c', f'ifi'F as c' total constant.
It is expected that condition (4) will be met.

但し、(4)式において、 h;シース厚さ m α;合わせ材の熱拡散係数 m2/sec合わせ材の密
度をρ、比熱t” Cを熱伝導度tkとして、α;に/
ρCで与えられる。
However, in equation (4), h: sheath thickness m α: thermal diffusion coefficient of the laminated material m2/sec, density of the laminated material as ρ, specific heat t'' C as thermal conductivity tk, α;
It is given by ρC.

t:被圧延材とロールの接触時間 sec接触時間tは
幾何学的な解析から近似的に次式で与えられる。
t: Contact time between the rolled material and the roll sec The contact time t is approximately given by the following equation from geometric analysis.

t≠J而r面 /V            (5)但
し、(5)式において、 R;ロール半径9m r;圧下率 H;被圧延材全厚さ1m V;圧延速度、m/sec である。なお、圧下率rは第2図に示す直線ABで示さ
れる圧下率よりも大きい場合、実際の圧下率でなく、直
線ABで示される各加熱温度毎の圧下率を採用する。な
ぜなら、今問題にしているのは、接合に必要な圧下率を
与えるまでの温度低下であり、接合後の温度低下は問題
にならないからである。(4)式と(5)式から次式が
得られる。
t≠J and r plane /V (5) However, in equation (5), R: Roll radius 9m r: Reduction ratio H: Total thickness of rolled material 1m V: Rolling speed, m/sec. In addition, when the rolling reduction ratio r is larger than the rolling reduction ratio shown by the straight line AB shown in FIG. 2, the rolling reduction ratio for each heating temperature shown by the straight line AB is adopted instead of the actual rolling reduction ratio. This is because what we are currently concerned about is the temperature drop until the rolling reduction required for bonding is given, and the temperature drop after bonding is not a problem. The following equation is obtained from equations (4) and (5).

V ≧C’ ” (! ・J■■/ h2(6)熱拡散
係数は厳密には温度によって変るが、温度範囲を広くと
らなければほぼ一定と考えられるため、 C12α=b(定数) と置き変えることによって、 V ≧b V面7/ h2(7) となる。
V ≧C' ” (! ・J ■■ / h2 (6) Strictly speaking, the thermal diffusion coefficient changes depending on the temperature, but it is considered to be almost constant unless the temperature range is wide, so we set C12α = b (constant). By changing, V ≧ b V plane 7/ h2 (7).

本発明者等は合わせ材として0,3M1!N〜1.0韻
の5US304とSUS 444、母材として4.0門
の軟鋼を用いて、加熱温度と圧延速度を変えて実験を行
なった結果、第3図に示すように横軸に4/h” 、縦
軸に■をとることによってデーターを整理すると、いず
れの合わせ材の場合についても接合領域と非接合領域は
、はぼ原点を通る一本の直線で2分することができた。
The inventors used 0.3M1 as a laminating material! Using 5US304 and SUS444 with N~1.0 rhyme, and 4.0mm mild steel as the base material, we conducted an experiment by changing the heating temperature and rolling speed. /h”, and by organizing the data by taking ■ on the vertical axis, it was possible to divide the bonded area and non-bonded area into two by a straight line passing through the origin of each laminated material. .

従って、この直線の傾きとして、(7)式における定数
すを次のように求めることができた。
Therefore, as the slope of this straight line, the constant in equation (7) could be determined as follows.

b = 2.2 X 10  m / see従って、
(7)式は次のようになる。
b = 2.2 X 10 m/see Therefore,
Equation (7) is as follows.

V ≧2.2 x 10−6xJ酊丘/ h”    
 (8)以上述べてきたように、加熱雰囲気としてAr
、fスあるいは水素ガスやアンモニア分解ガスなどの還
元性ガスを用い、接合しようとする合わせ材と母材の表
面の酸化を防ぎながら加熱して、その時の圧下率が(3
)式で求められる圧下率rよりも大きくなるように選び
、かつ、合わせ材が例えば0.5M1ll以下と薄い場
合にも(8)式を満足する圧延速度を選択することによ
って、十分な接合強度を有した圧延クラッド材を製造す
ることが可能となる。
V ≧ 2.2 x 10-6
(8) As mentioned above, Ar is used as the heating atmosphere.
, f-sulfur or reducing gas such as hydrogen gas or ammonia decomposition gas is used to heat the mating material and base material to be joined while preventing oxidation of the surfaces, and the rolling reduction rate at that time is (3
), and by selecting a rolling speed that satisfies equation (8) even when the laminated material is thin, e.g. 0.5M1ll or less, sufficient joint strength can be achieved. It becomes possible to manufacture a rolled cladding material having

以上述べてきたように、合わせ材としてオーステナイト
系ステンレス鋼の5US304とフェライト系ステンレ
ス鋼の5US444はほぼ同じ圧延条件で母材と接合可
能である。その原因は、特にSUS 444については
高温での物理的性質のデーターが十分詳しく得られてい
ないが(4)式における熱伝導特性を左右する熱拡散係
数αの元になる熱伝導度と比熱が両鋼種ともに、900
℃〜1000℃近くではほとんど同じ値となり(日刊工
業新聞社昭和48年発刊ステンレス鋼便覧P、106〜
P、108参照)、従って、αもほとんど変らない値に
なるためと考えられる。
As described above, the austenitic stainless steel 5US304 and the ferritic stainless steel 5US444 can be joined to the base material under almost the same rolling conditions as the bonding materials. The reason for this is that, although data on the physical properties at high temperatures are not sufficiently detailed for SUS 444 in particular, the thermal conductivity and specific heat, which are the basis of the thermal diffusion coefficient α that influences the thermal conductivity characteristics in equation (4), are Both steel types are 900
℃~1000℃, the values are almost the same (Nikkan Kogyo Shimbun Publishing, 1971, Stainless Steel Handbook P, 106~
(see P, 108), therefore, it is thought that α also becomes a value that hardly changes.

以上合わせ材として、オーステナイト系ステンレスとフ
ェライト系ステンレス鋼の代表例として、それぞれ5U
S304とSUS 444を取り上げ説明してきたが、
他のオーステナイト系ステンレス鋼やフェライト系ステ
ンレス鋼も高温での機械的性質や物理的性質において、
それぞれ5US304あるいはSUS 444と本質的
に変わることはないため1本発明はこれらのステンレス
鋼を合わせ材として用いる場合も含めることができる。
The above laminating materials are representative examples of austenitic stainless steel and ferritic stainless steel, each with 5U
I have explained S304 and SUS 444, but
Other austenitic stainless steels and ferritic stainless steels also have poor mechanical and physical properties at high temperatures.
Since they are not essentially different from 5US304 or SUS444, the present invention can also include the use of these stainless steels as laminated materials.

また、同様な理由から、オーステナイト相とフェライト
相の両相が混合したいわゆる二相ステンレス鋼である場
合にも適用することができる。
Further, for the same reason, it can also be applied to a so-called duplex stainless steel in which both austenite and ferrite phases are mixed.

また、母材としては、軟鋼に限らず炭素鋼や高張力鋼、
あるいは合わせ材とは別のステンレス鋼等を選ぶことが
できる。
In addition, the base material is not limited to mild steel, but also carbon steel, high-strength steel,
Alternatively, a material other than the laminating material, such as stainless steel, can be selected.

さらに、母材の片面のみに合わせ材を配した2層クラッ
ド鋼に限らず、両面に合わせ材を配した3層クラッド鋼
の製造方法としても採用することが可能であり、その場
合に、もし合わせ材の板厚が異なる場合は薄い方の板厚
を用いて(2)式で圧延速度の下限値を求めれば良い。
Furthermore, it is possible to adopt the manufacturing method not only for two-layer clad steel with laminating material placed on only one side of the base metal, but also for three-layer clad steel with laminated material placed on both sides, and in that case, if If the plate thicknesses of the laminated materials are different, the lower limit value of the rolling speed may be determined using equation (2) using the thinner plate thickness.

[発明の実施例] 本発明にかかる方法を第4図に示す装置を用いて実施し
た。加熱は被圧延材への直接通電による抵抗加熱として
、接合面の酸化を防止するため、炉内にはアンモニア分
解ガスを導入した。なおロール径は210m+1である
。このような装置を用いて、厚さ4.Q urnの軟鋼
5PCHを母材に、厚さ0,5本の5US304ステン
レス鋼2枚を合わせ材として、3層クラッド鋼の製造を
試みた。なお、加熱温度は1000℃として、圧下率と
圧延速度はそれぞれ(1)式と(2)式を満足している
0、30と0.2m/aecとした。
[Examples of the Invention] The method according to the invention was carried out using the apparatus shown in FIG. Heating was done by resistance heating by directly applying electricity to the rolled material, and ammonia decomposition gas was introduced into the furnace to prevent oxidation of the joint surfaces. Note that the roll diameter is 210 m+1. Using such a device, thickness 4. An attempt was made to manufacture three-layer clad steel using Qurn's mild steel 5PCH as a base material and two sheets of 5US304 stainless steel with a thickness of 0.5 as a laminated material. The heating temperature was 1000° C., and the rolling reduction rate and rolling speed were 0, 30, and 0.2 m/aec, respectively, which satisfied equations (1) and (2).

以上の条件で製造した3層熱間圧延クラッド材は、接合
強度は十分であり、途中焼鈍を行なうことなく、全圧下
率的70%で、1.0MIIまで容易に冷間圧延するこ
とができた。
The three-layer hot-rolled clad material produced under the above conditions has sufficient joint strength and can be easily cold-rolled to 1.0 MII at a total reduction of 70% without intermediate annealing. Ta.

このようにして得たクラッド材の一部について1000
℃×10分・急冷の熱処理を行ない、以下に結果を示す
ように接合強度試験、引張試験、曲げ試験及び断面の組
織観察を行なった。
1000 for a part of the cladding material thus obtained
A heat treatment of quenching at ℃×10 minutes was performed, and a joint strength test, a tensile test, a bending test, and a cross-sectional microstructural observation were performed as shown below.

合わせ材と母材の接合強度の測定には、まず約lQmm
角のクラッド試験片を切り出し、両面の合わせ材に、引
張試験機に取り付けるためのホルダーとして用いた2本
の直径I Q tart 、長さ約80龍の各端面を銀
ロウで接合して、供試材とした。このような試験片を用
いて、インストロ/試験機を用いて引張試験を行ない接
合面に垂直方向の強度を調べだ。その結果、いずれの試
験片においても、29 Kq/ mrtr2以上の応力
でロウ付は部で破断しており、合わせ材と母材の接合部
の強度はそれ以上の十分な強度を有していることが知ら
れた。
To measure the bonding strength between the laminated material and the base material, first
A square cladding test piece was cut out, and each end face of two pieces with a diameter of I Q tart and a length of about 80 mm, which were used as holders for attaching to a tensile testing machine, were joined with silver solder to the laminated material on both sides. It was used as a sample material. Using such a test piece, a tensile test was conducted using an intro/testing machine to examine the strength in the direction perpendicular to the joint surface. As a result, in all of the test pieces, the brazing part broke at a stress of 29 Kq/mrtr2 or more, and the strength of the joint between the laminated material and the base material was sufficient to exceed that. It was known that

次に、JISZ220113B号試験片を用いて行なっ
た引張試験の結果は表1に示すように、表2に参考値と
して示す5US304のJIS規定値との比較において
も遜色無い特性を有していることが判った。
Next, as shown in Table 1, the results of the tensile test conducted using the JIS Z220113B test piece showed that it had properties that were comparable to the JIS specified values for 5US304, which are shown as reference values in Table 2. It turns out.

また1曲げ半径4IIIIIにて実施した曲げ試験の結
果でも、接合界面の剥離や割れは認められず、十分な曲
げ延性を有していることが判った。
Further, as a result of a bending test carried out at a bending radius of 4III, no peeling or cracking was observed at the bonding interface, indicating that it had sufficient bending ductility.

また、クラッド材の断面の組織は第5図に示すように、
接合界面近傍には炭化物などの析出物は認められず、健
全な組織となっていた。
In addition, the cross-sectional structure of the cladding material is as shown in Figure 5.
No precipitates such as carbides were observed near the joint interface, indicating a healthy structure.

実施例28 合わせ材として厚さQ、 5 rryrのフェライト系
ステンレス鋼5US444.母材として厚さ4龍の軟鋼
5PCHを用いて、実施例1と同じ熱間圧延クラッド条
件及び冷間圧延条件で、厚さl、 Q mmの3層クラ
ッド材を得た。但し、この場合、試験前の最終の熱処理
条件は900℃XIO分・急冷とした。
Example 28 Ferritic stainless steel 5US444 with a thickness of Q and 5 mm was used as a laminating material. Using mild steel 5PCH with a thickness of 4 mm as the base material, a three-layer clad material with a thickness of l and Q mm was obtained under the same hot rolling cladding conditions and cold rolling conditions as in Example 1. However, in this case, the final heat treatment conditions before the test were rapid cooling at 900°C for XIO minutes.

このようにして作製したクラッド材について、やはり実
施例1と同機にして、接合強度試験、曲げ引張試験、曲
げ試験及び断面の組織観察を行なった。
The cladding material thus produced was also subjected to a bonding strength test, a bending tensile test, a bending test, and a cross-sectional structure observation using the same machine as in Example 1.

接合強度試験の結果は、いずれの試験片においても27
Ky/mm2以上の応力でロウ付は部で破断しており、
合わせ材と母材の接合部の強度は十分大きいことが知ら
れた。
The results of the joint strength test were 27 for all test pieces.
The brazing part broke at a stress of more than Ky/mm2,
It is known that the strength of the joint between the laminated material and the base material is sufficiently high.

引張試、験の結果は、表3に示すように、表4に参考と
して示した5US444のJIS規定値との比較におい
ても遜色ない特性を有していることが判明した。
As shown in Table 3, the results of the tensile test and test revealed that the material had properties comparable to those of the JIS specified values of 5US444 shown in Table 4 as a reference.

また、曲げ試験の結果、接合界面の剥離や割れは認めら
れず十分な曲げ延性を有していた。
In addition, as a result of the bending test, no peeling or cracking was observed at the bonding interface, and it had sufficient bending ductility.

また、クラッド材の断面の顕微鏡組織観察の結果、接合
界面近傍には加工性と機械的性質に有害な炭化物などの
析出物は認められなかった。
Furthermore, as a result of microscopic microstructural observation of the cross section of the cladding material, no precipitates such as carbides harmful to workability and mechanical properties were observed near the joint interface.

[発明の効果] 以上のように、本発明によればコイル状態での取り扱い
の容易な6朋厚さ以下の母材鋼板を用いても、その厚さ
に応じて十分薄いステンレス鋼合わせ材を選択すること
が可能となり、クラッド比の小さなステンレスクラッド
鋼を歩留りよく、高能率で生産することができるため、
コスト低減に極めて有効である。
[Effects of the Invention] As described above, according to the present invention, even if a base steel plate with a thickness of 6 mm or less, which is easy to handle in a coiled state, is used, a sufficiently thin stainless steel laminated material can be made according to the thickness. Stainless clad steel with a small cladding ratio can be produced with high yield and high efficiency.
It is extremely effective in reducing costs.

また本発明によれば、組立て圧延法、爆着圧延法、鋳込
圧延法と比べて、合わせ材と母材が接合後、高温に保持
される時間が極めて短かいため、母材から合わせ材のス
テンレス鋼へのCの拡散力はとんど生じないため、接合
界面近傍における、クラッド材の機械的性質や加工性に
有害なCr系炭化物の析出が抑制されるため、優れた特
性を有したステンレスクラッド鋼を製造することができ
る。
Furthermore, according to the present invention, compared to the assembly rolling method, explosion rolling method, and cast rolling method, the time during which the laminate material and the base material are kept at high temperature after joining is extremely short, so that the laminate material is Since the diffusion force of C into stainless steel rarely occurs, the precipitation of Cr-based carbides that are harmful to the mechanical properties and workability of the cladding material near the bonding interface is suppressed, so it has excellent properties. It is possible to produce stainless steel clad steel.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は熱間圧延クラッド試験における接合条件を求め
るのに用いた試験片の形状と試験装置の概略を示す図。 第2図は合わせ材が厚さ2龍の5US304と5US4
44の場合について接合可能な加熱温度と圧下率の関係
を示す図。 第3図は合わせ材が5US304と5US444°の場
合について、圧延速度V、!: J■r7h2の関係で
整理した接合可能な領域を示す図。 第4図は本発明の実施例で用いた熱間圧延クラッド製造
装置の概略模式図。 第5図は本発明の方法で製造した5US304ステンレ
スクラッド鋼の接合界面近傍の断面の金属組織を示す図
である。 1、la、lb・・・合わせ材、2・・・母材、3・・
・ダミー板、4・・・Arガス導入孔、5・・・加熱炉
、6・・・酸化防止加熱治具、7・・・熱間圧延ロール
、8a、8b・・・合わせ材アンコイラ−19・・・母
材アンコイラ−110・・・雰囲気直接通電加熱炉、1
1・・・アンモニア分解ガス導入孔、12・・・クラッ
ド材コイラー。
FIG. 1 is a diagram showing the shape of the test piece and the outline of the testing apparatus used to determine the bonding conditions in the hot rolled cladding test. Figure 2 shows 5US304 and 5US4 with a thickness of 2mm.
FIG. 4 is a diagram showing the relationship between the weldable heating temperature and the rolling reduction rate in case No. 44; Figure 3 shows rolling speeds V, ! for the cases where the laminated materials are 5US304 and 5US444°. : A diagram showing joinable areas organized according to the relationship of J■r7h2. FIG. 4 is a schematic diagram of a hot rolled clad manufacturing apparatus used in an example of the present invention. FIG. 5 is a diagram showing the metal structure of a cross section near the joint interface of 5US304 stainless clad steel manufactured by the method of the present invention. 1, la, lb... laminated material, 2... base material, 3...
・Dummy plate, 4... Ar gas introduction hole, 5... Heating furnace, 6... Oxidation prevention heating jig, 7... Hot rolling roll, 8a, 8b... Laminated material uncoiler-19 ...Base material uncoiler-110...Atmosphere direct current heating furnace, 1
1... Ammonia decomposition gas introduction hole, 12... Clad material coiler.

Claims (4)

【特許請求の範囲】[Claims] (1)ステンレス鋼を合わせ材としたクラッド鋼を熱間
圧延法で製造するに際して、不活性ガス雰囲気中あるい
は還元性ガス雰囲気中で加熱した合わせ材と母材とを、
加熱温度をT(℃)としたときに r=−8×10^−^4×T+0.99(1)から求め
られる圧下率r以上で圧延を行ない、かつ、ロール半径
をR(m)、被圧延材の全厚さをH(m)、合わせ材の
ステンレス鋼の厚さをh(m)とし、さらに(1)式で
求められる各加熱温度毎のrを用いた場合に V=2.2×10^−^6×√(RHr)/h^2(2
)なる関係式から求められる圧延速度V(m/sec)
以上の圧延速度で圧延することを特徴とするステンレス
クラッド鋼の製造方法。
(1) When producing clad steel using a hot rolling method using stainless steel as a laminated material, the laminated material and base material are heated in an inert gas atmosphere or a reducing gas atmosphere.
When the heating temperature is T (℃), rolling is performed at a rolling reduction rate r or more determined from r = -8 × 10^-^4 × T + 0.99 (1), and the roll radius is R (m), When the total thickness of the rolled material is H (m), the thickness of the stainless steel of the mating material is h (m), and r is used for each heating temperature determined by equation (1), V = 2. .2×10^-^6×√(RHr)/h^2(2
) The rolling speed V (m/sec) obtained from the relational expression
A method for producing stainless clad steel, which comprises rolling at a rolling speed of at least 100 mL.
(2)合わせ材がオーステナイト系ステンレス鋼である
特許請求の範囲第1項記載のステンレスクラッド鋼の製
造方法。
(2) The method for manufacturing stainless clad steel according to claim 1, wherein the laminated material is austenitic stainless steel.
(3)合わせ材がフェライト系ステンレス鋼である特許
請求の範囲第1項記載のステンレスクラッド鋼の製造方
法。
(3) The method for manufacturing stainless clad steel according to claim 1, wherein the bonding material is ferritic stainless steel.
(4)合わせ材がオーステナイト・フェライト2相ステ
ンレス鋼である特許請求の範囲第1項記載のステンレス
クラッド鋼の製造方法。
(4) The method for manufacturing stainless clad steel according to claim 1, wherein the laminated material is an austenitic-ferritic duplex stainless steel.
JP25072386A 1986-10-23 1986-10-23 Manufacturing method of stainless clad steel Expired - Lifetime JPH0647180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25072386A JPH0647180B2 (en) 1986-10-23 1986-10-23 Manufacturing method of stainless clad steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25072386A JPH0647180B2 (en) 1986-10-23 1986-10-23 Manufacturing method of stainless clad steel

Publications (2)

Publication Number Publication Date
JPS63104789A true JPS63104789A (en) 1988-05-10
JPH0647180B2 JPH0647180B2 (en) 1994-06-22

Family

ID=17212089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25072386A Expired - Lifetime JPH0647180B2 (en) 1986-10-23 1986-10-23 Manufacturing method of stainless clad steel

Country Status (1)

Country Link
JP (1) JPH0647180B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017001044A (en) * 2015-06-05 2017-01-05 新日鐵住金ステンレス株式会社 Extremely thick stainless steel plate and manufacturing method thereof
WO2018091562A1 (en) * 2016-11-18 2018-05-24 Sms Group Gmbh Method and device for producing a continuous strip-shaped composite material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017001044A (en) * 2015-06-05 2017-01-05 新日鐵住金ステンレス株式会社 Extremely thick stainless steel plate and manufacturing method thereof
WO2018091562A1 (en) * 2016-11-18 2018-05-24 Sms Group Gmbh Method and device for producing a continuous strip-shaped composite material
JP2020513321A (en) * 2016-11-18 2020-05-14 エス・エム・エス・グループ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method and apparatus for producing continuous strip composite material
US11185943B2 (en) 2016-11-18 2021-11-30 Sms Group Gmbh Method and device for producing a continuous strip-shaped composite material

Also Published As

Publication number Publication date
JPH0647180B2 (en) 1994-06-22

Similar Documents

Publication Publication Date Title
TWI295594B (en) Clad alloy substrates and method for making same
CN100592956C (en) Laser welding method for hot rolling and the apparatus therefor
JPH04197588A (en) Production of clad steel plate excellent in toughness at low temperature
JPH0636993B2 (en) Method for producing stainless clad steel sheet with excellent corrosion resistance and toughness
JPS63104789A (en) Production of stainless clad steel
GB2067437A (en) Method for producing clad steel plate
JPH0475791A (en) Production of clad steel plate
JPS6188986A (en) Manufacture of titanium clad material
JPS59185588A (en) Production of clad steel plate
JPS58387A (en) Production of composite roll
JPH07185839A (en) Production of high-al-content ferritic stainless steel foil
CN114850675B (en) Laser welding method for 1000 MPa-grade cold-rolled high-strength steel hot-rolled substrate
JPH0665686A (en) Austenitic stainless steel cast clad steel material excellent in workability and its production
Pan et al. Study on microstructure and mechanical properties of a new type of low Ni duplex stainless steel resistance spot welding
CN116160753B (en) Single-sided stainless steel composite board and preparation method thereof
JPS6163379A (en) Manufacture of clad steel plate
JPS63260683A (en) Manufacture of two-phase stainless steel clad steel pipe
JPS62124229A (en) Manufacture of stainless clad steel sheet superior in workability and corrosion resistance
JPS6149365B2 (en)
JPS5935826A (en) Manufacture of small aperture and long-sized double pipe
KR20120074636A (en) High strength austenitic laser welding steel pipe and method for manufacturing the same
JPH09182981A (en) Manufacture of clad material
JPH11169946A (en) Production of steel tube
JP2000042758A (en) Manufacture of titanium-clad steel plate excellent in workability and joining strength of welded part
CN116351871A (en) Stainless steel composite board with excellent plate shape and preparation method thereof