JPS63104496A - Integrated semiconductor laser - Google Patents

Integrated semiconductor laser

Info

Publication number
JPS63104496A
JPS63104496A JP25256186A JP25256186A JPS63104496A JP S63104496 A JPS63104496 A JP S63104496A JP 25256186 A JP25256186 A JP 25256186A JP 25256186 A JP25256186 A JP 25256186A JP S63104496 A JPS63104496 A JP S63104496A
Authority
JP
Japan
Prior art keywords
layer
type
optical waveguide
semiconductor laser
active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25256186A
Other languages
Japanese (ja)
Inventor
Yutaka Nagai
豊 永井
Yutaka Mihashi
三橋 豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP25256186A priority Critical patent/JPS63104496A/en
Publication of JPS63104496A publication Critical patent/JPS63104496A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures

Abstract

PURPOSE:To contrive to couple each active region with each other at low threshold value, in high efficiency and also easily, by a method wherein an optical waveguide layer, which has a composition of Al of the same degree as that of an active layer and is positioned in a height of the roughly same degree as that of the active region of the active layer, is provided on the upper layer of a current blocking layer. CONSTITUTION:The composition ratio of Al of an N-type AlalphaGa1-alphaAs optical waveguide layer 4 is smaller than of its neighboring P-type AlyGa1-yAs second clad layer 5 and N-type AlzGa1-zAs current blocking layer 3. In short, there is a relation of alpha<y and z. A refractive index becomes smaller as a composition ratio of Al becomes larger. Accordingly, the optical waveguide layer 4 functions as an optical waveguide to laser light which is generated in an active layer 6 of a composition ratio of Al of the same degree as that of the optical waveguide layer 4 because the optical waveguide layer 4 is sandwiched by the second clad layer 5 and the current blocking layer 3, which each have a refractive index smaller than that of the layer 4. Therefore, the laser light generated in each stripe is easily coupled with each other.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、集積型半導体レーザ装置に関し、特に低し
きい値、高効率で発振する高出力用集積型半導体レーザ
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an integrated semiconductor laser device, and more particularly to a high-output integrated semiconductor laser device that oscillates with a low threshold and high efficiency.

〔従来の技術〕[Conventional technology]

第2図はW、ストレイファーらが、レーザフォーカス/
エレクトロ オプティクス、100頁、1984年(L
aser Focus/ELECTRO0PTIC3p
、100(1984))に示している従来の集積型半導
体レーザ装置の斜視図である。
Figure 2 shows the laser focus/
Electro Optics, 100 pages, 1984 (L
aser Focus/ELECTRO0PTIC3p
100 (1984)) is a perspective view of a conventional integrated semiconductor laser device.

図中、13はn型GaAs基板、7はn型A1yGaI
−yASAsクラッド層はn型、P型またはアンドープ
のA1.Ga、xAs活性層、5はP型Aly Ga+
−y Asクラッド層、14はn型GaAs電流ブロッ
ク層であり、また15は窒化シリコン絶縁膜である。こ
こで窒化シリコン膜15には10本のストライプ状窓が
開けてあり、Zn拡散によりその下のn形電流ブロック
層14中にP整反転領域16を形成している。9.10
はそれぞれn型GaAs基板13及びP型反転領域16
上に取り付けられた電極である。
In the figure, 13 is an n-type GaAs substrate, 7 is an n-type A1yGaI
-yASAs cladding layer is n-type, p-type or undoped A1. Ga, xAs active layer, 5 is P-type Aly Ga+
-y As cladding layer, 14 is an n-type GaAs current blocking layer, and 15 is a silicon nitride insulating film. Here, ten stripe-shaped windows are opened in the silicon nitride film 15, and a P-regular inversion region 16 is formed in the n-type current blocking layer 14 below by Zn diffusion. 9.10
are an n-type GaAs substrate 13 and a p-type inversion region 16, respectively.
electrodes attached to the top.

このレーザ構造では電流はP整反転領域16を通って流
れ、その下方に位置する活性層領域12においてレーザ
発振し、またそれぞれの活性領域は光のしみ出しのため
にカップリングが可能となり、コヒーレント光が得られ
る。
In this laser structure, current flows through the P-inversion region 16, lasing occurs in the active layer region 12 located below it, and each active region can be coupled for light seepage, resulting in coherent You can get light.

また他方、M O−CV D (Metal Orga
nic−Chemical Vapor Deposi
tion)法の特徴を生かした別の従来の半導体レーザ
装置としてS B A (Self aligned 
1aser with Bent Active 1a
yer)レーザがある。第3図は三橋らが昭和60年春
季応用物理学会関係連合講演会30a−ZB−4で報告
したSBAレーザの斜視図である。図中13はP型Ga
As基板、2はP形AlyGa、yAs第1クラッド層
、14はn型GaAs電流ブロック層である。この電流
ブロック層14には断面が逆台形の溝11が形成されて
おり、その底部でP型AlyG a I−y A s第
1クラッド層2が露出している。
On the other hand, M O-CV D (Metal Orga
nic-Chemical Vapor Deposit
Another conventional semiconductor laser device that takes advantage of the characteristics of the SBA (Self aligned) method is the SBA (Self aligned) method.
1aser with Bent Active 1a
yer) There is a laser. FIG. 3 is a perspective view of the SBA laser that Mitsuhashi et al. reported at the 1985 Spring Conference of Applied Physics Association Association Conference 30a-ZB-4. 13 in the figure is P-type Ga
An As substrate, 2 a P-type AlyGa, yAs first cladding layer, and 14 an n-type GaAs current blocking layer. A groove 11 having an inverted trapezoidal cross section is formed in the current blocking layer 14, and the P-type AlyGaI-yAs first cladding layer 2 is exposed at the bottom thereof.

更に5はP型AI、Ga、−yAs第2クラッド層、6
はP型、n型またはアンドープのAlxGa+−xAs
活性層、7はn型A 1 yG a l−y A sク
ラッド層、8はn型GaAsコンタクト層であり、また
9、10はそれぞれn型GaAsコンタクト層8及びP
型GaAs基板13に取り付けられた電極である。
Furthermore, 5 is a P-type AI, Ga, -yAs second cladding layer, 6
is P-type, n-type or undoped AlxGa+-xAs
7 is an n-type A1yGalyAs cladding layer, 8 is an n-type GaAs contact layer, and 9 and 10 are n-type GaAs contact layers 8 and P, respectively.
This is an electrode attached to a type GaAs substrate 13.

このレーザ構造においては電流はn型GaAs電流ブロ
ック層14のストライプ状溝の開口部11を通って流れ
、活性層6の開口部11の上方に位置する部分12が活
性層領域となる。またMO−CVD法を用いることによ
り活性層6を溝形状と近い形に屈曲させることができる
ため、屈曲部分において水平方向に屈折率差を生じこの
方向の光間じこめが可能になる。これにより低しきい値
化、高効率化が達成できる。
In this laser structure, current flows through the opening 11 of the striped groove in the n-type GaAs current blocking layer 14, and the portion 12 located above the opening 11 in the active layer 6 becomes the active layer region. Further, by using the MO-CVD method, the active layer 6 can be bent into a shape similar to a groove, so that a refractive index difference occurs in the horizontal direction at the bent portion, and light can be confined in this direction. This makes it possible to achieve lower threshold values and higher efficiency.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第2図に示した従来の集積型半導体レーザ装置では活性
領域12が水平方向には光の閉じ込め効果がないため、
光のカンプリングが容易である反面、低しきい値化、高
効率化が困難であった。また第3図に示した従来のSB
Aレーザを高出力化のために集積化した場合、n型電流
ブロック層14としてGaAsを用いるために、活性領
域12からしみ出した光はこのGaAs電流ブロック層
14によって吸収され、各活性領域間でのカップリング
が困難となる問題がある。
In the conventional integrated semiconductor laser device shown in FIG. 2, the active region 12 has no light confinement effect in the horizontal direction;
Although it is easy to compress light, it has been difficult to lower the threshold and increase efficiency. Also, the conventional SB shown in Figure 3
When the A laser is integrated for high output, since GaAs is used as the n-type current blocking layer 14, the light seeping out from the active region 12 is absorbed by the GaAs current blocking layer 14, and the light leaks between each active region. There is a problem that coupling is difficult.

この発明は上記のような問題点を解消するためになされ
たものであり、SBAレーザを集積化し、低しきい値、
高効率でしかも容易に各活性領域がカップリングするよ
うな高出力用集積型半導体レーザを得ることを目的とす
る。
This invention was made to solve the above-mentioned problems, and it integrates SBA lasers to achieve low threshold and
It is an object of the present invention to obtain a high-output integrated semiconductor laser in which each active region is coupled easily with high efficiency.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る集積型半導体レーザ装置は、集積型半導体
レーザにおいて電流ブロック層の上層にそのAIMi成
が活性層の組成と同程度であり、上記活性層の活性領域
とほぼ同程度の高さに位置する光導波層を備えたもので
ある。
In the integrated semiconductor laser device according to the present invention, in the integrated semiconductor laser, the upper layer of the current blocking layer has an AIMi composition having the same composition as the active layer, and has a height approximately the same as the active region of the active layer. It is equipped with an optical waveguide layer located thereon.

〔作用〕[Effect]

この発明においては集積型半導体レーザにおいて電流ブ
ロック層の上層にそのA1組成が活性層の組成と同程度
であり、上記活性層の活性領域とほぼ同程度の高さに位
置する光導波層を備えたから、それぞれのストライプ中
の活性層からしみ出した光が該光導波層中を導波するこ
とにより、容易に各活性層間でのカップリングが生じる
In the present invention, an integrated semiconductor laser includes an optical waveguide layer above the current blocking layer, the A1 composition of which is approximately the same as that of the active layer, and located at approximately the same height as the active region of the active layer. Therefore, the light seeping out from the active layer in each stripe is guided through the optical waveguide layer, thereby easily causing coupling between the active layers.

〔実施例〕〔Example〕

以下、この発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例による集積型半導体レーザ装
置を示す断面図である。第1図において、1はP型Ga
As基板、2は基板上に形成されたP型Al、Gap−
yAs第1クラッド層、3は第1クラッド層2上に形成
されたn型A 、1 z G a +−zAs電流ブロ
ック層、4は電流ブロック層3上に形成されたn型層t
ダG a+−pc A s光導波層である。ここで、電
流ブロック層3、先導波層4には複数本のストライプ状
溝11 (この図では3本)が形成されている。この溝
の断面形状は逆台形の形をしており、第1クラッド層2
が溝底部において露出するうようになっている。このよ
うな溝の形成法としては、フォトレジストをマスクとし
て例えば過酸化水素水:アンモニア水=20:1の混合
液等によりn型A I E G a I−2A s層3
、n型A IOL GaI−i As層4をエツチング
しP型Aly GaI−y As第1クラッド層2を露
出させることにより形成できる。ここでこのエツチング
液でAIC;aAsをエツチングした場合、エツチング
速度はA1組成比0.4を境として大きく変化し、0.
4以上ではエツチング速度はほぼ0となる。従って、n
型Al、Gal−yAs電流ブロック層3、n型A 1
 i G a 1.、□〆As光導波層4のそれぞれの
組成比を0.4以下とし、P型A I、Ga、−yAs
第1クラッド層2のA1組成比yを0.4以上、例えば
0.45に設定しておけば、深さ方向のエツチングは選
択的になされ、n型AlおG a +−g A s電流
ブロック層3、n型AlべGap−、(As光導波層4
のみエツチングされ、第1クラッド層2の表面でエツチ
ングは事実上停止する。従ってこのエツチング液によっ
てストライプ形成を行えば、溝形状、特に溝の深さを再
現性よく制御することができる。
FIG. 1 is a sectional view showing an integrated semiconductor laser device according to an embodiment of the present invention. In Figure 1, 1 is P-type Ga
As substrate, 2 is P-type Al formed on the substrate, Gap-
yAs first cladding layer; 3 is n-type A, 1zGa +-zAs current blocking layer formed on first cladding layer 2; 4 is n-type layer t formed on current blocking layer 3;
This is an optical waveguide layer. Here, a plurality of striped grooves 11 (three in this figure) are formed in the current blocking layer 3 and the waveguide layer 4. The cross-sectional shape of this groove is an inverted trapezoid, and the first cladding layer 2
is exposed at the bottom of the groove. As a method for forming such grooves, for example, the n-type AIEGaI-2A s layer 3 is formed using a mixed solution of hydrogen peroxide and ammonia water = 20:1 using a photoresist as a mask.
, by etching the n-type A IOL GaI-i As layer 4 and exposing the P-type Aly GaI-y As first cladding layer 2 . When AIC; aAs is etched with this etching solution, the etching rate changes greatly after the A1 composition ratio reaches 0.4, and the etching rate changes significantly when the A1 composition ratio reaches 0.4.
When the value is 4 or more, the etching rate becomes almost 0. Therefore, n
Type Al, Gal-yAs current blocking layer 3, n-type A 1
i G a 1. , □〆As optical waveguide layer 4 has a composition ratio of 0.4 or less, and P-type AI, Ga, -yAs
If the A1 composition ratio y of the first cladding layer 2 is set to 0.4 or more, for example 0.45, etching in the depth direction can be performed selectively, and the n-type Al or Ga + -g A s current can be etched selectively. Block layer 3, n-type Albe Gap-, (As optical waveguide layer 4
The etching is substantially stopped at the surface of the first cladding layer 2. Therefore, if stripes are formed using this etching solution, the groove shape, especially the groove depth, can be controlled with good reproducibility.

ストライプ形成後、順次P型梁2クラッド層5、P型、
n型またはアンドープのA I X G a I−X 
AS活性層6、n型A 1 y G a l−y A 
gクラッド層7、n型GaAsコンタクト層8を成長さ
せる。
After forming the stripes, the P-type beam 2 cladding layer 5, P-type,
n-type or undoped A I X G a I-X
AS active layer 6, n-type A 1 y Ga ly-y A
A g-cladding layer 7 and an n-type GaAs contact layer 8 are grown.

なお各層の厚さtは第1クラッド層2では1=1〜1.
5 pm、n型電流ブDy7りl’ii3は0.5〜1
.0μm、また活性領域12とn型光導波層4は基板面
に平行でかつ同一平面内に位置するようにする。
Note that the thickness t of each layer is 1=1 to 1.
5 pm, n-type current block Dy7li'ii3 is 0.5 to 1
.. 0 μm, and the active region 12 and the n-type optical waveguide layer 4 are arranged parallel to the substrate surface and in the same plane.

また活性層6の層厚t、は例えば0.1 μm、光導波
層4の層厚t2は活性層厚t、と同しかあるいは光導波
の効果を失わない厚さ例えばtz−o、3μmとすれば
よい。
Further, the layer thickness t of the active layer 6 is, for example, 0.1 μm, and the layer thickness t2 of the optical waveguide layer 4 is the same as the active layer thickness t, or a thickness that does not lose the optical waveguide effect, for example, tz-o, 3 μm. do it.

また各層のAIIJ成比はx<y、X<z、 α<2と
し、またA 1 y Cr a + −X A s活性
層6で生じるレーザ光がそれぞれのストライプ間でカッ
プリングするために、αをAly Ga、−o(As層
4が光導波層として機能するようなA1組成にする。
In addition, the AIIJ ratio of each layer is x<y, X<z, and α<2, and since the laser light generated in the A 1 y Cr a + -X As active layer 6 is coupled between each stripe, α is set to A1 composition such that Aly Ga, -o (As layer 4 functions as an optical waveguide layer).

例としては、X=α−0,1、2=0.25.  y 
=0.4というような組成があげられる。 ストライプ
の幅は例えば活性層の溝上の平坦部で約2μm、ストラ
イプ間隔約5μm程度である。
For example, X=α-0,1, 2=0.25. y
=0.4. The width of the stripes is, for example, about 2 μm at the flat portion on the groove of the active layer, and the stripe interval is about 5 μm.

なお、9.10はそれぞれn型GaAsコンタクト層8
及びp型GaAs基板11に取り付けられた電極である
In addition, 9.10 is an n-type GaAs contact layer 8, respectively.
and an electrode attached to the p-type GaAs substrate 11.

次に動作について説明する。Next, the operation will be explained.

第1図においてP側電極10に正、n側電極9に負の電
圧を印加すると、n型層tgGa+−yAs電流ブロッ
ク層3とn型層l〆Qa、−〆As光導波層4が両電極
間に存在する領域ではこれとP−AlyGa+−y A
s第2クラッド層5の間のp−n接合が逆バイアスにな
るために電流が流れず、ストライプ状溝11にのみ電流
が流れ、この部分の活性領域12でレーザ発振が起こる
。このとき活性領域12から水平方向にしみ出した光が
隣りの活性領域に入り込むために各活性領域において光
はカップリングし、コヒーレントな高出力光が得られる
。集積型半導体レーザにおいては各活性領域間に光を吸
収する領域が存在すると、光のカンプリングの妨げとな
る。従来のSBAレーザではブロック層としてGaAs
を用いていたため、活性層からしみ出した光はここで吸
収されカップリングが困難であった。実施例においては
n型A1m G a +−CIA s光導波層4のA1
組成比は、隣接するp型Aly GaI−y As第2
クラッド層5、n型A lllGa+−++ As電流
ブロック層3に較べてA1組成比が小さい。つまりα<
y、zの関係がある。屈折率はA1組成比が大きくなる
につれて小さくなる。従って、n型A1ぺGa1−〆A
s光導波層4はより屈折率の小さいp型層lyGa+−
yAs第2クラッド層5、n型A 12 G a +−
vAs電流ブロック層3ではさまれているため、n型A
 loz Ga、−c< As光導波層4と同程度のA
1組成比の活性層6で生じるレーザ光に対しては光導波
路として機能する。このため容易に各ストライプで生じ
たレーザ光がカップリングする。
In FIG. 1, when a positive voltage is applied to the P-side electrode 10 and a negative voltage is applied to the n-side electrode 9, the n-type layer tgGa+-yAs current blocking layer 3 and the n-type layer l〆Qa,-〆As optical waveguide layer 4 are In the region between the electrodes, this and P-AlyGa+-y A
Since the pn junction between the s-second cladding layers 5 is reverse biased, no current flows, and current flows only through the striped grooves 11, causing laser oscillation in the active region 12 in this portion. At this time, the light seeping out from the active region 12 in the horizontal direction enters the adjacent active region, so that the light is coupled in each active region, and coherent high-output light is obtained. In an integrated semiconductor laser, if a region that absorbs light exists between each active region, it will impede the camping of light. Conventional SBA lasers use GaAs as a blocking layer.
Since the active layer was used, the light seeping out from the active layer was absorbed here, making coupling difficult. In the embodiment, A1 of the n-type A1m Ga + -CIA s optical waveguide layer 4
The composition ratio is as follows: adjacent p-type AlyGaI-yAs second
The cladding layer 5 has a smaller A1 composition ratio than the n-type All1Ga+-++As current blocking layer 3. In other words, α<
There is a relationship between y and z. The refractive index decreases as the A1 composition ratio increases. Therefore, n-type A1peGa1−〆A
The s-light waveguide layer 4 is a p-type layer lyGa+- with a smaller refractive index.
yAs second cladding layer 5, n-type A 12 Ga +-
Since it is sandwiched between vAs current blocking layers 3, n-type A
loz Ga, -c< As A similar to that of the optical waveguide layer 4
It functions as an optical waveguide for laser light generated in the active layer 6 having a composition ratio of 1. Therefore, the laser beams generated in each stripe easily couple.

なお上記実施例においては、G a A s / A 
I GaAs系レーザについて説明したが、本発明は他
の材料を用いた、例えばI n P / I n G 
a A s P系の半導体レーザについても適用できる
In addition, in the above example, G a A s / A
Although I GaAs-based lasers have been described, the present invention is applicable to lasers using other materials, such as I n P/I n G
The present invention can also be applied to aAsP semiconductor lasers.

また上記実施例においては説明の便宜上、P型箱1クラ
ッド層2とP型巣2クラッド層5、n型第2クラッド層
7のAl組成比を同一組成比としたが、上記実施例中で
述べた各層のA1組成比の関係内でなら異なってもよい
事はいうまでもない。
In addition, in the above embodiment, for convenience of explanation, the Al composition ratios of the P-type box 1 cladding layer 2, the P-type nest 2 cladding layer 5, and the n-type second cladding layer 7 were set to be the same. It goes without saying that the A1 composition ratios of each layer may be different within the relationship described above.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば活性層をストライプ溝
内部で屈曲するような形の屈折率ガイド構造をもった活
性領域を集積過酸化水素水し低し2きい値かつ高効率で
発振する各ストライプ間にレーザ光を導波する光導波層
を設は各ストライプ内の活性領域を生じたレーザ光のカ
ップリングが容易に生じる構成にしたから高出力レーザ
装置を得ることができる効果がある。
As described above, according to the present invention, an active region having a refractive index guide structure in which the active layer is bent inside the stripe groove is integrated with hydrogen peroxide solution, and oscillates with low two thresholds and high efficiency. An optical waveguide layer is provided between each stripe to guide the laser light, and the active region within each stripe is configured to easily couple the laser light, which has the effect of making it possible to obtain a high-output laser device. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による集積型半導体レーザ装
置を示す断面図、第2図はMO−CVD法を用いて製作
させる従来の集積型半導体レーザ装置の斜視図、第3図
は別の従来の半導体レーザの断面図である。 1はP型G a A s基板、2はP型A l y G
 al−yAs第1クラッド層、3はn型A11l 0
at−z AS電流ブロック層、4はn型A ly G
 a +−べAs光導波層、5はp型Aly Ga+−
y AS第2クラッド層、6はP型、n型、またはアン
ドープのAlXGa、−xAs活性層、7はn型A I
 y G a +−yAsクラッド層、8ばn型GaA
sコンタクト層、9はn側電極、10はp側電極、11
はストライプ状溝、12は活性領域、13はn型GaA
s基板、14はn型GaAsブロック層、15は窒化シ
リコン絶縁層、16はp型反転領域。
FIG. 1 is a sectional view showing an integrated semiconductor laser device according to an embodiment of the present invention, FIG. 2 is a perspective view of a conventional integrated semiconductor laser device manufactured using the MO-CVD method, and FIG. 3 is a separate view. 1 is a cross-sectional view of a conventional semiconductor laser. 1 is a P-type Ga As substrate, 2 is a P-type A ly G
al-yAs first cladding layer, 3 is n-type A11l 0
at-z AS current blocking layer, 4 is n-type A ly G
a+- As optical waveguide layer, 5 is p-type Aly Ga+-
y AS second cladding layer, 6 is P-type, n-type, or undoped AlXGa, -xAs active layer, 7 is n-type AI
y Ga +-yAs cladding layer, 8-ban type GaA
s contact layer, 9 is an n-side electrode, 10 is a p-side electrode, 11
12 is an active region, 13 is an n-type GaA
s substrate, 14 an n-type GaAs block layer, 15 a silicon nitride insulating layer, and 16 a p-type inversion region.

Claims (1)

【特許請求の範囲】 P型の化合物半導体基板と、 該基板上に形成されたP型Al_yGa_1_−_yA
s第1下部クラッド層と、 該第1下部クラッド層上にn型Al_zGa_1_−_
zAs層を、該n型Al_zGa_1_−_zAs層上
にn型Al_αGa_1_−_αAs層を形成し該両層
の所要部分を共振器端面に垂直方向の複数本の断面逆台
形形状のストライプ状溝を形成するよう除去して形成し
たn型Al_zGa_1_−_zAs電流ブロック層及
びn型Al_αGa_1_−_αAs光導波層と、上記
第1下部クラッド層、電流ブロック層及び光導波層の表
面上に、順次エピタキシャル成長により形成されたP型
Al_yGa_1_−_yAs第2下部クラッド層、上
記光導波層の高さとほぼ同程度の高さに位置する活性領
域を有するn型、P型あるいはノンドープのAl_xG
a_1_−_xAs活性層、n型Al_yGa_1_−
_yAs上部クラッド層、及びn型コンタクト層とを備
えたことを特徴とする集積型半導体レーザ装置。 (2)上記各層のAl組成比はy、z>α、y>xなる
関係を有することを特徴とする特許請求の範囲第1項記
載の集積型半導体レーザ装置。 (3)上記αとxはα≒xであることを特徴とする特許
請求の範囲第1項又は第2項記載の集積型半導体レーザ
装置。 (4)上記ストライプ状溝は過酸化水素水とアンモニア
水を混合した選択エッチング液を用いて形成されること
を特徴とする特許請求の範囲第1項ないし第3項のいず
れかに記載の集積型半導体レーザ装置。
[Claims] A P-type compound semiconductor substrate, and a P-type Al_yGa_1_-_yA formed on the substrate.
s first lower cladding layer, and n-type Al_zGa_1_-_ on the first lower cladding layer.
An n-type Al_αGa_1_-_αAs layer is formed on the n-type Al_zGa_1_-_zAs layer, and a plurality of striped grooves having an inverted trapezoidal cross-section in the vertical direction are formed in required portions of both layers on the resonator end face. The n-type Al_zGa_1_-_zAs current blocking layer and the n-type Al_αGa_1_-_αAs optical waveguide layer which were formed by removal as described above, and the surfaces of the first lower cladding layer, the current blocking layer, and the optical waveguide layer were formed by epitaxial growth in sequence. P-type Al_yGa_1_-_yAs second lower cladding layer, n-type, P-type or non-doped Al_xG having an active region located at approximately the same height as the optical waveguide layer;
a_1_-_xAs active layer, n-type Al_yGa_1_-
An integrated semiconductor laser device comprising an _yAs upper cladding layer and an n-type contact layer. (2) The integrated semiconductor laser device according to claim 1, wherein the Al composition ratios of each layer have the following relationships: y, z>α, and y>x. (3) The integrated semiconductor laser device according to claim 1 or 2, wherein α and x are such that α≒x. (4) The integrated structure according to any one of claims 1 to 3, wherein the striped grooves are formed using a selective etching solution that is a mixture of hydrogen peroxide and ammonia water. type semiconductor laser device.
JP25256186A 1986-10-22 1986-10-22 Integrated semiconductor laser Pending JPS63104496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25256186A JPS63104496A (en) 1986-10-22 1986-10-22 Integrated semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25256186A JPS63104496A (en) 1986-10-22 1986-10-22 Integrated semiconductor laser

Publications (1)

Publication Number Publication Date
JPS63104496A true JPS63104496A (en) 1988-05-09

Family

ID=17239084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25256186A Pending JPS63104496A (en) 1986-10-22 1986-10-22 Integrated semiconductor laser

Country Status (1)

Country Link
JP (1) JPS63104496A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212886A (en) * 1988-04-12 1990-01-17 Trw Inc Phase locking array of semiconductor laser using anti-guide with narrow interval

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014483A (en) * 1983-07-04 1985-01-25 Matsushita Electric Ind Co Ltd Semiconductor laser device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014483A (en) * 1983-07-04 1985-01-25 Matsushita Electric Ind Co Ltd Semiconductor laser device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212886A (en) * 1988-04-12 1990-01-17 Trw Inc Phase locking array of semiconductor laser using anti-guide with narrow interval

Similar Documents

Publication Publication Date Title
EP0029167B1 (en) Semiconductor laser device
JPH0556036B2 (en)
JPS5940592A (en) Semiconductor laser element
US4868838A (en) Semiconductor laser device
US4916709A (en) Semiconductor laser device
JPH0461514B2 (en)
JPS63104496A (en) Integrated semiconductor laser
US5518954A (en) Method for fabricating a semiconductor laser
JP2846668B2 (en) Broad area laser
JP2940158B2 (en) Semiconductor laser device
JPH0474876B2 (en)
JPH0671121B2 (en) Semiconductor laser device
JPS6362292A (en) Semiconductor laser device and manufacture thereof
JPS63177488A (en) Integrated-type semiconductor laser device
JPH0614575B2 (en) Semiconductor laser device
US5042044A (en) Semiconductor laser device, a semiconductor wafer
JP3229085B2 (en) Semiconductor laser device and method of manufacturing the same
JPS61112392A (en) Semiconductor laser and manufacture thereof
JPS637691A (en) Semiconductor laser device
US4860299A (en) Semiconductor laser device
JPH01132191A (en) Semiconductor laser element
JPH065969A (en) Semiconductor laser
JPS62102579A (en) Integrated semiconductor laser device
JP2763781B2 (en) Semiconductor laser device and method of manufacturing the same
JPS6017977A (en) Semiconductor laser diode