JPS63104443A - Large-scale integrated circuit - Google Patents

Large-scale integrated circuit

Info

Publication number
JPS63104443A
JPS63104443A JP61249619A JP24961986A JPS63104443A JP S63104443 A JPS63104443 A JP S63104443A JP 61249619 A JP61249619 A JP 61249619A JP 24961986 A JP24961986 A JP 24961986A JP S63104443 A JPS63104443 A JP S63104443A
Authority
JP
Japan
Prior art keywords
clock
voltage
circuit
power supply
programmable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61249619A
Other languages
Japanese (ja)
Inventor
Yoshimune Hagiwara
萩原 吉宗
Terumi Sawase
沢瀬 照美
Yoshiki Noguchi
孝樹 野口
Noboru Yamaguchi
昇 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61249619A priority Critical patent/JPS63104443A/en
Publication of JPS63104443A publication Critical patent/JPS63104443A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Microcomputers (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

PURPOSE:To operate an LSI chip at low power consumption in such a way that a clock frequency and a power source voltage to be supplied to each function block can be changed. CONSTITUTION:Two or more function blocks inside an LSI chip must be operated at high speed, can be operated sufficiently at low speed, are brought to a standstill, are kept operating, etc. The power consumption differs at each function block according to the operating state. For this, a frequency-dividing circuit of a clock and a voltage-dividing circuit of a power source are installed inside the LSI chip so that their output can be selected on the basis of the information which is arranged in a programmable register. If the operating state of the LSI chip is changed, the clock frequency and the power source voltage which are to be supplied to each function block can be selected according to the requirement. Through this constitution, it is possible to control the power consumption in a dynamic manner in order to operate the LSI chip at low power consumption.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、マイクロプロセッサ、論理LSIなど大規模
集積回路に係り、特に低消費電力化に好適な回路構成法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to large-scale integrated circuits such as microprocessors and logic LSIs, and particularly to a circuit configuration method suitable for reducing power consumption.

〔従来の技術〕[Conventional technology]

従来のLSIでは、例えば日立マイクロコンピュータデ
ータブック 8ビツトシングルチツプに紹介されている
ように、LSIの入力端子(STBY)により、LSI
をスタンバイモードとし、内部の全てのクロックを停止
し、さらにリャット状態にする。これによりLSIの動
作が停止し、内部メモリのみがデータ保持状態となり、
消費電力の低減を図るものである。
In conventional LSIs, for example, as introduced in the Hitachi Microcomputer Data Book 8-bit single chip, the LSI input terminal (STBY)
goes into standby mode, stops all internal clocks, and goes into ryat state. This causes the LSI to stop operating and only the internal memory retains data.
This aims to reduce power consumption.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は−1LSIチツプ全体の停止などを行な
い、低消費電力モードに入るが、通常の動作モードでは
、LSI内部は全て動作していた。
In the above-mentioned conventional technology, the entire -1LSI chip is stopped and enters a low power consumption mode, but in the normal operation mode, all the internal parts of the LSI are operating.

しかし1.、 S Iが大規模化し、種々の機能が搭載
されるようになると、LSI全体を動作させたとき消費
電力は増加し、設計上のリミットとなる問題がある。一
方上記従来技術のように5TAND BYの入力端子の
みで制御された場合、LSI全体が停止してしまい、低
消費電力状態で大規模なT、SIを動作させることはで
きなくなる。
But 1. As the scale of the SI becomes larger and various functions are installed, power consumption increases when the entire LSI is operated, which poses a problem in design. On the other hand, if control is performed only by the 5TAND BY input terminal as in the prior art described above, the entire LSI will stop, making it impossible to operate large-scale Ts and SIs in a low power consumption state.

本発明は、LSIの通常の動作をさせながら、低消費電
力性を実現させることにある。
The present invention aims to achieve low power consumption while allowing the LSI to operate normally.

〔問題点を解決するための手段〕[Means for solving problems]

最近のLSIは、マクロセル、メガセルあるいはモジュ
ールと呼ばれる機能ブロックを単位として、ビルディン
グブロック的に構成される場合が多い。このようなr、
、 S Iにおいて、上記目的は、各機能ブロックに供
給されるクロックおよび電源線を分離し、各機能ブロッ
クに供給するクロックの周波数、および電源電圧を可変
とできるようなプログラマブル機能をT、 S I上に
オンチップすることによって達成される。
Recent LSIs are often constructed in the form of building blocks, with functional blocks called macrocells, megacells, or modules as units. r like this,
, SI, the above purpose is to separate the clock and power supply lines supplied to each functional block, and to create a programmable function that allows the clock frequency and power supply voltage supplied to each functional block to be made variable. This is achieved by on-chip the top.

〔作用〕[Effect]

LSI内部の複数個の機能ブロックの中には、高速で動
作が必要なもの、低速動作で十分のもの、ある時間区間
で停止状態になるもの、動作状態を保持するだけで良い
ものなど、種々の状態が考えられる。このような各状態
によって、それぞれの機能ブロックの消費電力は異なる
。本発明では、LSI内部の各機能ブロックの上記のよ
うな動作状態をフレキシブルに制御できるように、■、
SI内部にクロックの分周回路、電源電圧の分圧回路を
設け、その出力をプログラマブルなレジスタに設定され
た情報により選択できるようにする。
There are various functional blocks inside an LSI, such as some that require high-speed operation, some that require low-speed operation, some that stop for a certain period of time, and some that only need to maintain their operating state. The following conditions are possible. The power consumption of each functional block differs depending on each state. In the present invention, in order to flexibly control the above-mentioned operating states of each functional block inside the LSI,
A clock frequency dividing circuit and a power supply voltage dividing circuit are provided inside the SI, and the output thereof can be selected based on information set in a programmable register.

■、SIチップの動作状態が変化したとき、必要に応じ
て、各機能ブロックへ供給されるクロック周波数、電源
電圧を選択することができる。これにより、消費電力の
制御をダイナミックに行なうことができ、低消費電力な
大規模LSIが可能となる。
(2) When the operating state of the SI chip changes, the clock frequency and power supply voltage supplied to each functional block can be selected as necessary. As a result, power consumption can be dynamically controlled and a large-scale LSI with low power consumption becomes possible.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1〜第4図により説明する
An embodiment of the present invention will be described below with reference to FIGS. 1 to 4.

第1図は、本発明のプログラマブルなクロック供給回路
、プログラマブルな電源電圧供給回路をオンチップ化し
た大規模LSIの一例である。第2図は、従来方法で実
現するときの1. S Iの構成例である。先ず、第2
図でLSIの構成、動作を説明する。
FIG. 1 is an example of a large-scale LSI in which a programmable clock supply circuit and a programmable power supply voltage supply circuit according to the present invention are integrated on a chip. FIG. 2 shows 1. when realized by the conventional method. This is an example of the configuration of SI. First, second
The configuration and operation of the LSI will be explained with reference to the figure.

LSIは、複数個の機能ブロック、たとえばCPU、R
OM、RAM、Ilo、C0NTR0LLOR。
LSI has multiple functional blocks, such as CPU, R
OM, RAM, Ilo, C0NTR0LLOR.

M M U (Memory Management 
Unit) D M A C(Direct Meio
ry AccfIss Controllor)、 C
ommuniCation Processor、 D
ispl、oy Cont、rollorなどが、Ad
dress Bus、 Data Flus 、複数の
制御信号線(Control Sjgnal Tine
s)で結合されている。
MMU (Memory Management)
Unit) DMAC (Direct Meio
ry AccfIss Controller), C
omniCation Processor, D
ispl, oy cont, rollor etc.
Dress Bus, Data Flus, multiple control signal lines (Control Signal Tine)
s).

従来方法では、入力端子より人力したクロックは、クロ
ック回路を経て、同一の周波数の信号が、チップ内部の
各機能ブロックへ供給されていた。
In the conventional method, a clock manually input from an input terminal passes through a clock circuit, and a signal of the same frequency is supplied to each functional block inside the chip.

また電源供給も、入力端子から直接行なわれていた。し
たがって各々の機能ブロックの動作状態1;−応じて、
クロック周波数、電源電圧を制御することが不可能であ
った。
Power was also supplied directly from the input terminal. Therefore, depending on the operating state 1 of each functional block,
It was impossible to control clock frequency and power supply voltage.

たとえば、最も高速に動作するCPUが、MMUへ、 
Address Busを介してメモリ(ROM)のア
ドレスを出力すると、M M T、Jはアドレス値の変
換を行ない、この結果をAddress Busへ出力
し、その値によりROMのある番地の命令データが読出
される。その命令データはData Busを介してC
PUに取込まれ、その後たとえばRAM内のデータを、
前記と同様にM、 M Uのアドレス変換を経て読出し
たり、あるいはRAMへ演算結果を書込んだりする。こ
のようにCPUとROMとRAMおよびMMUの各機能
ブロック間で、データのやり取りを行なっている間、D
 M A C、CommunscationProce
ssor 、Display Controllor 
、 I / 0Contro11.orには起動がかつ
ていなければ、これらの機能ブロックは停止状態にあっ
ても良く、クロックの供給は停止し、電源電圧を低下さ
せても良い。その結果、CMO8回MU:利用するよう
なT、Srでは、クロックが停止することにより、t−
ランジスタの貫通電流がなくなり、動作による電力の消
費はない。また各機能ブロック内にメモリ。
For example, the fastest CPU goes to the MMU,
When a memory (ROM) address is output via the Address Bus, MMT, J converts the address value, outputs this result to the Address Bus, and the instruction data at a certain address in the ROM is read out using that value. Ru. The instruction data is transferred to C via the Data Bus.
The data is imported into the PU and then stored in RAM, for example.
Similarly to the above, reading is performed through address conversion of M and MU, or the operation result is written to RAM. While data is being exchanged between the CPU, ROM, RAM, and MMU functional blocks,
M.A.C.,CommunicationProce
ssor, Display Controller
, I/0Contro11. If or has never been activated, these functional blocks may be in a stopped state, the clock supply may be stopped, and the power supply voltage may be lowered. As a result, in T and Sr that use CMO 8 times MU: t-
There is no through current in the transistor, and no power is consumed during operation. There is also memory within each functional block.

レジスタなど情報の記憶回路があるとき、電源電圧を下
げることにより、情報保持のための電力消費を減少する
ことができる。次にCPU、ROM、。
When there is an information storage circuit such as a register, power consumption for information retention can be reduced by lowering the power supply voltage. Next is the CPU, ROM, and so on.

RAM、MMUのみが動いている状態から、LSIの外
部とデータ通信を行ないたい場合は、Communic
ation Processorを起動【ノなければな
らない。このとき、CPUは第1図に示すProgra
mmable C1ock 5upply C1rcu
j、tとProgrammable Power 5u
pply C1reuj、tにCommunicati
on Processorを起動させるためのデータを
転送し、クロックの供給と電源電圧を動作電圧にするよ
うにする。
If you want to perform data communication with the outside of the LSI when only the RAM and MMU are running, use the Communic
tion Processor must be started. At this time, the CPU runs Progra shown in FIG.
mmable C1ock 5uply C1rcu
j, t and Programmable Power 5u
pply C1reuj, t Communicati
Transfer the data to start the on Processor, and set the clock supply and power supply voltage to the operating voltage.

その結果、複数のクロック供給線(C1ockSupp
ly Lines)と電源供給線(Power 5up
plyLj、nes)のうち、Communicati
on Processorへ結合されたそれぞれの一本
に動作周波数のクロック信号と、動作電圧が供給される
As a result, multiple clock supply lines (C1ockSupp
ly Lines) and power supply lines (Power 5up
plyLj, nes), Communicati
A clock signal of an operating frequency and an operating voltage are supplied to each one coupled to the on Processor.

それらの供給を受けた結合Communication
Processorは起動され、次には、たとえば、c
puからのアドレスがAddress Busを経て送
られ、Con+n+unication Proces
sorが選択される。その後、CPUがCommuni
cation Processor を動作させるコマ
ンドおよび転送データをData Busを介して送っ
てくる。その結果Communication Pro
cessorがそれ自体の動作シーケンスに従って、独
自にデータを外部に転送する。このとき外部のデータ転
送速度が遅い場合、Communication Pr
ocessorの動作速度を下げることができれば、供
給するクロック周波数をトげることができCommun
j、cationProcessorブロックの消費電
力の低減を図れる。
Combined Communication fed by them
The Processor is started and then, for example, c
The address from pu is sent via Address Bus, Con+n+unication Process
sor is selected. After that, the CPU
Commands and transfer data for operating the cation Processor are sent via the Data Bus. As a result, Communication Pro
A cessor independently transfers data to the outside according to its own sequence of operations. At this time, if the external data transfer speed is slow, Communication Pr
If the operating speed of the ocessor can be lowered, the clock frequency to be supplied can be increased.
j, cationProcessor block can be reduced in power consumption.

Communication Processorの動
作が終了し、次にDisplay Controllo
rを用い、RAMの内容を外部のディスプレイ装置に出
力する場合、再びcpuにより、プログラマブルなクロ
ック供給回路、プログラマブル電源供給回路に、各機能
ブロックへのクロック周波数データ、電圧選択デ・−夕
が送られる。Con+monicatjon Proc
essorの動作が不要のときは、そこへのクロックへ
の供給は停止し、電源電圧を下げる。またRAMとDi
splayControl、]、orの間のデータ転送
は、CPUの動作を介さず、DMACの制御のもとで、
直接RA MとDisplay Controllor
の間で行なうことができる。
After the Communication Processor has finished operating, the Display Control
When outputting the contents of the RAM to an external display device using the CPU, the CPU again sends the clock frequency data and voltage selection data to each functional block to the programmable clock supply circuit and programmable power supply circuit. It will be done. Con+monicatjon Proc
When the essor does not need to operate, the clock supply to it is stopped and the power supply voltage is lowered. Also RAM and Di
The data transfer between playControl, ], or is under the control of DMAC without involving the operation of the CPU.
Direct RAM and Display Controller
It can be done between.

この方法はメモリと入出力装置の間の高速データ転送を
行なうときに良く用いられる。この場合は、MMUによ
るアドレス変換は不要となるため、MMTJの動作は停
止して良い。したがってMMUへのクロックの供給停止
、停止時の電源電圧への切換えを行なう一方Displ
ay Controllorへのクロックの供給、動作
電源電圧の供給を行なう。このようにして、動作に必要
な機能ブロックへのクロック、動作電圧の供給が行なわ
れた後、CP Uは、Display Control
lor、 DMACのコマンド、データを送り、それぞ
れを起動する。ここでもし、RAMとDisplay 
Controllorとの間のデータ転送のために、C
P Uより高速のクロックが必要な場合は、D M A
 C、Display Controll、orへのク
ロック供給線(C1ock Hnes )にはCP U
より高い周波数のクロックが供給されることになる。そ
の結果、これらの機能ブロックは、この動作状態期間中
、他の部分より消費電力が増加することとなる。
This method is often used for high-speed data transfer between memory and input/output devices. In this case, since address translation by the MMU is not required, the operation of the MMTJ may be stopped. Therefore, while stopping the clock supply to the MMU and switching to the power supply voltage at the time of stop, Displ
A clock is supplied to the ay Controller and an operating power supply voltage is supplied. In this way, after clocks and operating voltages are supplied to the functional blocks necessary for operation, the CPU
lor, sends DMAC commands and data, and starts each. Here again, RAM and Display
For data transfer to and from the Controller, C
If a faster clock than PU is required, DMA
The clock supply line (C1ock Hnes) to C, Display Control, or
A higher frequency clock will be supplied. As a result, these functional blocks consume more power than other parts during this operating state.

しかし他のブロックでの消費電力を低くすることができ
るので、LSI全体の消費電力の増大を防止することが
可能となる。
However, since the power consumption in other blocks can be reduced, it is possible to prevent the power consumption of the entire LSI from increasing.

以上のようなクロック供給制御、電源電圧供給制御を可
能とする。プログラマブルクロック供給回路(Prog
rammable clock 5upply C1r
cuit )を第3図にプログラマブル電源電圧供給回
路(Programmable Power 5upp
ly C1rcuit )  を第4図に示す。
This enables clock supply control and power supply voltage supply control as described above. Programmable clock supply circuit (Prog
rammable clock 5upply C1r
Figure 3 shows the programmable power supply voltage supply circuit (Programmable Power 5upp).
lyC1rcuit) is shown in FIG.

第3図に示すように、プログラマブルクロックように分
周する分周回路、複数の機能ブロックA。
As shown in FIG. 3, a frequency dividing circuit and a plurality of functional blocks A divide the frequency like a programmable clock.

B、C,I)へ供給するクロック周波数を選択するため
のプログラマブルレジスタ(レジスタA、B。
Programmable registers (registers A, B.

C,D)と、分周器の複数の出力をプログラマブルレジ
スタによって選択するセレクタA、B、C。
C, D) and selectors A, B, C that select multiple outputs of the frequency divider by programmable registers.

D 、 Drit、a Busの値をプログラマブルレ
ジスタA。
D, Drit, a Bus value programmable register A.

B、C,Dへ転送するときの、レジスタ選択のだめAd
dress Busの値のデコーダおよびクロックをL
SIチップへ供給するための複数のドライバ回路から成
る。
Register selection Ad when transferring to B, C, D
The decoder and clock of the dress Bus value are set to L.
It consists of multiple driver circuits for supplying to the SI chip.

たとえば、Register A にL S B (L
eastSignific ant Bit)よりM 
S B  (Most Sognjficant Bi
t )へ“o o o o ”の値がセットされたとき
は、分周回路の出力は全て選択されず、内部クロック線
Aにはクロックは供給されない。
For example, register A has L S B (L
M from eastSignificant Bit)
SB (Most Sognjificant Bi
When the value "o o o o" is set to t), all the outputs of the frequency divider circuit are not selected and no clock is supplied to the internal clock line A.

Register B  に“1000 ”がセットさ
れると、分周回路の一出力が選択され、内部クロックm
Bには−・fの周波数のクロックが供給される。同様に
第3図のRegister C、D にそれぞれ“00
10”、”0001”がセットされると内部クロック線
C,Dには、それぞれ−・f、fの周波数のクロックが
供給される。
When “1000” is set in Register B, one output of the frequency divider circuit is selected and the internal clock m
B is supplied with a clock having a frequency of -.f. Similarly, “00” is entered in Registers C and D in FIG.
When "10" and "0001" are set, clocks having frequencies of -f and f are supplied to internal clock lines C and D, respectively.

第4図に示すようにプログラマブル電源電圧回路(Pr
ogrammable Power 5upply C
1rcuit )は、Power 5upply端子よ
りの入力電圧■を分圧回路と、複数の内部電源線E、F
、GHへ供給する電圧を指定するプログラマブルレジス
タRegister E 、 F 。
As shown in Figure 4, the programmable power supply voltage circuit (Pr
ogrammable Power 5upply C
1rcuit) connects the input voltage from the Power 5upply terminal to a voltage divider circuit and multiple internal power lines E and F.
, and programmable registers Register E and F that specify the voltage to be supplied to GH.

G 、 HとData BusO値を上記レジスタヘセ
ットするためADDRESS Busのデコーダ回路お
よび分圧回路の出力をRegister E 、 F 
、 G 、 Hにより選択するスイッチEx 、E2 
、F工、Fx、Gz、Gz。
In order to set the G, H and Data BusO values to the above registers, the outputs of the ADDRESS Bus decoder circuit and voltage divider circuit are sent to Registers E and F.
, G, H select switch Ex, E2
, F Eng, Fx, Gz, Gz.

Hl、H2から構成される。第4図に示すように、Re
gister EのLSBに111”、MSBにit 
Otpがセットされると内部電源線Eには分圧回路の出
力の3■の値が供給される。Register F 、
 G 、 Hには1101− I+がセットされている
ので分圧回路の出力の5vの値が内部電源線F、G、H
へ供給される。
Consists of H1 and H2. As shown in Figure 4, Re
gister E's LSB is 111", MSB is it
When Otp is set, the internal power supply line E is supplied with the value of 3cm of the output of the voltage dividing circuit. Register F,
Since 1101-I+ is set for G and H, the 5V value of the output of the voltage divider circuit is connected to the internal power supply lines F, G, and H.
supplied to

Regjster E 、 F 、 G 、 Hのうち
、ADDRESS Busで選択されたレジスタはDa
ta Busの値がContro153gna’J−の
タイミングでセットされ1分圧回路の出力値を選択する
データを変化させることができる。
Among Regjster E, F, G, H, the register selected by ADDRESS Bus is Da.
The value of ta Bus is set at the timing of Control153gna'J-, and the data for selecting the output value of the 1 voltage divider circuit can be changed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば1、数10万〜数百万個のトランジスタ
素子を搭載する高性能なLSIチップにおいて、従来方
法では、数すatt以上となり、今後さらに増加する傾
向にある消費電力が低減できる手段を供給し、消費電力
の制約をなくすことができるので、数100万個のトラ
ンジスタを搭載するマイクロコンピュータ、論理LSI
の実用化に効果がある。
According to the present invention, in a high-performance LSI chip equipped with hundreds of thousands to millions of transistor elements, it is possible to reduce the power consumption, which is more than several att in the conventional method and is likely to increase further in the future. microcomputers and logic LSIs equipped with several million transistors.
It is effective for practical application.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のプログラマブルなクロック
供給回路、電源供給回路を持った大規模集積回路のブロ
ック図、第2図はプログラマブルなクロック供給回路、
電源供給回路を持たない従来の大規模集積回路のブロッ
ク図、第3図はプログラマブルなクロック供給回路の構
成図、第4図はプログラマブルな電源供給回路の構成図
である。
FIG. 1 is a block diagram of a large-scale integrated circuit having a programmable clock supply circuit and a power supply circuit according to an embodiment of the present invention, and FIG. 2 is a block diagram of a programmable clock supply circuit and a power supply circuit according to an embodiment of the present invention.
FIG. 3 is a block diagram of a conventional large-scale integrated circuit without a power supply circuit, FIG. 3 is a block diagram of a programmable clock supply circuit, and FIG. 4 is a block diagram of a programmable power supply circuit.

Claims (1)

【特許請求の範囲】 1、1本あるいは複数本のアドレス・バス・データ・バ
ス、制御信号線で結合された複数の機能ブロックと、同
様に結合され、入力クロックを複数の分周比で分周する
回路と各分周比で得られた周波数のクロックを、上記各
機能ブロックごとに選択し、それぞれへのクロック供給
線を介して供給できるようにし、その周波数の選択を任
意にできるようにプログラマブルなレジスタで構成され
たプログラマブルなクロック供給回路をオンチップ化し
た大規模集積回路。 2、1本あるいは複数本のアドレス・バス・データ・バ
ス、制御線で結合された複数個の機能ブロックと、同様
に結合され、入力電源電圧を複数の電圧値に分圧する回
路と、各分圧比で得られた電圧を、上記各機能ブロック
ごとに選択し、それぞれへの電源電圧供給線を介して供
給できるようにし、その電圧値の選択を任意にできるよ
うにプログラマブルなレジスタで構成されたプログラマ
ブルな電源供給回路をオンチップ化した第1項記載の大
規模集積回路。
[Claims] A plurality of functional blocks connected by one or more address buses, data buses, and control signal lines, and which are similarly connected and divide an input clock by a plurality of frequency division ratios. A clock with a frequency obtained by the circuit to be rotated and each frequency division ratio can be selected for each of the above functional blocks and supplied via the clock supply line to each, so that the frequency can be selected arbitrarily. A large-scale integrated circuit with an on-chip programmable clock supply circuit made up of programmable registers. 2. A plurality of functional blocks connected by one or more address buses, data buses, and control lines, and a circuit that is similarly connected and divides the input power supply voltage into a plurality of voltage values; The voltage obtained by the voltage ratio can be selected for each of the above functional blocks and supplied through the power supply voltage supply line to each, and the voltage value can be arbitrarily selected using programmable registers. 2. The large-scale integrated circuit according to item 1, which includes a programmable power supply circuit on-chip.
JP61249619A 1986-10-22 1986-10-22 Large-scale integrated circuit Pending JPS63104443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61249619A JPS63104443A (en) 1986-10-22 1986-10-22 Large-scale integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61249619A JPS63104443A (en) 1986-10-22 1986-10-22 Large-scale integrated circuit

Publications (1)

Publication Number Publication Date
JPS63104443A true JPS63104443A (en) 1988-05-09

Family

ID=17195722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61249619A Pending JPS63104443A (en) 1986-10-22 1986-10-22 Large-scale integrated circuit

Country Status (1)

Country Link
JP (1) JPS63104443A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0623930A1 (en) * 1993-05-06 1994-11-09 Kabushiki Kaisha Toshiba Semiconductor integrated circuit having a function of reducing a consumed current
US5502649A (en) * 1990-11-21 1996-03-26 Fujitsu Limited Method and apparatus for determining power supply wirings of a semiconductor device
US5963075A (en) * 1996-08-19 1999-10-05 Nec Corporation Large scale integrated circuit having functional blocks controlled with clock signals that conduct setting operations at different times
JP2000164808A (en) * 1998-11-26 2000-06-16 Nec Corp Semiconductor device
WO2003036722A1 (en) * 2001-10-26 2003-05-01 Fujitsu Limited Semiconductor integrated circuit device, electronic device having the circuit device packaged therein, and power consumption reducing method
JP2003150269A (en) * 2001-11-08 2003-05-23 Sony Corp Power supply voltage frequency control circuit
US6684378B2 (en) 1998-04-23 2004-01-27 Matsushita Electric Industrial Co., Ltd. Method for designing power supply circuit and semiconductor chip
JP2006251886A (en) * 2005-03-08 2006-09-21 Denso Corp Microcomputer
JP2007194456A (en) * 2006-01-20 2007-08-02 Nec Corp Semiconductor integrated circuit device, power supply input method for integrated circuit, and power supply input program
JP2012084787A (en) * 2010-10-14 2012-04-26 Toppan Printing Co Ltd Semiconductor device
JP2012123823A (en) * 2003-05-07 2012-06-28 Mosaid Technol Inc Management of power on integrated circuit using power island
JP2017033062A (en) * 2015-07-29 2017-02-09 京セラ株式会社 Electronic device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5502649A (en) * 1990-11-21 1996-03-26 Fujitsu Limited Method and apparatus for determining power supply wirings of a semiconductor device
US5420528A (en) * 1993-05-06 1995-05-30 Kabushiki Kaisha Toshiba Semiconductor integrated circuit having a function of reducing a consumed current
EP0623930A1 (en) * 1993-05-06 1994-11-09 Kabushiki Kaisha Toshiba Semiconductor integrated circuit having a function of reducing a consumed current
US5963075A (en) * 1996-08-19 1999-10-05 Nec Corporation Large scale integrated circuit having functional blocks controlled with clock signals that conduct setting operations at different times
US6684378B2 (en) 1998-04-23 2004-01-27 Matsushita Electric Industrial Co., Ltd. Method for designing power supply circuit and semiconductor chip
JP2000164808A (en) * 1998-11-26 2000-06-16 Nec Corp Semiconductor device
US7302598B2 (en) 2001-10-26 2007-11-27 Fujitsu Limited Apparatus to reduce the internal frequency of an integrated circuit by detecting a drop in the voltage and frequency
WO2003036722A1 (en) * 2001-10-26 2003-05-01 Fujitsu Limited Semiconductor integrated circuit device, electronic device having the circuit device packaged therein, and power consumption reducing method
US7320079B2 (en) 2001-10-26 2008-01-15 Fujitsu Limited Semiconductor integrated circuit device, an electronic apparatus including the device, and a power consumption reduction method
JP2003150269A (en) * 2001-11-08 2003-05-23 Sony Corp Power supply voltage frequency control circuit
US10243542B2 (en) 2003-05-07 2019-03-26 Conversant Intellectual Property Management Inc. Power managers for an integrated circuit
JP2012123823A (en) * 2003-05-07 2012-06-28 Mosaid Technol Inc Management of power on integrated circuit using power island
US20170288649A1 (en) 2003-05-07 2017-10-05 Conversant Intellectual Property Management Inc. Power managers for an integrated circuit
JP2006251886A (en) * 2005-03-08 2006-09-21 Denso Corp Microcomputer
JP4492394B2 (en) * 2005-03-08 2010-06-30 株式会社デンソー Microcomputer
JP2007194456A (en) * 2006-01-20 2007-08-02 Nec Corp Semiconductor integrated circuit device, power supply input method for integrated circuit, and power supply input program
JP2012084787A (en) * 2010-10-14 2012-04-26 Toppan Printing Co Ltd Semiconductor device
JP2017033062A (en) * 2015-07-29 2017-02-09 京セラ株式会社 Electronic device

Similar Documents

Publication Publication Date Title
US4514808A (en) Data transfer system for a data processing system provided with direct memory access units
US5652536A (en) Non-glitch clock switching circuit
JPS6051134B2 (en) data processing system
JPS63104443A (en) Large-scale integrated circuit
JP2003203044A (en) Memory control circuit and control system
JPH04236682A (en) Microcomputer system
CN101313290B (en) Performing an N-bit write access to an MxN-bit-only peripheral
US5585750A (en) Logic LSI
KR960004457B1 (en) Data transfer device
JP2993466B2 (en) Information processing device
JPS63126018A (en) Semiconductor integrated circuit
JPH10149237A (en) Semiconductor circuit
US6961802B2 (en) Data input/output device, memory system, data input/output circuit, and data input/output method
KR970705084A (en) An integrated primary bus and secondary bus controller with reduced pin count,
KR970059914A (en) Flash memory system
KR960001023B1 (en) Bus sharing method and the apparatus between different bus
JPH05341872A (en) Data processor
JPS6227408B2 (en)
JPS63253458A (en) Address converting circuit
JPH024021B2 (en)
JPH04372039A (en) Dma transfer system
JP4114900B2 (en) System LSI and semiconductor integrated circuit
WO2001067271A1 (en) Information processing device
KR19980026275A (en) Low Power Consumption CPU
JPH11203874A (en) Memory module with builtin address counter