JPS63103906A - Simple type heat exchanger - Google Patents

Simple type heat exchanger

Info

Publication number
JPS63103906A
JPS63103906A JP25034986A JP25034986A JPS63103906A JP S63103906 A JPS63103906 A JP S63103906A JP 25034986 A JP25034986 A JP 25034986A JP 25034986 A JP25034986 A JP 25034986A JP S63103906 A JPS63103906 A JP S63103906A
Authority
JP
Japan
Prior art keywords
air
outside air
piping
temperature
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25034986A
Other languages
Japanese (ja)
Inventor
Sadayuki Matsumiya
貞行 松宮
Yukiharu Kawaguchi
川口 行治
Hisayoshi Sakai
久嘉 境
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP25034986A priority Critical patent/JPS63103906A/en
Publication of JPS63103906A publication Critical patent/JPS63103906A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a small-sized heat exchanger for compressed gas which is small in heating value by circulating outside air to the surface of piping where compressed gas flow and supplying the compressed gas whose temperature is close to that of the outside air. CONSTITUTION:The compressed gas enters the piping 52 through a connection nozzle 50 from a pressure source and flows out of a connection nozzle 54 to a measuring instrument main body. The piping 52 is covered with a cover 56 and a fan motor 58 for circulating the air is installed inside. Many outside air intakes 56 and outside air outlets 56B are bored in the cover 56. Further, plural radiation fins 60 for increasing the contacting surfaces for the outside air are provided in front of and behind the piping 52. Then when a motor 58 is rotated, the outside air circulates in the piping 52 and on the surfaces of the fins 60 and the temperature of the compressed air in the piping 52 approximates to the outside temperature. Therefore, the compressed air which is almost at the outside temperature (room temperature) is supplied to the measuring instrument main body to reduce the strain of the structure body, thereby taking a measurement with high accuracy.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、簡易型熱交換器に係り、特に、空気軸受や空
気バランスtjM iF+等の圧縮空気利用前溝を有す
る測定機に用いるに好適な簡易型熱交換器に関する。
The present invention relates to a simple heat exchanger, and particularly to a simple heat exchanger suitable for use in a measuring instrument having a groove before using compressed air, such as an air bearing or an air balance tjM iF+.

【従来の技術】[Conventional technology]

被測定物に対して三次元的に相対移動可能なプローブを
用いて形状測定を行う三次元測定し1は、多種多様な形
状が容易にしかも高11ヒ率に測定可能であるため、あ
らゆる産業分野で活用されている。 最近は、更に副室精度の数百や5機能化の要求に応える
ため、懇構部の中に圧縮空気を利用する空気軸受や空気
バランス&l11等が組込まれるようになっている。 第5図は、圧縮空気利用機構の一例としての空気軸受を
用いた従来の移動ブリッジ型の三次元測定機の一例を示
したものである。この三次元測定18においては、被測
定物がFi置される載物台10に対して、プローブ12
がX軸スライダ14、Y軸スライダ16.2軸スライダ
18の摺動によつて三次元的に移動可能とされており、
各軸に備えられた図示しないスケールを用いてプローブ
12の移8mを読取ることによって、被測定物の形状が
測定できるようにされている。 各スライダ14.16.18は空気軸受で支持されてい
るが、そのうちのY@スライダ16の空気軸受の溝造を
第6図に示す。第6図は、第5図の矢印■方向から見た
矢視図である。この空気軸受20においては、案内レー
ル22に対して、3個のエアバッド24を介してYt*
スライダ16の脚部16Bの下端支持部16Aが支承さ
れている。 各エアバッド24には、コンプレッサヤニ場配管等の、
外部の図示しない圧力源からエアチューブ26を介して
圧縮空気が供給され、この圧縮空気が各エアバッド24
の底面の細孔から案内レール22に対して定常的に吹き
出すようにされている。 従って、礪械式の軸受と異なり、非接触であり、2動が
滑らかで摩耗がないため、より高粒度な測定が可能とな
る。 又、第7図は、圧縮空気利用’R4Mの他の例として、
出願人が特開昭57−73601で提案した空気バラン
スd構を用いた従来の三次元測定懇の他の例を示したも
のである。この空気バランス門構30においては、連結
枠32と接続された図示しないピストンが、エアチュー
ブ34から供給される圧縮空気のダンパ作用を受けるよ
うにされている。従って、連結枠32に係合されたzI
IIIIIスライダ18及びプローブ12は、操作者が
手を離しても落下せず、操作する際には負荷が少ない等
、高機能となっている。 これらの圧縮空気利用機構を右する三次元測定蛎は、一
般にV温が例えば20℃で一定に制御された恒温室等に
設置され、測定機もその状態で精度保証が行われている
Three-dimensional measurement (1), which measures the shape of an object using a probe that can move three-dimensionally relative to the object, is used in all industries because it can easily measure a wide variety of shapes with a high rate of failure. It is used in the field. Recently, in order to meet the demand for sub-chamber accuracy in the hundreds and five functions, air bearings that use compressed air, air balance &l11, etc. have been incorporated into the structure part. FIG. 5 shows an example of a conventional moving bridge type coordinate measuring machine using an air bearing as an example of a compressed air utilization mechanism. In this three-dimensional measurement 18, the probe 12 is
can be moved three-dimensionally by sliding an X-axis slider 14, a Y-axis slider 16, and a two-axis slider 18,
The shape of the object to be measured can be measured by reading the displacement 8 m of the probe 12 using scales (not shown) provided on each axis. Each slider 14, 16, 18 is supported by an air bearing, and the groove structure of the air bearing of the Y@slider 16 is shown in FIG. FIG. 6 is a view taken from the direction of the arrow {circle around (2)} in FIG. 5. In this air bearing 20, Yt* is connected to the guide rail 22 via three air pads 24.
A lower end support portion 16A of the leg portion 16B of the slider 16 is supported. Each air bud 24 includes compressor dirt pipes, etc.
Compressed air is supplied from an external pressure source (not shown) through the air tube 26, and this compressed air is supplied to each air bud 24.
The air is constantly blown out toward the guide rail 22 from the pores on the bottom surface of the guide rail 22. Therefore, unlike mechanical bearings, there is no contact, and the two movements are smooth and there is no wear, making it possible to measure higher granularity. Also, Fig. 7 shows another example of 'R4M using compressed air.
This figure shows another example of the conventional three-dimensional measurement system using the air balance d structure proposed by the applicant in Japanese Patent Laid-Open No. 57-73601. In this air balance gate structure 30, a piston (not shown) connected to a connecting frame 32 is configured to receive a damping effect of compressed air supplied from an air tube 34. Therefore, zI engaged with the connecting frame 32
The III slider 18 and the probe 12 have high functionality, such as not falling even if the operator releases the hand, and requiring less load when operating them. The three-dimensional measuring device that controls these compressed air utilization mechanisms is generally installed in a constant temperature room or the like where the V temperature is controlled to be constant at, for example, 20° C., and the accuracy of the measuring device is guaranteed in that state.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

しかしながら、外部の圧力源から供給される圧縮空気の
温度は、例えばコンプレッサの場合は断熱圧縮のため室
温より高くなり、又、工場配管の場合は、配管途中で熱
交換が行われるため、夏では高い温度、冬では室温より
かなり低い温度になることかある。 従って、測定機が20℃の部屋に設置されていても、前
記のような圧縮空気が供給されると、測定様内部で圧縮
空気の流通ずる部分と室温に慣らされている部分とに温
度差が生じて構造体が変形し、精度が劣化するという問
題点を有していた。 このような問題点を解決するべく、電気的なクーラやヒ
ータを用いて圧縮空気の温度を制御することも考えられ
るが、クーラやヒータは価格的に高く大型であり、何よ
りも制御装置自体の発熱口が大きいため、恒温室等には
導入が困難であるという問題点を有していた。 [発明の目的] 本発明は、前記従来の問題点を解消するべくなされたも
ので、価格的に有利で、小型で且つ発熱■の少ない圧縮
気体用の簡易型熱交換器を提供することを目的とする。
However, the temperature of compressed air supplied from an external pressure source, for example in the case of a compressor, is higher than room temperature due to adiabatic compression, and in the case of factory piping, heat exchange occurs midway through the piping, so in summer The temperature is high, and in winter it can be much lower than room temperature. Therefore, even if the measuring device is installed in a room with a temperature of 20°C, when compressed air is supplied as described above, there will be a temperature difference between the part through which the compressed air flows and the part that is acclimatized to room temperature. This has caused problems such as deformation of the structure and deterioration of accuracy. In order to solve these problems, it is possible to control the temperature of compressed air using an electric cooler or heater, but coolers and heaters are expensive and large, and above all, the control device itself Since the heat generating port is large, it has the problem of being difficult to introduce into a constant temperature room or the like. [Object of the Invention] The present invention has been made to solve the above-mentioned conventional problems, and its object is to provide a simple heat exchanger for compressed gas that is advantageous in cost, small in size, and generates little heat. purpose.

【問題点を解決するための手段】[Means to solve the problem]

本発明は、前易型熱交換器において、圧力源が接続され
圧縮気体の流入する接続口を有する配管と、該Pii!
管の表面に外気を循環させる手段とを備え、前記配管の
他方の接続口から外気に近い温度の圧縮気体を供給する
ようにして、前記目的を達成したものである。 又、本発明の実M態様は、前記配管を、外気取入孔と外
気排出孔とを有するカバーで被覆したも゛のである。 更に、本発明の実施態様は、前記配管に、複数の放熱フ
ィンを配設したものである。 又、本発明の実施態様は、前記外気を循環させる手段を
、ファンモータとしたものである。
The present invention provides a preheating type heat exchanger including piping having a connection port to which a pressure source is connected and into which compressed gas flows, and the Pii!
The above object is achieved by providing means for circulating outside air over the surface of the pipe, and supplying compressed gas at a temperature close to the outside air from the other connection port of the pipe. Further, in the actual M aspect of the present invention, the pipe is covered with a cover having an outside air intake hole and an outside air exhaust hole. Furthermore, in an embodiment of the present invention, a plurality of radiation fins are arranged on the pipe. Further, in an embodiment of the present invention, the means for circulating the outside air is a fan motor.

【作用】[Effect]

本発明においては、圧力源が接続され圧縮気体の流入す
る接続口を有する配管と、該配管の表面に外気をfi環
させる手段とで簡易型熱交換器を構成している。従って
、クーラやヒータを用いることなく圧縮空気の温度を室
温に近づけることができ、価格的に有利である。又、小
型であり、且つ発熱量も少ない。 又、前記配管を、外気取入孔と外気排出孔とを有づるカ
バーで被覆した場合には、熱の交換効率が向上する。 更に、前記配管に複数の放熱フィンを配設した場合にも
、熱の交換効率が向上する。 又、前記外気を循環させる手段をファンモータとした場
合には、構成が簡略である。 (実施例] 以下、図面を参照して、本発明に係る簡易”r2 W交
換器の実施例が配設されたコラム移動型のジグポーラ型
三次元測定I幾の一例を詳細に説明する。 この三次元測定機8は、第3図に示す如く構成されてJ
3す、X軸スライダの代わりに載物台10が空気軸受で
X方向に摺動され、コラム34を支持してY方向に摺動
するY軸スライダ16、プローブ12を支持してZ方向
に摺動するZ@スライダ18にも、それぞれ空気軸受が
粗造まれている。 図において、3Gは被測定物である。なお、測定点を指
示する手段としてプローブ12がIi1′iえられてい
るが、これはビデオカメラ等でも可能である。 第4図は、前記三次元Wl定機8の空気供給系統を示し
たもので、コンプレッサや工場配管等の圧力源38から
、本発明に係る簡易型熱交換器40及び例えばフィルタ
42、レギュレータ44及び圧力計46を経由して圧縮
空気が供給されている。 なお、フィルタ42やレギュレータ44は、簡易型熱交
換器40と圧力源38の間に設置づることも可能である
。 前記I7!I易型熱交1!y!器4oは、第1図及び第
2図に示づ如く構成されており、圧力源から供給される
圧縮空気が一方の接続ノズル50から配管52に入り、
他方の接続ノズル54から測定量本体に流出するように
されている。 前記配管52はカバー56で被覆されており、内部に空
気を循環させるための手段としてのファンモータ58が
設置されている。前記カバー56には、カバーの外の空
気(外気)を取入れるための外気取入孔56A及び排出
用の外気排出孔56Bが多数穿設されている。 更に、前記配管52の前後には、配管外の空気(外気)
との接触面積を」;1加させるための放熱フィン60が
複数設けられている。 前記配管52や放熱フィン60の材質は、熱の良導体で
ある銅、アルミ等の金兄が好ましいが、合成樹脂ヤゴム
系の素材であってもよい。 以下、実施例の作用を説明する。 ファンモータ58が回転すると、外気が配管52及び放
熱フィン60の表面を循環する。従って、配管内部の圧
縮空気の温度は外気の温度により近づくことになる。よ
って、三次元測定■8の本体には、外気の温度(室温)
に近い圧縮空気が供給され、栴造体の歪が減少してより
高精度な測定が可能となる。 なお、本実施例においては、簡易型熱交換rA40にカ
バー56が設けられていたため、熱交換効率が高い。な
お、カバー56を省略することも可能である。 又、本実施例においては、配管52の前後に放熱フィン
60を設けていたため、熱交換効率が高い。なお、放熱
フィン60を省略することも可能である。 更に、本実施例においては、外気を循環させる手段とし
てファンモータ58を用いていたので、外気を循環させ
る手段を安価に構成することができる。なお、外気を循
環させる手段はこれに限定されず、他にヒートバイブで
配管52と外気との間で熱交換させるInh’4等も考
えられる。 又、本実施例においては、簡易型熱交換器40の配管5
2が曲線状のパイプとされているので、外気との接触面
積を大きくとることができる。なお配管52の形状はこ
れに限定されず、外気との接触面積を大きくできる補遺
であれば、例えば薄い層状の空気卒を何層も重ねた溝端
等にづ−ることも可能である。 なお、前記実施例においては、本発明が三次元測定機の
空気軸受に適用されていたが、本発明の適用範囲はこれ
に限定されず、−次元の副長(欠にも同様に適用できる
。又、第7図に示したような空気バランス1横を有する
測定n等で、圧縮空気利用1構を有する測定d一般にも
同様に適用することができる。
In the present invention, a simple heat exchanger is constituted by a pipe having a connection port to which a pressure source is connected and into which compressed gas flows, and a means for circulating outside air to the surface of the pipe. Therefore, the temperature of the compressed air can be brought close to room temperature without using a cooler or heater, which is advantageous in terms of cost. Moreover, it is small in size and generates less heat. Further, when the pipe is covered with a cover having an outside air intake hole and an outside air exhaust hole, the heat exchange efficiency is improved. Furthermore, heat exchange efficiency is also improved when a plurality of heat radiation fins are arranged in the pipe. Furthermore, when the means for circulating the outside air is a fan motor, the configuration is simple. (Example) Hereinafter, an example of a column-moving jig polar type three-dimensional measurement I in which an embodiment of the simple "r2 W exchanger according to the present invention is disposed will be described in detail with reference to the drawings. The three-dimensional measuring machine 8 is configured as shown in FIG.
3. Instead of the X-axis slider, the stage 10 is slid in the X direction by an air bearing, the Y-axis slider 16 supports the column 34 and slides in the Y direction, and the probe 12 is supported and moved in the Z direction. The sliding Z@sliders 18 are also each equipped with air bearings. In the figure, 3G is the object to be measured. Although the probe 12 is provided as a means for indicating the measurement point, a video camera or the like may also be used. FIG. 4 shows the air supply system of the three-dimensional Wl constant machine 8, in which a pressure source 38 such as a compressor or factory piping is connected to a simple heat exchanger 40 according to the present invention, a filter 42, a regulator 44, etc. Compressed air is supplied via a pressure gauge 46. Note that the filter 42 and regulator 44 can also be installed between the simple heat exchanger 40 and the pressure source 38. Said I7! I-easy type heat exchange 1! Y! The container 4o is constructed as shown in FIGS. 1 and 2, and compressed air supplied from a pressure source enters the pipe 52 from one connection nozzle 50.
It is adapted to flow out from the other connecting nozzle 54 into the measuring body. The pipe 52 is covered with a cover 56, and a fan motor 58 is installed as a means for circulating air inside. The cover 56 is provided with a large number of outside air intake holes 56A for taking in air outside the cover (outside air) and many outside air exhaust holes 56B for discharging air. Furthermore, air outside the pipe (outside air) is provided before and after the pipe 52.
A plurality of radiation fins 60 are provided to increase the contact area by 1. The material of the piping 52 and the radiation fins 60 is preferably metal, such as copper or aluminum, which is a good conductor of heat, but it may also be made of synthetic resin rubber-based material. The effects of the embodiment will be explained below. When the fan motor 58 rotates, outside air circulates over the piping 52 and the surfaces of the radiation fins 60. Therefore, the temperature of the compressed air inside the pipe becomes closer to the temperature of the outside air. Therefore, the main body of 3D measurement ■8 can measure the outside air temperature (room temperature).
Compressed air close to the original temperature is supplied, reducing distortion of the structure and enabling more accurate measurements. In this example, since the simple heat exchange rA40 was provided with the cover 56, the heat exchange efficiency was high. Note that it is also possible to omit the cover 56. Further, in this embodiment, since the heat radiation fins 60 are provided before and after the pipe 52, the heat exchange efficiency is high. Note that it is also possible to omit the radiation fins 60. Furthermore, in this embodiment, since the fan motor 58 is used as a means for circulating outside air, the means for circulating outside air can be constructed at low cost. Note that the means for circulating the outside air is not limited to this, and other methods such as Inh'4, which exchanges heat between the pipe 52 and the outside air using a heat vibrator, can also be considered. In addition, in this embodiment, the pipe 5 of the simple heat exchanger 40
Since 2 is a curved pipe, the area of contact with the outside air can be increased. Note that the shape of the pipe 52 is not limited to this, and as long as it can increase the area of contact with the outside air, it is also possible to use a groove end made of many layers of thin air layers, for example. In the above embodiments, the present invention was applied to an air bearing of a three-dimensional measuring machine, but the scope of application of the present invention is not limited thereto, and can be similarly applied to a minus-dimensional sub-length. Further, it can be similarly applied to a measurement n having an air balance of one side as shown in FIG. 7, and a general measurement d having one use of compressed air.

【発明の効果】【Effect of the invention】

以上説明した通り、本発明によれば、クーラやヒータを
使用することなく圧縮空気を空温に近づけることができ
、価格的に有利で小型で且つ発熱量が少ないという優れ
た効果を有する。
As explained above, according to the present invention, compressed air can be brought close to the air temperature without using a cooler or heater, and has excellent effects such as being advantageous in cost, being compact, and generating less heat.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る簡易型熱交換器の実施例の構成
を示す正面断面図、第2図は、第1図の■−■腺に沿う
横断面図、第3図は、前記実施例が採用された、空気軸
受を有するコラム移動型のジグポーラ型三次元測定機の
一例の全体構成を示す斜視図、第4図は、前記三次元測
定機の空気供給系統を示す系統図、第5図は、空気軸受
を用いた従来の移動ブリッジ型三次元測定機の一例の構
成を示す斜視図、第6図は、前記三次元測定機で用いら
れている空気軸受の構成を示ず、第5図の矢視■方向か
ら見た正面図、第7図は、空気バランスFM 椙を用い
た従来の三次元測定機1の他の例の要部構成を示す断面
図である。 8・・・三次元測定機、 20・・・空気軸受、 30・・・空気バランス機構、 38・・・圧力源、 40・・・簡易型熱交換器、 50154・・・接続ノズル、 52・・・配管、 56・・・カバー、 56A・・・外気取入孔、 56B・・・外気排出孔、 58・・・ファンモータ、 60・・・放熱フィン。
FIG. 1 is a front cross-sectional view showing the configuration of an embodiment of a simple heat exchanger according to the present invention, FIG. 2 is a cross-sectional view taken along the line ■-■ in FIG. 1, and FIG. FIG. 4 is a perspective view showing the overall configuration of an example of a column-moving jig polar type coordinate measuring machine having an air bearing, in which the embodiment is adopted; FIG. 4 is a system diagram showing an air supply system of the coordinate measuring machine; Figure 5 is a perspective view showing the configuration of an example of a conventional moving bridge type coordinate measuring machine using air bearings, and Figure 6 does not show the configuration of the air bearing used in the aforementioned coordinate measuring machine. , a front view as seen from the direction of arrow ① in FIG. 5, and FIG. 7 is a cross-sectional view showing the main part configuration of another example of the conventional three-dimensional measuring machine 1 using an air balance FM. 8... Coordinate measuring machine, 20... Air bearing, 30... Air balance mechanism, 38... Pressure source, 40... Simple heat exchanger, 50154... Connection nozzle, 52... ...Piping, 56...Cover, 56A...Outside air intake hole, 56B...Outside air discharge hole, 58...Fan motor, 60...Radiating fin.

Claims (4)

【特許請求の範囲】[Claims] (1)圧力源が接続され圧縮気体の流入する接続口を有
する配管と、 該配管の表面に外気を循環させる手段とを備え、前記配
管の他方の接続口から外気に近い温度の圧縮気体を供給
することを特徴とする簡易型熱交換器。
(1) A pipe having a connection port to which a pressure source is connected and into which compressed gas flows, and a means for circulating outside air on the surface of the pipe, and compressed gas at a temperature close to the outside air is supplied from the other connection port of the pipe. A simple heat exchanger characterized by supplying
(2)前記配管が、外気取入孔と外気排出孔とを有する
カバーで被覆されている特許請求の範囲第1項記載の簡
易型熱交換器。
(2) The simple heat exchanger according to claim 1, wherein the pipe is covered with a cover having an outside air intake hole and an outside air exhaust hole.
(3)前記配管に、複数の放熱フィンが配設されている
特許請求の範囲第1項又は第2項記載の簡易型熱交換器
(3) The simple heat exchanger according to claim 1 or 2, wherein a plurality of radiation fins are arranged on the pipe.
(4)前記外気を循環させる手段が、ファンモータであ
る特許請求の範囲第1項記載の簡易型熱交換器。
(4) The simple heat exchanger according to claim 1, wherein the means for circulating outside air is a fan motor.
JP25034986A 1986-10-21 1986-10-21 Simple type heat exchanger Pending JPS63103906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25034986A JPS63103906A (en) 1986-10-21 1986-10-21 Simple type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25034986A JPS63103906A (en) 1986-10-21 1986-10-21 Simple type heat exchanger

Publications (1)

Publication Number Publication Date
JPS63103906A true JPS63103906A (en) 1988-05-09

Family

ID=17206592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25034986A Pending JPS63103906A (en) 1986-10-21 1986-10-21 Simple type heat exchanger

Country Status (1)

Country Link
JP (1) JPS63103906A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03289510A (en) * 1990-04-05 1991-12-19 Showa Alum Corp Device for detecting shape of rolled foil having air-bearing type shape detecting roll

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03289510A (en) * 1990-04-05 1991-12-19 Showa Alum Corp Device for detecting shape of rolled foil having air-bearing type shape detecting roll

Similar Documents

Publication Publication Date Title
CN105423954B (en) A kind of measuring method for the flexible jet pipe that view-based access control model measures
WO2012132085A1 (en) Steam turbine casing position adjusting apparatus
US4119144A (en) Improved heat exchanger headering arrangement
US3845814A (en) Finned primary surface heat exchanger
WO2006048808A1 (en) Temperature control system and method
Hao et al. Conceptual design of compliant translational joints for high-precision applications
JPS63103906A (en) Simple type heat exchanger
CN114019903A (en) Numerical control machine tool spindle precision self-healing method
TWI572542B (en) Workpiece cable assembly
CN1979147B (en) Heat-pipe performance detecting apparatus
JPH04527B2 (en)
US6837114B2 (en) Three-dimensional measure device with air bearings
KR101712723B1 (en) Apparatus for controlling thrust and cooling bearing using compressed air
CN213333355U (en) Portable RTK camera installation device for close-range photogrammetry
JP4770045B2 (en) Mobile system
WO2022157727A1 (en) Cold plate heat exchanger and corresponding production process by additive manufacturing
CN109238218B (en) Large-scale polishing machine disc surface flatness detection device and working method thereof
WO2022061972A1 (en) Flat linear rotating motor
CN103294078B (en) Modularized temperature control device
CN114264448B (en) Compound eye unit working environment simulation and performance evaluation system and use method thereof
CN220508954U (en) Sensor cooling device
SU1354043A1 (en) Bed for heat engineering and aerodynamic tests of heat-exchanging surfaces
FR3094750B1 (en) Aircraft turbojet cooling system
CN219841834U (en) Heat exchange device and vehicle
CN113514026B (en) Component deformation measurement system and method under high and low temperature environment based on three-coordinate measuring machine