JPS63103858A - Manufacture of lithium oxide sintered body - Google Patents

Manufacture of lithium oxide sintered body

Info

Publication number
JPS63103858A
JPS63103858A JP61251203A JP25120386A JPS63103858A JP S63103858 A JPS63103858 A JP S63103858A JP 61251203 A JP61251203 A JP 61251203A JP 25120386 A JP25120386 A JP 25120386A JP S63103858 A JPS63103858 A JP S63103858A
Authority
JP
Japan
Prior art keywords
sintered body
sintering
li2o
compact
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61251203A
Other languages
Japanese (ja)
Inventor
浩造 松本
永山 一彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61251203A priority Critical patent/JPS63103858A/en
Publication of JPS63103858A publication Critical patent/JPS63103858A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は、核融合炉のブランケット材等に用いられる
酸化リチウム焼結体の輿遣方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a method for transporting a sintered lithium oxide body used as a blanket material for a nuclear fusion reactor.

〔従来技術と問題点〕[Conventional technology and problems]

核融合炉のブランケット材の有力な候補である酸化リチ
ウム(以下の本文ではLi2Oとする)は、通常Li 
20の粉末を加圧成形し、それを焼結することによって
得られる。そして、トリチウムの増殖作用を高める観点
からはLi 20焼結体はできる限り密度が高く、表面
の清浄性(着色、汚損、不純物の付着などがないこと)
に優れたものが要求される。従来、検討されているLi
 20圧粉体の焼結方法の特徴と、その問題点などは以
下の通りである。
Lithium oxide (referred to as Li2O in the following text), which is a promising candidate for blanket material in fusion reactors, is usually Li
It is obtained by compacting a powder of No. 20 and sintering it. From the perspective of enhancing the multiplication effect of tritium, the Li 20 sintered body must have as high a density as possible, and the surface must be clean (no coloring, staining, adhesion of impurities, etc.).
excellence is required. Previously studied Li
The characteristics and problems of the sintering method for 20 green compacts are as follows.

(1,1Li20圧粉体をアルミナ基板などの上に載置
し、これをアルゴンガス雰囲気中で9000〜1200
”Cの温度で1〜4時間焼結する方法(焼結条件は以下
全て同様とする):この方法は簡便であるが、焼結密度
の上昇が少なく、かつガス雰囲気中の不純物などの付着
により焼結体の表面が変色しやすいという問題がある。
(Place a 1,1Li20 powder compact on an alumina substrate, etc., and heat it to a temperature of 9000 to 1200 in an argon gas atmosphere.
A method of sintering at a temperature of 1 to 4 hours at a temperature of There is a problem in that the surface of the sintered body tends to discolor due to this.

(2)!空中(10〜10torr)テ焼結ヲ行つ方法
:この方法によれば高い焼結密度が得られ、表面の清浄
性も向上する。しかし、真空中であるとLi2O圧粉体
のLiが蒸発して重量減が生ずるとともに、Li2Oに
含有される水酸化リチウム(LiOH)、  炭酸リチ
ウム(Li2CO5)などが揮発して炉内を汚染すると
いう欠点がある。また、この方法は量産性の面で劣って
いる。
(2)! Method of performing sintering in air (10 to 10 torr): This method provides a high sintering density and improves surface cleanliness. However, in a vacuum, Li in the Li2O powder compact evaporates, resulting in weight loss, and lithium hydroxide (LiOH), lithium carbonate (Li2CO5), etc. contained in Li2O volatilize and contaminate the inside of the furnace. There is a drawback. Moreover, this method is inferior in terms of mass productivity.

(3)白金(Pt)、  タンタル(Ta)、=、ケル
(Ni)。
(3) Platinum (Pt), tantalum (Ta), Kel (Ni).

モリブデン(Mo)、 タングステン(W)の容器にL
i2O圧粉体を収容し、これを密閉状態にしてアルゴン
ガスもしくは真空穴囲気で焼結する方法:Pt 、 T
a  容器を用い、密閉状態が完全であるならば、良好
なL i z O焼結体を得ることができる。しかし、
ともに高価な材料であり、容器の製作費も高くて経済的
に劣ることかつTaはLi2O中にご(わずかに含有さ
れるLi OH,Li 2 CO3によって激しい腐食
をうけ容器を繰返し使用することは不可能である。Ni
、Mo、WはPt 、 Ta  より安価であるが、そ
れぞれLizOと反応を起こし、清浄な表面を有する焼
結体を得ることは困難である。
L in molybdenum (Mo) and tungsten (W) containers
A method of storing an i2O powder compact, sealing it, and sintering it in an argon gas or vacuum hole environment: Pt, T
If a container is used and the container is completely sealed, a good L iz O sintered body can be obtained. but,
Both are expensive materials, and the manufacturing cost of the container is high, making them economically inferior. Ta also suffers from severe corrosion due to the small amounts of LiOH and Li 2 CO3 contained in Li2O, making it difficult to use the container repeatedly. It's impossible.Ni
, Mo, and W are cheaper than Pt and Ta, but each reacts with LizO, making it difficult to obtain a sintered body with a clean surface.

f41 Pt 、 Taの箔でLi z□圧粉体を完全
に覆い、それを密閉状態の容器に収容して焼結する方法
:この方法によれば極めて良好な特性を有するLi2O
焼結体が得られる。しかし、前項(3)と同様の欠点を
有し、さらに異形の圧粉体ではこの方法の採用が困難で
ある。
f41 A method of completely covering the Li z□ compact with Pt, Ta foil, storing it in a sealed container, and sintering it: This method produces Li2O, which has extremely good properties.
A sintered body is obtained. However, it has the same drawbacks as in the previous item (3), and furthermore, it is difficult to employ this method for irregularly shaped powder compacts.

〔発明の目的〕[Purpose of the invention]

この発明は、核融合炉のブランケット材として必要とさ
れる焼結密度と表面性状を容易に得ることができ、量産
性、経済性に優れたLi2O焼結体の製造方法を提供す
ることを目的とする。
The purpose of this invention is to provide a method for manufacturing a Li2O sintered body that can easily obtain the sintered density and surface texture required as a blanket material for a nuclear fusion reactor, and is excellent in mass production and economy. shall be.

〔発明の要点〕[Key points of the invention]

以上の目的は、金属もしくはセラミック與の容器を使用
し、該容器中に純度99%以上のアルミナ粉末(AJz
Os )でLi 20圧粉体を埋設し、不活性ガスもし
くは真空中にて焼結することにより達成できる。
For the above purpose, a metal or ceramic container is used, and alumina powder (AJz) with a purity of 99% or more is placed in the container.
This can be achieved by embedding a Li 20 green compact in an inert gas or vacuum.

本発明者らは、Li 20焼結体の表面に発生する着色
、汚点1重金属の付着などは、雰囲気ガス中の不純物お
よびLi 20圧粉体に微量含有されるLiOH。
The present inventors believe that the discoloration and stains that occur on the surface of the Li 20 sintered body and the adhesion of heavy metals are caused by impurities in the atmospheric gas and LiOH contained in trace amounts in the Li 20 compact.

Li2CO3の浸み出しなどがその原因になるものと考
えた。そして、PtおよびTa箔でLi 20圧粉体を
完全に覆って焼結した場合、良好な表面性状をもつ焼結
体になるのは、これら箔の存在で雰囲気ガス中の不純物
と圧粉体の反応が防止され、かつPtとTaがLi O
H、Li 2 CO3を吸収するためであろうと判断し
た。しかし、ptとTaを用いた場合は前述の欠点を有
している。そこで、発明者らはLi2Q圧粉体と雰囲気
ガスとの反応を防止でき、かつLI OH、Li 2 
CO3を吸収できる微細な粉末を用い、この粉末中にL
i2O圧粉体を埋設して焼結すれば、本発明の目的を達
成できるのではないかと発想し、この粉末として純度四
%以上のアルミナ粉末を選定することによって本発明を
完結した。本発明で、アルミナ粉末の純度を99%以上
としたのは、これ以下であるとアルミナに含有される酸
化マグネシア、酸化けい素およびアルカリ分(Na2O
、K2Oなど)などが多くなって、これらがLi2Oと
反応し、Li2O圧粉体の表面にガラス層を形成するこ
とを実験的に確認したためである。また、アルミナが良
好な結果を示すのは、このアルミナがLi2Oの1、i
 0H、Li 2 CO3を吸収してリチウムアルミネ
ートに変化するためであろうと推定した。
It was thought that seepage of Li2CO3 was the cause. When a Li 20 green compact is completely covered with Pt and Ta foils and sintered, the sintered body has good surface properties because of the presence of these foils, which prevent impurities in the atmospheric gas from forming on the green compact. reaction is prevented, and Pt and Ta are LiO
It was determined that this was probably to absorb H, Li 2 CO 3 . However, the use of pt and Ta has the above-mentioned drawbacks. Therefore, the inventors were able to prevent the reaction between the Li2Q powder compact and the atmospheric gas, and to
A fine powder that can absorb CO3 is used, and L is contained in this powder.
The present invention was completed based on the idea that the object of the present invention could be achieved by embedding and sintering an i2O green compact, and by selecting alumina powder with a purity of 4% or more as the powder. In the present invention, the purity of the alumina powder is set to 99% or more because if the purity is less than 99%, the magnesia oxide, silicon oxide, and alkali content (Na2O
This is because it has been experimentally confirmed that a large amount of Li2O (K2O, etc.) reacts with Li2O to form a glass layer on the surface of the Li2O powder compact. In addition, the reason why alumina shows good results is that this alumina has 1, i of Li2O.
It is presumed that this is because it absorbs 0H and Li 2 CO 3 and changes into lithium aluminate.

〔発明の実施例〕[Embodiments of the invention]

以下に実施例に基づき本発明の詳細な説明する。 The present invention will be described in detail below based on Examples.

市販のLi2O粉末を、圧力543/(Mlで形状49
龍×49Ill x 25 am厚の圧粉体に成形した
。この圧粉体の理論密度比は73%であった。Li2O
圧粉体の焼結は第1図の方法にて行った。第1図は、L
izO圧粉体1を板厚Q、 5 IIIの5US304
ステンレスを用いて表作した容器2に収容し、その周囲
をアルミナ粉末3で満たし、さらにS U S 304
ステンレスの蓋4で密閉した状態を示している。この後
、第1図の状態の容器を焼結炉に挿入し、アルゴンガス
中で1200”Cx2Hの条件で焼結を行った。
Commercially available Li2O powder was prepared under pressure 543/(form 49 in Ml).
It was molded into a green compact of 49mm x 25mm thick. The theoretical density ratio of this compact was 73%. Li2O
The green compact was sintered by the method shown in FIG. Figure 1 shows L
izO powder compact 1 with plate thickness Q, 5 III 5US304
It is housed in a container 2 whose surface is made of stainless steel, and its surroundings are filled with alumina powder 3, and then SUS 304
It is shown in a state where it is sealed with a stainless steel lid 4. Thereafter, the container in the state shown in FIG. 1 was inserted into a sintering furnace, and sintering was performed in argon gas under the conditions of 1200"Cx2H.

本発明の方法に対する比較例としては、Li2O圧粉体
をアルミナ基板上に直置きし、それを炉内に配設して前
記と同様の条件で焼結するものと、Li2O圧粉体を厚
さQ、 111mのTa箔で完全に覆いを行いそれをT
a容器に収容して焼結するものの二つについて実験を行
った。以上の実験結果を整理すると第1表のようになる
As a comparative example for the method of the present invention, a method in which a Li2O green compact is placed directly on an alumina substrate, placed in a furnace, and sintered under the same conditions as above, and a method in which a Li2O green compact is placed directly on an alumina substrate, and a SaQ, completely covered with 111m of Ta foil and then
Experiments were conducted on two samples that were housed in a container and sintered. Table 1 summarizes the above experimental results.

第  1  表 第1表より、Li2O焼結体の理論密度比すなわち焼結
性は圧粉体をTa箔で覆った場合が最も優れているが、
アルミナ粉末で埋設して焼結した場合でもその理論密度
比は86,5%となり、取扱上およびトリチウムの増殖
効率の観点からも問題のない値であった。焼結体の表面
性状においては、アルミナ基板上に直置きして焼結した
場合は満足する結果は得られないが、他の二つの方法で
は清浄な表面が得られた。一方、箔と容器の損傷および
炉内の汚染状況をみると、本発明の方法ではこれらが皆
無であり、容器を繰返し使用することが可能であった。
Table 1 From Table 1, the theoretical density ratio, or sinterability, of the Li2O sintered body is best when the compact is covered with Ta foil, but
Even when it was embedded with alumina powder and sintered, the theoretical density ratio was 86.5%, which was a value that caused no problems from the viewpoint of handling and tritium multiplication efficiency. Regarding the surface quality of the sintered body, when the sintered body was placed directly on an alumina substrate and sintered, satisfactory results were not obtained, but a clean surface was obtained using the other two methods. On the other hand, when looking at damage to the foil and container and contamination inside the furnace, there was no such damage in the method of the present invention, and the container could be used repeatedly.

したがって、Li2U圧粉体の焼結方法を経済性、量産
性および焼結体の品質特性などの面から総合的に評価す
ると本発明の優位性が明らかである。
Therefore, when the method for sintering the Li2U green compact is comprehensively evaluated from the viewpoints of economy, mass production, quality characteristics of the sintered body, etc., the superiority of the present invention becomes clear.

なお、Li2O圧粉体をアルミナ粉末中に埋設して焼結
する場合は、焼結体の表面性状に対し容器材質および容
器の蓋の有無はほとんど影響がなく、蓋をしな(ても実
用上問題のないことが実験的に確認した。一方、本実施
例ではアルゴンガス雰囲気で焼結する例を説明したが、
真空雰囲気でも同様の効果が得られることは当然であり
、焼結時の温度と時間も1200℃×2)1に限定され
るものではなく、900°〜1200℃で1〜4時間の
範囲であれば良好な性状をもつLizO焼結体を得るこ
とができる。
When sintering a Li2O compact by embedding it in alumina powder, the material of the container and the presence or absence of a lid on the container have almost no effect on the surface properties of the sintered body. It was experimentally confirmed that there were no problems.On the other hand, in this example, an example of sintering in an argon gas atmosphere was explained.
It is natural that the same effect can be obtained in a vacuum atmosphere, and the temperature and time during sintering are not limited to 1200 ° C If so, a LizO sintered body with good properties can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したごと(、本発明によればL120圧粉体を
アルミナ粉末中に埋設して不活性ガスもしくは真空雰囲
気中で焼結することにより、高価なPt 、 Taの箔
と容器を使用することなく、かつ炉内も汚染せず、高密
度で表面性状の良好なLizO焼結体を得ることが可能
で、経済性pit産性などに優れたLizO焼結体の製
造方法を提供できるという効果を有する。
As explained above (according to the present invention, expensive Pt and Ta foils and containers can be used by embedding the L120 green compact in alumina powder and sintering it in an inert gas or vacuum atmosphere). The effect is that it is possible to obtain a LizO sintered body with high density and good surface quality without contaminating the inside of the furnace, and it is possible to provide a method for manufacturing a LizO sintered body that is excellent in economy and pit productivity. has.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の゛焼結方法を示したものでLi2O圧
粉体をアルミナ粉末中に埋設した状態の側断面図である
。 1:酸化リチウム圧粉体、2ニーステンレス容器、3:
アルミナ粉末。
FIG. 1 shows the sintering method of the present invention, and is a side sectional view of a Li2O powder compact embedded in alumina powder. 1: Lithium oxide compact, 2-knee stainless steel container, 3:
Alumina powder.

Claims (1)

【特許請求の範囲】[Claims] 1)酸化リチウム圧粉体を純度が99%以上のアルミナ
粉末中に埋設し、不活性ガスもしくは真空中において焼
結することを特徴とする酸化リチウム焼結体の製造方法
1) A method for producing a lithium oxide sintered body, which comprises embedding a lithium oxide compact in alumina powder with a purity of 99% or more and sintering it in an inert gas or vacuum.
JP61251203A 1986-10-22 1986-10-22 Manufacture of lithium oxide sintered body Pending JPS63103858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61251203A JPS63103858A (en) 1986-10-22 1986-10-22 Manufacture of lithium oxide sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61251203A JPS63103858A (en) 1986-10-22 1986-10-22 Manufacture of lithium oxide sintered body

Publications (1)

Publication Number Publication Date
JPS63103858A true JPS63103858A (en) 1988-05-09

Family

ID=17219223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61251203A Pending JPS63103858A (en) 1986-10-22 1986-10-22 Manufacture of lithium oxide sintered body

Country Status (1)

Country Link
JP (1) JPS63103858A (en)

Similar Documents

Publication Publication Date Title
US4108652A (en) Method for producing a sintered body of high density
US3226822A (en) Art of bonding ceramic to metal
US4692288A (en) Method of hot isostatic pressing of a porous silicon ceramic compact
JPS61155263A (en) Manufacture of high heat conductivity ceramic body
CN101910431A (en) Highly pure lanthanum, sputtering target comprising highly pure lanthanum, and metal gate film mainly composed of highly pure lanthanum
JP6306929B2 (en) Method for manufacturing sintered body
KR20130109170A (en) Method for storing metallic lanthanum target, vacuum-sealed metallic lanthanum target, and thin film formed by sputtering using metallic lanthanum target
JPS63103858A (en) Manufacture of lithium oxide sintered body
US3890140A (en) Aluminum titanate crucible for molten uranium
US4957901A (en) Method of manufacturing an object from superconductive material
JPS63103857A (en) Manufacture of lithium oxide sintered body
Seo et al. The Effect of MgO Addition on Grain Growth in PMN–35PT
JPS59208815A (en) Buried composite target in magnetron sputtering apparatus
JPH05155651A (en) Production of indium oxide-base sintered body and of oxide sintered body
JPH029641B2 (en)
US2849313A (en) Preparation of metal powder compacts prior to pressing
JPH0791637B2 (en) Sputtering alloy target and manufacturing method thereof
Moddeman et al. Evidence for diffusion of zerovalent metal atoms during glass/metal sealing
CN113607606A (en) Preparation method of pure metal and easily-oxidized alloy diffusion couple
JPH0518899B2 (en)
JPS6126515B2 (en)
JPS6178104A (en) Method for sintering rare-earth cobalt magnet material
Bao-rang et al. Lithium corrosion resistance of aluminum nitride prepared by structural doping with various elements
CN116815136A (en) CoFeB alloy target and preparation method thereof
JPH0663002B2 (en) Sintering method of rare earth metal