JPS63100713A - Substrate heating device for molecular beam epitaxial system - Google Patents

Substrate heating device for molecular beam epitaxial system

Info

Publication number
JPS63100713A
JPS63100713A JP24546486A JP24546486A JPS63100713A JP S63100713 A JPS63100713 A JP S63100713A JP 24546486 A JP24546486 A JP 24546486A JP 24546486 A JP24546486 A JP 24546486A JP S63100713 A JPS63100713 A JP S63100713A
Authority
JP
Japan
Prior art keywords
heating plate
substrate
heating
circumferential side
molecular beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24546486A
Other languages
Japanese (ja)
Inventor
Nushito Takahashi
主人 高橋
Ryokichi Kaji
鍛治 亮吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24546486A priority Critical patent/JPS63100713A/en
Publication of JPS63100713A publication Critical patent/JPS63100713A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the efficiency of heating and to make the temperature of a substrate uniform by a method wherein a heating plate, arranged opposing to the substrate in order to heat the substrate, is formed in such a manner that its inner circumferential side is thickly formed and the outer circumferential side is thinly formed. CONSTITUTION:The heating plate 11 arranged opposing to a substrate 1 is made of the material such as pyrolytic boron nitride, for example, and the heating plate 11 is thickly formed on the inner circumferential side and thinly formed on the outer circumferential side. When the heating plate 11 having the above-mentioned plate thickness distribution is used, the quantity of transmitted radiant heat on the outer circumferential part of thin plate thickness becomes larger than that of the inner circumferential part having heavy plate thickness, end the substrate 1 can be heated more on the outer circumference than the inner circumference. As a result, the quantity of heat escaping by the heat transfer through a substrate holder 2 on the outer circumference of the substrate 1 can be compensated, and the temperature distribution of the substrate 1 can be made uniform. Also, as the substrate 1 is heated up by the quantity of transmitted radiant heat of the heating plate 11, the efficiency of heating of the title device can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、分子線エピタキシャル装置の基板加熱装置に
係り、特に、基板の温度分布が均一で、効率的に加熱す
るのに好適な分子線エピタキシャル装置の基板加熱装置
に関するものである。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to a substrate heating device for a molecular beam epitaxial device, and particularly to a molecular beam heating device that has a uniform temperature distribution on a substrate and is suitable for efficient heating. The present invention relates to a substrate heating device for an epitaxial device.

〔従来の技術〕[Conventional technology]

従来の装置は、特開昭60−112691号公報記載の
ように、基板の温度を均一化するためにヒータと基板の
間に挿入する加熱均一化部材(ここでは加熱板と称する
)は、一様な厚さとなっていた。しかし、加熱板を挿入
すると、ヒータからの輻射熱で加熱板を加熱し、さらに
加熱板の輻射熱で基板を加熱することになるため、加熱
板が無い場合に比較し、基板を所定の温度にするための
消費電力が多くなる。消費電力が多いというのは、ヒー
タの温度が高くなることに相当し、ひいてはヒータやヒ
ータの周囲からの放出ガスが多くなるということに対応
するものである。
In the conventional device, as described in Japanese Patent Application Laid-Open No. 60-112691, a heating equalizing member (herein referred to as a heating plate) inserted between a heater and a substrate in order to equalize the temperature of the substrate is a single unit. It had a different thickness. However, when a heating plate is inserted, the radiant heat from the heater heats the heating plate, and the radiant heat from the heating plate also heats the board, so the board is kept at a predetermined temperature compared to when there is no heating plate. This increases power consumption. High power consumption corresponds to an increase in the temperature of the heater, which in turn corresponds to an increase in the amount of gas released from the heater and its surroundings.

このような従来の技術について第6図および第7図を参
照して説明する。
Such a conventional technique will be explained with reference to FIGS. 6 and 7.

第6図は、従来の分子線エピタキシャル装置の基板加熱
装置の断面図、第7図は、その加熱板の温度分布線図で
ある。
FIG. 6 is a sectional view of a conventional substrate heating device of a molecular beam epitaxial apparatus, and FIG. 7 is a temperature distribution diagram of the heating plate thereof.

第6図に示すように、基板1は、基板ホルダ2に板3で
保持され、この基板ホルダ2は爪4で固定され、図には
示していない駆動機構により回転運動が可能となってい
る。
As shown in FIG. 6, the substrate 1 is held by a plate 3 on a substrate holder 2, and this substrate holder 2 is fixed with claws 4, and can be rotated by a drive mechanism not shown in the figure. .

基板1は基板1に対向して配置された加熱板5の熱輻射
で加熱されるものであり、加熱板5は、加熱板5に対向
して配置されたヒータ6によって加熱される。
The substrate 1 is heated by thermal radiation from a heating plate 5 arranged opposite to the substrate 1, and the heating plate 5 is heated by a heater 6 arranged opposite to the heating plate 5.

このヒータ6は、パイロリティック窒化ボロン(以下P
BNという)などの絶縁物で作られたヒータベース7の
上に固定されている。
This heater 6 is made of pyrolytic boron nitride (hereinafter referred to as P
It is fixed on a heater base 7 made of an insulating material such as BN).

基板1の温度制御は、熱電対8によって行われるもので
、第6図の例では、熱電対8の碍子9に、加熱板5やヒ
ータベース7、さらに加熱効率を向上させるための熱シ
ールド板10等を取付けた構造となっていた。
Temperature control of the substrate 1 is performed by a thermocouple 8. In the example shown in FIG. 6, the insulator 9 of the thermocouple 8 is equipped with a heating plate 5, a heater base 7, and a heat shield plate for improving heating efficiency. It had a structure with a 10th grade attached.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第7図の加熱板の温度線図は、上記第6図の基板加熱装
置における基板1と基板ホルダ2とを取付けずに、波長
0.9μmの赤外線温度計で、加熱板5の温度を測定し
た結果である。
The temperature diagram of the heating plate in Fig. 7 shows the temperature of the heating plate 5 measured using an infrared thermometer with a wavelength of 0.9 μm without attaching the substrate 1 and substrate holder 2 in the substrate heating apparatus shown in Fig. 6 above. This is the result.

第7図は、横軸に加熱板の半径(mrn)をとり、縦軸
に加熱板の温度(”C)をとって、0.9μmの波長を
透過しないシリコン板を加熱板5とした場合の温度を実
線で示し、0.9μmの波長を透過する材質PBNの加
熱板5とした場合の温度を破線で示している。
In Figure 7, the horizontal axis represents the radius of the heating plate (mrn), the vertical axis represents the heating plate temperature ("C), and the heating plate 5 is a silicon plate that does not transmit a wavelength of 0.9 μm. The solid line indicates the temperature, and the broken line indicates the temperature when the heating plate 5 is made of PBN which transmits a wavelength of 0.9 μm.

なお、第7図の測定結果は、シリコン板の輻射率を0.
6、P B Nのそれを0.425としたものである。
The measurement results shown in FIG. 7 are based on the emissivity of the silicon plate being 0.
6, P B N is set to 0.425.

第7図かられかるように、PBN加熱板の温度分布測定
結果は、破線のように半径方向で大きく変動している。
As can be seen from FIG. 7, the temperature distribution measurement results of the PBN heating plate vary greatly in the radial direction as shown by the broken line.

これは、加熱板5の裏側にあるヒータ6から放射された
波長0.9μmも、加熱板5を透過して赤外線温度計に
検出されたためである。波長0.9μmの場合、加熱板
5の材質がPBNであっても100%の透過するわけで
はなく、PBHの厚さによって透過量が変化することが
認められる。
This is because the wavelength of 0.9 μm emitted from the heater 6 on the back side of the heating plate 5 also passed through the heating plate 5 and was detected by the infrared thermometer. In the case of a wavelength of 0.9 μm, even if the material of the heating plate 5 is PBN, it does not transmit 100%, and it is recognized that the amount of transmission changes depending on the thickness of the PBH.

上記従来の基板加熱装置では、既に述べたとおり、基板
1を所定の温度にするためには、ヒータ6の温度を高め
る必要があり、したがって消費電力が多くなり、ヒータ
の周囲からの放出ガスが多くなることについて配慮がな
されていなかった。
In the conventional substrate heating device described above, in order to bring the substrate 1 to a predetermined temperature, it is necessary to increase the temperature of the heater 6, which increases power consumption and increases the amount of gas released from around the heater. No consideration was given to the fact that there would be a large number of cases.

また、基板1の外周部から基板ホルダ2を通して熱伝導
によって熱量が逃げてゆくことについて十分に配慮され
ていなかった。
Furthermore, sufficient consideration was not given to the loss of heat from the outer circumference of the substrate 1 through the substrate holder 2 by thermal conduction.

本発明は、前述の従来技術の問題点を解決するためにな
されたもので、加熱効率を向上し、加えて基板の温度を
均一化しうる分子線エピタキシャル装置の基板加熱装置
を提供することを、その目的としている。
The present invention has been made in order to solve the above-mentioned problems of the prior art, and aims to provide a substrate heating device for a molecular beam epitaxial device that can improve heating efficiency and uniformize the temperature of the substrate. That is the purpose.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために、本発明に係る分子線エピタ
キシャル装置の基板加熱装置の箭成は、基板ホルダに保
持された基板を加熱するために当該基板に対向して配置
された加熱板と、この加熱板を加熱するためのヒータと
を備えた分子線エピタキシャル装置において、前記加熱
板の透過輻射熱量を当該加熱板の内周側より外周側で高
くするように当該加熱板の板厚に変化を設けたものであ
る。
In order to achieve the above object, the structure of the substrate heating device for a molecular beam epitaxial apparatus according to the present invention includes a heating plate disposed opposite to the substrate to heat the substrate held by the substrate holder; In a molecular beam epitaxial apparatus equipped with a heater for heating the heating plate, the thickness of the heating plate is changed so that the amount of transmitted radiant heat of the heating plate is higher on the outer periphery side than on the inner periphery side of the heating plate. It has been established.

なお付記すると、上記目的は、加熱板の板厚を当該加熱
板の半径方向に沿って内周側を厚く外周側を薄くなるよ
うに変化させることにより達成される。
In addition, the above object is achieved by changing the thickness of the heating plate along the radial direction of the heating plate so that it is thicker on the inner peripheral side and thinner on the outer peripheral side.

また、加熱板の表面に凹凸を多数設けることにより、加
熱板の実効的な輻射率を向上させることができる。
Further, by providing a large number of irregularities on the surface of the heating plate, the effective emissivity of the heating plate can be improved.

〔作用〕[Effect]

加熱板の材fft、、例えばパイロリティック窒化ボロ
ン(P B N)とすると、PBNは1μm程度以上の
波長の赤外線を透過する。
When the material fft of the heating plate is, for example, pyrolytic boron nitride (PBN), PBN transmits infrared rays having a wavelength of about 1 μm or more.

したがって、ヒータからの輻射熱量の一部は、PBNの
加熱板を透過して基板に達するし、一部は加熱板に吸収
されて加熱板を加熱し、その結果、加熱板からの熱輻射
で基板が加熱される。PBHの加熱板を透過する熱量は
、加熱板の板厚に依存する6また。加熱板の輻射熱量は
、加熱板の板厚ではなく、加熱板の温度分布に依存する
。そこで、加熱板の板厚を適切に変化させることにより
、加熱板を透過する輻射熱量を制御すれば、基板の温度
分布を均一化できる。また、ヒータの温度は、加熱板の
温度よりも高いので、加熱板を透過する赤外線の強度は
、加熱板から放射される同じ波長の赤外線の強度よりも
強いので、基板を効率良く加熱できる。
Therefore, part of the radiant heat from the heater passes through the PBN heating plate and reaches the substrate, and part of it is absorbed by the heating plate and heats the heating plate, resulting in thermal radiation from the heating plate. The substrate is heated. The amount of heat transmitted through a PBH heating plate depends on the thickness of the heating plate. The amount of radiant heat from the heating plate depends not on the thickness of the heating plate but on the temperature distribution of the heating plate. Therefore, by controlling the amount of radiant heat that passes through the heating plate by appropriately changing the thickness of the heating plate, the temperature distribution of the substrate can be made uniform. Further, since the temperature of the heater is higher than the temperature of the heating plate, the intensity of infrared rays transmitted through the heating plate is stronger than the intensity of infrared rays of the same wavelength emitted from the heating plate, so that the substrate can be heated efficiently.

また、加熱板の表面に凹凸を設けることにより加熱板の
実効的な輻射率を向上させることができ、加熱効率を向
上させることができる。
Further, by providing the surface of the heating plate with irregularities, the effective emissivity of the heating plate can be improved, and heating efficiency can be improved.

〔実施例〕〔Example〕

以下、本発明の各実施例を第1図ないし第5図を参照し
て説明する。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 5.

まず第1図は、本発明の一実施例に係る分子線エピタキ
シャル装置の基板加熱装置の断面図である0図中、第6
図と同一符号のものは、従来技術と同等部分であるから
、その説明を省略する。
First, FIG. 1 is a cross-sectional view of a substrate heating device of a molecular beam epitaxial device according to an embodiment of the present invention.
Components with the same reference numerals as those in the drawings are the same parts as in the prior art, so their explanation will be omitted.

第1図において、11は、基板1に対向して配置された
加熱板で、この加熱板11の材質は、高輻射率かつ高熱
伝導度のパイロリティック窒化ボロン(r’BN)であ
り、その板厚は、当該加熱板11の内周側を厚く外周側
を薄くなるように形成したものである。
In FIG. 1, reference numeral 11 denotes a heating plate placed opposite to the substrate 1. The material of the heating plate 11 is pyrolytic boron nitride (r'BN), which has high emissivity and high thermal conductivity. The plate thickness is such that the inner peripheral side of the heating plate 11 is thicker and the outer peripheral side is thinner.

このような板厚分布、換言すれば板厚に変化のある加熱
板11を用いれば、板厚の小さい外周部での透過輻射熱
量が、板厚の大きい内周側より多くなり、基板1を当該
基板1の外周部で、より多く加熱することになる。その
ため、基板1の外周部から基板ホルダ2を通して熱伝導
で逃げゆく熱量を保証することになり、基板1の温度分
布を均一化することができる。また、加熱板の透過輻射
熱量でも基板1が加熱されるため、加熱効率も向上する
If a heating plate 11 having such a plate thickness distribution, in other words, a variable plate thickness is used, the amount of transmitted radiant heat at the outer circumference where the plate is thinner will be larger than at the inner circumference where the plate thickness is large, and the substrate 1 will be heated. The outer periphery of the substrate 1 is heated more. Therefore, the amount of heat escaping from the outer periphery of the substrate 1 through the substrate holder 2 by thermal conduction is guaranteed, and the temperature distribution of the substrate 1 can be made uniform. Furthermore, since the substrate 1 is heated by the amount of transmitted radiant heat from the heating plate, heating efficiency is also improved.

本実施例によれば、基板の温度分布を均一化し、加熱効
率を向上し、消費電力も少なくすることができるので、
基板上で正常な結晶成長ができる面積が広くなるという
効果がある。また、消費電力の低下にともないヒータ温
度や周辺部品の温度が低下する。したがって、放出ガス
量も少なくなり、結晶成長に悪影響を及ぼす不純物ガス
量を少なくできるという効果もある。
According to this embodiment, the temperature distribution of the substrate can be made uniform, heating efficiency can be improved, and power consumption can be reduced.
This has the effect of increasing the area on the substrate where normal crystal growth can occur. Furthermore, as power consumption decreases, the temperature of the heater and the temperatures of peripheral components decrease. Therefore, the amount of released gas is also reduced, which has the effect of reducing the amount of impurity gas that adversely affects crystal growth.

次に、本発明の他の実施例を第2図および第3図を参照
して説明する。
Next, another embodiment of the present invention will be described with reference to FIGS. 2 and 3.

第2図は1本発明の他の実施例に係る基板加熱装置に供
せられる加熱板の斜視図、第3図は、その断面図である
FIG. 2 is a perspective view of a heating plate provided in a substrate heating apparatus according to another embodiment of the present invention, and FIG. 3 is a sectional view thereof.

第2.3図に示す加熱板12は、板厚そのものは一様な
厚さのPBN製加熱板であるが、同心円状の複数個の溝
12aを設けたものである。
The heating plate 12 shown in FIG. 2.3 is a PBN heating plate having a uniform thickness, but is provided with a plurality of concentric grooves 12a.

一般に加熱板の輻射率は、加熱板の表面状態に依存して
変化するので、同心円状の溝を設けると輻射率が大きく
なる。したがって、加熱板12の外周側の溝ピッチを狭
く (外周側の溝を多く)シ。
Generally, the emissivity of a heating plate changes depending on the surface condition of the heating plate, so providing concentric grooves increases the emissivity. Therefore, the pitch of the grooves on the outer circumferential side of the heating plate 12 should be narrowed (more grooves on the outer circumferential side).

内周側の溝ピッチを広く (内周側の溝を少なく)すれ
ば、当該加熱板の内周側と外周側とで実質的に板厚を変
化させたことになり、加熱板12の透過熱輻射址が当該
加熱板12の内周側より外周側で高めとなる。したがっ
て、先の第1図の実施例と同様の効果が期待される。
If the groove pitch on the inner circumferential side is widened (the number of grooves on the inner circumferential side is decreased), the thickness of the heating plate is substantially changed between the inner circumferential side and the outer circumferential side, and the transmission of the heating plate 12 is reduced. The heat radiation area is higher on the outer circumferential side of the heating plate 12 than on the inner circumferential side. Therefore, the same effects as the previous embodiment shown in FIG. 1 are expected.

なお、溝12aの間隔のほか、溝幅、溝深さを適宜選択
することにより、基板温度の均一化を図ることができる
Note that the substrate temperature can be made uniform by appropriately selecting the groove width and groove depth in addition to the interval between the grooves 12a.

また、特に図示しないが、同心円の溝に限らず。Although not particularly shown, the grooves are not limited to concentric circles.

渦巻き状の溝を設け、内周側の溝ピッチを広く、外周側
の溝ピッチを狭く形成しても同様の効果が期待される。
A similar effect can be expected even if spiral grooves are provided, with a wide groove pitch on the inner circumferential side and a narrow groove pitch on the outer circumferential side.

さらに、溝の断面形状も、第2,3図の実施例では矩形
状の角溝の例を示したが、V状の溝、U状の溝、あるい
は不定形の溝でも有効であることは言うまでもない。
Furthermore, regarding the cross-sectional shape of the groove, although rectangular square grooves are shown in the embodiments shown in FIGS. 2 and 3, V-shaped grooves, U-shaped grooves, or irregularly shaped grooves may also be effective. Needless to say.

次に、本発明のさらに他の実施例を第4図および第5図
を参照して説明する。
Next, still another embodiment of the present invention will be described with reference to FIGS. 4 and 5.

第4図および第5図は、いずれも本発明のさらに他の実
施例に係る基板加熱装置に供せられる加熱板の斜視図で
ある。
FIG. 4 and FIG. 5 are both perspective views of a heating plate used in a substrate heating apparatus according to still another embodiment of the present invention.

第4図に示す加熱板13は、板厚そのものは一様な厚さ
のPBN製加熱板であるが、放射状の溝13aを設けた
ものである。これらの放射状の溝13aは、当該加熱板
13の内周側の溝を浅く、外周側は溝を深く形成するこ
とよって、当該加熱板13の内周側と外周側とで板厚を
実質的に変化させたことになり、加熱板13の透過熱輻
射量が当該加熱板13の内周側より外周側で高めとなる
The heating plate 13 shown in FIG. 4 is a PBN heating plate having a uniform thickness, but is provided with radial grooves 13a. These radial grooves 13a are formed by forming shallow grooves on the inner circumferential side of the heating plate 13 and deep grooves on the outer circumferential side, thereby substantially reducing the plate thickness between the inner circumferential side and the outer circumferential side of the heating plate 13. As a result, the amount of transmitted heat radiation of the heating plate 13 becomes higher on the outer circumferential side than on the inner circumferential side of the heating plate 13.

したがって、先の第1図の実施例と同様の効果が期待さ
れる。
Therefore, the same effects as the previous embodiment shown in FIG. 1 are expected.

なお、溝断面形状は、先の第2,3図の実施例と同様、
角形、V形、U形、不定形のいずれでもよい、また、図
示しないが、放射状の溝を加熱板の外周部にのみ設けて
もよい。
Note that the cross-sectional shape of the groove is similar to the embodiment shown in FIGS. 2 and 3 above.
It may be rectangular, V-shaped, U-shaped, or irregularly shaped. Although not shown, radial grooves may be provided only on the outer periphery of the heating plate.

第5図に示す加熱板14は、板厚そのものは一様な厚さ
のPBNIl加熱板であるが、多数の凹凸14aを設け
たものである。これらの凹凸14aは、形状に限定され
ず、例えばドリルで傷をつけたような点状の傷でもよい
、多数の凹凸14aは、当該加熱板14の内周側では粗
に、外周側では密に形成することによって、当該加熱板
14の透過輻射量が内周側より外周側で高めとなる。し
たがって、先の第1図の実施例と同様の効果が期待され
る。
The heating plate 14 shown in FIG. 5 is a PBNIl heating plate having a uniform thickness, but is provided with a large number of irregularities 14a. These unevenness 14a are not limited to the shape, and may be, for example, point-like scratches such as those made with a drill. By forming the heating plate 14, the amount of transmitted radiation of the heating plate 14 becomes higher on the outer circumferential side than on the inner circumferential side. Therefore, the same effects as the previous embodiment shown in FIG. 1 are expected.

なお、凹凸の形状は、不定形のものでよく、図 −には
示していないが、例えば、ブラシで傷をつけたような不
定形の傷でも有効である。
Note that the shape of the unevenness may be irregular, and although it is not shown in FIG.

また、前述の第1図ないし第4図の実施例で説明した各
加熱板11,12.13等の、ヒータ6と対向する面の
表面に、多数の凹凸、例えば点状の傷を設けると、ヒー
タによって加熱板が加熱されやすくなるので、加熱効率
が向上し、その結果、ヒータの消費電力を低下させるこ
とも可能になる。
Moreover, if a large number of irregularities, for example, dot-like scratches, are provided on the surface of each heating plate 11, 12, 13, etc., which faces the heater 6, as explained in the embodiments of FIGS. 1 to 4, Since the heating plate is easily heated by the heater, the heating efficiency is improved, and as a result, it is also possible to reduce the power consumption of the heater.

このことは、放出ガスを低下させることにもつながり、
結晶成長にとって有益である。
This also leads to lower emission gas,
Beneficial for crystal growth.

なお、前述の各実施例では、加熱板の材質としてもとつ
もよく使用されるPBNのものを説明したが1本発明は
これに限定されるものではなく。
In each of the above-described embodiments, PBN, which is commonly used as a material for the heating plate, has been described, but the present invention is not limited thereto.

他の材質の採用を妨げない。Does not prevent the use of other materials.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、加熱効率を向上し
、加えて基板の温度を均一化しうる分子線エピタキシャ
ル装置の基板加熱装置を提供することができる。
As described above, according to the present invention, it is possible to provide a substrate heating device for a molecular beam epitaxial device that can improve heating efficiency and also make the temperature of the substrate uniform.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例に係る分子線エピタキシャ
ル装置の基板加熱装置の断面図、第2図は、本発明の他
の実施例に係る基板加熱装置に供せられる加熱板の斜視
図、第3図は、その断面図、第4図および第5図は、い
ずれも本発明のさらに他の実施例に係る基板加熱装置に
供せられる加熱板の斜視図、第6図は、従来の分子線エ
ピタキシャル装置の基板加熱装置の断面図、第7図は、
その加熱板の温度分布線図である。 1・・・基板、2・・・基板ホルダ、6・・・ヒータ、
11゜12.13.14・・・加熱板、12a、13a
・・・溝、14a・・・凹凸。
FIG. 1 is a sectional view of a substrate heating device for a molecular beam epitaxial apparatus according to an embodiment of the present invention, and FIG. 2 is a perspective view of a heating plate provided in a substrate heating device according to another embodiment of the present invention. 3 is a sectional view thereof, FIGS. 4 and 5 are perspective views of a heating plate provided in a substrate heating apparatus according to still another embodiment of the present invention, and FIG. 6 is a sectional view thereof. A cross-sectional view of a substrate heating device of a conventional molecular beam epitaxial device, FIG.
It is a temperature distribution diagram of the heating plate. 1... Substrate, 2... Substrate holder, 6... Heater,
11゜12.13.14...Heating plate, 12a, 13a
...Groove, 14a...Irregularities.

Claims (1)

【特許請求の範囲】 1、基板ホルダに保持された基板を加熱するために当該
基板に対向して配置された加熱板と、この加熱板を加熱
するためのヒータとを備えた分子線エピタキシャル装置
において、前記加熱板の透過輻射熱量を当該加熱板の内
周側より外周側で高くするように当該加熱板の板厚に変
化を設けたことを特徴とする分子線エピタキシャル装置
の基板加熱装置。 2、特許請求の範囲第1項記載のものにおいて、加熱板
の材質を、パイロリテイツク窒化ボロンとしたものであ
る分子線エピタキシャル装置の基板加熱装置。 3、特許請求の範囲第1項記載のものにおいて、加熱板
の板厚は、当該加熱板の半径方向に沿つて内周側を厚く
外周側を薄くなるように形成したものである分子線エピ
タキシャル装置の基板加熱装置。 4、特許請求の範囲第1項記載のものにおいて、加熱板
の板厚は、当該加熱板に渦巻き状の溝あるいは同心円状
の複数個の溝を設け、内周側の溝ピッチを広く外周側の
溝ピッチを狭く形成することによつて変化させたもので
ある分子線エピタキシャル装置の基板加熱装置。 5、特許請求の範囲第1項記載のものにおいて、加熱板
の板厚は、当該加熱板に放射状の複数個の溝を設け、こ
れら溝を内周側は浅く外周側は深く形成することによつ
て変化させたものである分子線エピタキシャル装置の基
板加熱装置。 6、特許請求の範囲第1項記載のものにおいて、加熱板
の板厚は、当該加熱板の面に複数個の凹凸を設け、これ
ら凹凸を内周側では疎に、外周側では密に形成すること
によつて変化させたものである分子線エピタキシャル装
置の基板加熱装置。 7、特許請求の範囲第3項ないし第6項記載のもののい
ずれかにおいて、加熱板がヒータと対向する面の表面に
、複数個の凹凸を設けたものである分子線エピタキシャ
ル装置の基板加熱装置。
[Claims] 1. A molecular beam epitaxial device comprising a heating plate placed opposite to the substrate to heat the substrate held in the substrate holder, and a heater for heating the heating plate. A substrate heating device for a molecular beam epitaxial apparatus, characterized in that the thickness of the heating plate is varied so that the amount of transmitted radiant heat of the heating plate is higher on the outer periphery side than on the inner periphery side of the heating plate. 2. A substrate heating device for a molecular beam epitaxial device according to claim 1, wherein the heating plate is made of pyrolytic boron nitride. 3. In the product described in claim 1, the thickness of the heating plate is formed so that the thickness of the heating plate is thicker on the inner circumferential side and thinner on the outer circumferential side along the radial direction of the heating plate. Equipment substrate heating device. 4. In the item described in claim 1, the thickness of the heating plate is such that the heating plate is provided with a spiral groove or a plurality of concentric grooves, and the groove pitch on the inner circumference side is widened on the outer circumference side. A substrate heating device for a molecular beam epitaxial device, which is changed by narrowing the groove pitch. 5. In the item described in claim 1, the thickness of the heating plate is such that the heating plate is provided with a plurality of radial grooves, and these grooves are shallow on the inner circumferential side and deep on the outer circumferential side. This is a modified substrate heating device for molecular beam epitaxial equipment. 6. In the item described in claim 1, the thickness of the heating plate is such that a plurality of irregularities are provided on the surface of the heating plate, and these irregularities are formed sparsely on the inner circumferential side and densely on the outer circumferential side. A substrate heating device for molecular beam epitaxial equipment that has been changed by 7. A substrate heating device for a molecular beam epitaxial device according to any one of claims 3 to 6, wherein the heating plate has a plurality of projections and depressions on the surface facing the heater. .
JP24546486A 1986-10-17 1986-10-17 Substrate heating device for molecular beam epitaxial system Pending JPS63100713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24546486A JPS63100713A (en) 1986-10-17 1986-10-17 Substrate heating device for molecular beam epitaxial system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24546486A JPS63100713A (en) 1986-10-17 1986-10-17 Substrate heating device for molecular beam epitaxial system

Publications (1)

Publication Number Publication Date
JPS63100713A true JPS63100713A (en) 1988-05-02

Family

ID=17134049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24546486A Pending JPS63100713A (en) 1986-10-17 1986-10-17 Substrate heating device for molecular beam epitaxial system

Country Status (1)

Country Link
JP (1) JPS63100713A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999055934A1 (en) * 1998-04-27 1999-11-04 Cvc, Inc. Energy transfer system and method for thermal processing applications

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999055934A1 (en) * 1998-04-27 1999-11-04 Cvc, Inc. Energy transfer system and method for thermal processing applications

Similar Documents

Publication Publication Date Title
US9532401B2 (en) Susceptor support shaft with uniformity tuning lenses for EPI process
US6222990B1 (en) Heating element for heating the edges of wafers in thermal processing chambers
US4986215A (en) Susceptor for vapor-phase growth system
US9123765B2 (en) Susceptor support shaft for improved wafer temperature uniformity and process repeatability
JP3008192B2 (en) Heating equipment for chemical vapor deposition
EP1075015A3 (en) A method and apparatus for thermal control of a semiconductor substrate
KR960012316A (en) Processing device of the object
JPH03218624A (en) Lamp annealing device
US20050051099A1 (en) Susceptor provided with indentations and an epitaxial reactor which uses the same
KR950006955A (en) Heat treatment device and heat treatment method
US5991508A (en) Thermal processing apparatus with a shield between heater and substrate
KR920010789A (en) Heat treatment method
JPH0845863A (en) Single wafer semiconductor substrate heat treatment device
TW201801153A (en) Susceptor support
KR960035866A (en) Method for manufacturing semiconductor device and apparatus for manufacturing semiconductor device
JPS63100713A (en) Substrate heating device for molecular beam epitaxial system
JP2002146540A (en) Substrate heater
JPH06204143A (en) Cvd equipment
DE69608335T2 (en) Reaction chamber with a quasi hot wall
JPH045000B2 (en)
JPS62118519A (en) Semiconductor substrate heating device
JPS60123025A (en) Heating device
JP3065065B1 (en) Substrate heating device with cooler
JP2019096765A (en) Sic epitaxial growth apparatus
JPH01164793A (en) Heater for substrate