JPS63100606A - Method for discriminating exposing of organic insulator of magnetic head - Google Patents

Method for discriminating exposing of organic insulator of magnetic head

Info

Publication number
JPS63100606A
JPS63100606A JP24521686A JP24521686A JPS63100606A JP S63100606 A JPS63100606 A JP S63100606A JP 24521686 A JP24521686 A JP 24521686A JP 24521686 A JP24521686 A JP 24521686A JP S63100606 A JPS63100606 A JP S63100606A
Authority
JP
Japan
Prior art keywords
light
fluorescence
specific wavelength
magnetic
magnetic head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24521686A
Other languages
Japanese (ja)
Other versions
JPH0785294B2 (en
Inventor
Koji Nakazawa
中澤 宏治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24521686A priority Critical patent/JPH0785294B2/en
Publication of JPS63100606A publication Critical patent/JPS63100606A/en
Publication of JPH0785294B2 publication Critical patent/JPH0785294B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To make non-destructive measurement by detecting the polarization characteristic arising upon passage of the fluorescence emitted by an org. material through a magnetic gap when light of a specific wavelength is projected to a magnetic head as an intensity ratio of the fluorescence in the oscillation direction components varying by 90 deg. from each other. CONSTITUTION:Light from an illuminating light source 12 enters a dichroic mirror (prism) 10 and only the light of the specific wavelength is reflected by a vapor deposited film filter of the mirror 10 and is directed toward an objective lens 9. The light of the other wavelengths is transmitted through or absorbed by the prism. The fluorescence of the specific wavelength is emitted from the magnetic had 1 when the light of the specific wavelength passed through the lens 9 is illuminated to the head 1. Said fluorescence is passed through the lens 9 and again through the mirror 10. The light of the reflected light component is shielded by the effect of the vapor deposited film filter on the prism surface and the light of the wavelength of the fluorescent component is transmitted therethrough. The transmitted fluorescent component is imaged onto a TV camera 16 by imaging lenses 13, 15. The light passage direction is made to coincide with the S direction by inserting a polarizing plate 14 in the imaging optical path. The measurement of the polarization condition when the exit light from an org. insulator 6 receives at the time of the passage through the magnetic gap 7 is permitted by rotating the same in the direction 90 deg. therewith.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気ヘッドの有機絶縁物露出判定法に係り、
特に蛍光の偏光特性を利用した有機絶縁物露出判定法に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for determining exposure of organic insulators in a magnetic head.
In particular, it relates to a method for determining exposure of organic insulators using the polarization characteristics of fluorescence.

〔従来の技術〕[Conventional technology]

磁気ヘッドの形状に関しては、エレクトロニック パツ
ケイジング テクノロジー(εLaetrontcPa
cka、qitsl TachntrLogy ) V
oL 1 、 A 2 p 111〜113(1985
−7)等に述べられており、表面の透明保護膜を通して
内部のパターン形状を顕微鏡により拡大して見ることに
ついての記述がある。このノ(ターンの断面形状につい
ては、ヘッドを破断じなければ見ることができないため
、非破壊的に検査する適当な方法がなかった。
Regarding the shape of the magnetic head, we used Electronic Packaging Technology (εLaetrontcPa).
cka, qitsl TachntrLogy) V
oL 1, A 2 p 111-113 (1985
-7), etc., and there is a description of enlarging and viewing the internal pattern shape using a microscope through a transparent protective film on the surface. Since the cross-sectional shape of this turn cannot be seen without breaking the head, there has been no suitable method for non-destructively inspecting it.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記従来技術にお(・ては、ヘッドを破
断しなければ、)くターンの断面形状をみることができ
ず、非破壊的に検査する点につ−・て配慮されていなか
った。
However, in the above-mentioned prior art, the cross-sectional shape of the turns cannot be seen unless the head is broken, and no consideration is given to non-destructive inspection.

本発明の目的は、ヘッド内部の表面近傍を非破壊的に観
察可能とすることを目的とする。
An object of the present invention is to enable non-destructive observation of the vicinity of the surface inside the head.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するため、有機絶縁物力1発する蛍光を
観察可能とし、この蛍光がスリット状の磁気ギャップを
通過する際に偏光特性を帯びる性質を利用して、その偏
光度を測定することにより、上記有機絶縁物がヘッドの
表面にどの程度接近しているか、または露出しているか
の有無が判定することを特徴とする特 〔作用〕 有機絶縁物の蛍光(特定波長の光)を観察するために、
ヘッドに特定波長の光を照射する手段を設ける。磁気ギ
ャップを通過する際に上記蛍光は偏光特性を帯びるが、
その偏光度を測定するために互に90°異なる振動方向
成分の蛍光の強さを受光素子で検出し、強度比を演算す
ることにより、有機絶縁物のヘッド表面までの距離また
はヘッド表面への露出の有無が判定できる。
In order to achieve the above objective, we made it possible to observe the fluorescence emitted by an organic insulator, and by measuring the degree of polarization, we took advantage of the property that this fluorescence takes on polarization characteristics when passing through a slit-shaped magnetic gap. A special feature characterized in that it determines how close the organic insulator is to the surface of the head or whether it is exposed or not. To observe the fluorescence (light of a specific wavelength) of the organic insulator. To,
A means for irradiating the head with light of a specific wavelength is provided. When passing through the magnetic gap, the above fluorescence takes on polarization characteristics,
To measure the degree of polarization, a light receiving element detects the intensity of fluorescence in vibration direction components that differ by 90 degrees from each other, and calculates the intensity ratio to determine the distance to the head surface of the organic insulator or to the head surface. The presence or absence of exposure can be determined.

〔実施例〕〔Example〕

本発明の実施例を第1〜6図に示す。第2図は磁気ヘッ
ド断面形状を示す断面図である。1は磁気ヘッドで、上
部磁性膜5と下部磁性膜4との間には磁気ギャップを形
成する透明無機材料7とコイル5の空間を充てんするた
めの有機絶縁物6とがある。これらは基板8の上に形成
され、さらにこれらの表面は透明保護膜2で保護されて
いる。
Examples of the present invention are shown in FIGS. 1-6. FIG. 2 is a cross-sectional view showing the cross-sectional shape of the magnetic head. 1 is a magnetic head, and between an upper magnetic film 5 and a lower magnetic film 4 there is a transparent inorganic material 7 forming a magnetic gap and an organic insulating material 6 filling the space of the coil 5. These are formed on a substrate 8, and their surfaces are further protected with a transparent protective film 2.

従来ヘッドの各部寸法を測定するには第2図のY、Z方
向から顕微鏡観察するしかなかったが、Y方向から見た
場合には、有機絶縁物6の先端部C点と上部磁性膜6の
角部3点とは完全には一致していないから、0点から摺
動面(3面)tでの距離を正確にα1μmオーダの精度
で測定することは困難である。また第3図に見るように
ヘッドをZ方向から見た場合には、仮に有機絶縁物6が
表面(摺動面)に露出していたとしても、有機絶縁物6
.磁気ギャップ材料7は共罠殆ど透明な材料のため、見
分けがつかず、有機絶縁物60表面への露出有無を判定
することができなかった。有機絶縁物6の露出形状は、
第3図で磁性膜先端露出部3−1に沿って平行な形状と
なる。この有機絶縁物6の露出があると、磁気ヘッド1
がディスク面を滑走するときの摺動特性が悪くなるため
、露出有無を明確に判定する必要がある。
Conventionally, the only way to measure the dimensions of each part of the head was to observe it with a microscope from the Y and Z directions in FIG. Since the three corner points do not completely coincide with each other, it is difficult to accurately measure the distance from the zero point to the sliding surface (three surfaces) t with an accuracy on the order of α1 μm. Furthermore, when the head is viewed from the Z direction as shown in FIG. 3, even if the organic insulator 6 is exposed on the surface (sliding surface), the organic insulator 6
.. Since the magnetic gap material 7 is a nearly transparent material, it is difficult to distinguish between them, and it is not possible to determine whether or not it is exposed to the surface of the organic insulator 60. The exposed shape of the organic insulator 6 is
In FIG. 3, the magnetic film has a parallel shape along the exposed tip portion 3-1. When this organic insulator 6 is exposed, the magnetic head 1
Since the sliding characteristics when sliding on the disk surface deteriorate, it is necessary to clearly determine whether there is exposure or not.

本発明はこの有機材料6と無機材料7の識別法として蛍
光観察法に着目した。ある特定の波長の光(例えば緑色
の光)で照明し、その照明光とは別波長の特定の光(例
えば赤色の光;蛍光と言う)を観察すると、無機材料は
蛍光を発しないが、有機材料は明瞭な蛍光を発する。し
かるに第2図で上記照明光を対物レンズ9側からあてる
と、有機絶縁物6の先端Cが表面に露出していなくても
、上記蛍光は透明材料の磁気ギャップ7を通って表面に
見えてくるため、対物レンズを通して蛍光が見えたかど
うかだけでは、有機絶縁物6の露出有無を判定すること
ができない。
The present invention focuses on fluorescence observation as a method for distinguishing between the organic material 6 and the inorganic material 7. When illuminated with light of a certain wavelength (for example, green light) and observed with a specific light of a different wavelength from the illumination light (for example, red light; called fluorescence), inorganic materials do not emit fluorescence, but Organic materials emit distinct fluorescence. However, in FIG. 2, when the illumination light is applied from the objective lens 9 side, the fluorescence passes through the magnetic gap 7 of the transparent material and is visible on the surface even though the tip C of the organic insulator 6 is not exposed on the surface. Therefore, it is not possible to determine whether or not the organic insulator 6 is exposed just by seeing the fluorescence through the objective lens.

そこで本発明では第1図、第4図及び第5図の方法によ
り蛍光観察による有機絶縁物の露出有無判定を可能にし
た。
Therefore, in the present invention, it is possible to determine the presence or absence of exposure of organic insulators by fluorescence observation using the methods shown in FIGS. 1, 4, and 5.

第1図で照明光源12から出た光は照明レンズ11を通
りダイクロイックミラ(プリズム)10に入射し、プリ
ズム反射面に施された蒸着膜フィルタの作用により、特
定の波長の光のみが反射され対物レンズ9に向い、他の
波長の光はプリズムを透過してしまうか吸収されてしま
う。対物レンズを通過した特定波長の光は磁気ヘッド1
を照明すると磁気ヘッドからは照明光と同波長の反射光
の他に照明光波長とは異なる特定波長の光(蛍光)を発
する。これらの光が対物レンズを通って再びダイクロイ
ックミラ10を通過する際、プリズム表面に施された蒸
着膜フィルタの作用により、上記磁気ヘッドの反射光成
分の光を遮へいし、蛍光成分の波長の光を透過させるこ
とができる。このようにして透過した蛍光成分は結像レ
ンズ13.15によりTV左カメラ6上に像を結ぶ。こ
の際本発明では結像光路中に検光子(偏光板)14を挿
入することにより、有機絶縁物6から出射された光が平
行スリット状の磁気ギャップ7を通過する際に受ける偏
光状態を測定可能にしている。
In Fig. 1, light emitted from an illumination light source 12 passes through an illumination lens 11 and enters a dichroic mirror (prism) 10, and only light of a specific wavelength is reflected by the action of a vapor-deposited film filter applied to the reflective surface of the prism. Light of other wavelengths is directed toward the objective lens 9 and is either transmitted through the prism or absorbed. The light of a specific wavelength that has passed through the objective lens is sent to the magnetic head 1.
When illuminated, the magnetic head emits reflected light having the same wavelength as the illumination light as well as light (fluorescence) having a specific wavelength different from the wavelength of the illumination light. When these lights pass through the objective lens and pass through the dichroic mirror 10 again, the action of the vapor-deposited film filter applied to the prism surface blocks the reflected light component of the magnetic head, and the light with the wavelength of the fluorescent component is blocked. can be transmitted. The fluorescent component thus transmitted forms an image on the TV left camera 6 by the imaging lens 13.15. At this time, in the present invention, by inserting an analyzer (polarizing plate) 14 into the imaging optical path, the polarization state that the light emitted from the organic insulator 6 receives when it passes through the parallel slit-shaped magnetic gap 7 is measured. making it possible.

第3図で平行スリット状の磁気ギャップ7を上記蛍光が
通過する際、同図P方向の振動成分は著しく減衰するが
、スリット方向に沿うS方向の振動成分は殆ど減衰しな
い。このS成分とP成分の蛍光の強度比S/Pを測定す
ると例えば第5図のようになり、磁気ヘッドのギャップ
深さGD(第2図で0点からA5Bまでの距離)が長い
と強度比は大きくなり、一方GDが0以下では有機材料
が完全に表面に露出しているため、蛍光の偏光特性は殆
どなくなり、強度比は1に収れんすることがわかる。
When the fluorescence passes through the parallel slit-shaped magnetic gap 7 in FIG. 3, the vibration component in the P direction in the figure is significantly attenuated, but the vibration component in the S direction along the slit direction is hardly attenuated. When the intensity ratio S/P of the fluorescence of the S component and the P component is measured, it is as shown in Figure 5, for example, and when the gap depth GD of the magnetic head (the distance from point 0 to A5B in Figure 2) is long, the intensity increases. It can be seen that the ratio becomes large, while when GD is 0 or less, the organic material is completely exposed on the surface, so the polarization characteristics of fluorescence almost disappear, and the intensity ratio converges to 1.

この強度比S/Pを測定するために、第1図で結像光路
中に偏光板14を挿入し、これを光軸回りに回転させる
ことにより、光通過方向を変化させ第3図のS方向に一
致させ、またそれと90’方向に回転させろことにより
、P方向の成分を検出することができる。
In order to measure this intensity ratio S/P, the polarizing plate 14 is inserted into the imaging optical path as shown in FIG. 1, and by rotating it around the optical axis, the light passing direction is changed and the S By matching the direction and rotating in the 90' direction, the component in the P direction can be detected.

一般に蛍光は光が弱く、さらに偏光板を通過した光は減
衰するため、十分な光強度が得られない。
In general, fluorescent light is weak, and the light that passes through a polarizing plate is attenuated, so sufficient light intensity cannot be obtained.

このため第1図では画像加算処理回路17によりTV画
像フレームを累積加算し、j1i@のコントラストを改
善してモニタTF18に画像を表示する。モニタ画像の
一例を第4図に示すが、同画面上で磁性膜3−1.4−
1を横切って縦方向測定ライン(同図中破線)上の輝度
信号波形を表示すると同図左の波形のようになり、磁気
ギャップの上部磁性膜近傍が明るくなる。この有機絶縁
物蛍光の明るさを、画面の基準部の明るさと比較するこ
とにより第4図のように明るさハ、Itを検出すること
ができる。1mは磁性膜部の明るさを基準にした場合、
!、は基板8の任意の点の明るさを基準にした場合の明
るさである。
For this reason, in FIG. 1, the image addition processing circuit 17 cumulatively adds the TV image frames, improves the contrast of j1i@, and displays the image on the monitor TF 18. An example of the monitor image is shown in Fig. 4. On the same screen, the magnetic film 3-1.4-
When the luminance signal waveform on the vertical measurement line (broken line in the figure) across 1 is displayed, it becomes like the waveform on the left side of the figure, and the vicinity of the upper magnetic film of the magnetic gap becomes brighter. By comparing the brightness of this organic insulator fluorescence with the brightness of the reference portion of the screen, the brightness It can be detected as shown in FIG. When 1m is based on the brightness of the magnetic film part,
! , is the brightness based on the brightness of an arbitrary point on the substrate 8.

ms図で、GD−0の判定基準値L0 として蛍光強度
比Shは約2となるが、データのばらつきを考えてLo
<L+となる基準値り、をもって良品と不良品(有機材
料が露出しているもの)を判定することができる。
In the ms diagram, the fluorescence intensity ratio Sh is approximately 2 as the criterion value L0 for GD-0, but considering the data dispersion, Lo
Good products and defective products (those with exposed organic material) can be determined based on the reference value <L+.

ここで磁気ギャップの厚さα(第6図)は1μm以下の
程度であるが、多少αが大きくても、高倍の対物レンズ
で画像総合倍率を十分大きくすれば焦点深度が浅くなる
ことと、有機材料C点から出た蛍光は磁気ギャップ材料
7の屈折率をn=164とすると1面における全反射角
θは約37°となりaの幅に関係せずに、対物レンズに
入射するスリット状の光の幅(くd)が決まりてくるの
で、上述した偏光特性は得られる。
Here, the thickness α of the magnetic gap (Fig. 6) is approximately 1 μm or less, but even if α is somewhat large, if the overall image magnification is sufficiently increased with a high-power objective lens, the depth of focus will be shallow. When the refractive index of the magnetic gap material 7 is n = 164, the fluorescence emitted from point C of the organic material has a total reflection angle θ of approximately 37° on one surface, which means that the fluorescence emitted from point C of the organic material enters the objective lens in the form of a slit, regardless of the width of a. Since the width (kud) of the light is determined, the polarization characteristics described above can be obtained.

有機材料による蛍光のばらつき等も考慮して、強度比S
/Pと同時に偏光板14を結像光路から除去した場合の
蛍光全体の明るさをチエツクできるようにしておくと総
合的な判断をする上で便利である。
Considering the variation in fluorescence due to organic materials, the intensity ratio S
It is convenient for comprehensive judgment to be able to check the brightness of the entire fluorescence when the polarizing plate 14 is removed from the imaging optical path at the same time as /P.

また本発明における磁気ヘッドの照明光のあて方として
は、対物レンズ9を通さなくても、他の任意の方向から
照射することが可能である。
Further, in the present invention, the illumination light of the magnetic head can be irradiated from any other direction without passing through the objective lens 9.

〔発明の効果〕〔Effect of the invention〕

本発明により、磁気ヘッドのギャップ深さと同時に、有
機絶縁物の露出有無の判定が可能罠なり非破壊測定が可
能になった。
According to the present invention, it has become possible to simultaneously determine the gap depth of the magnetic head and the presence or absence of exposure of the organic insulator, making it possible to perform non-destructive measurement.

【図面の簡単な説明】 第1図は蛍光の偏光特性を測定するための装置構成を示
すための構成図、第2図は磁気ヘッド断面形状と対物レ
ンズを示す説明図、第3図は磁気ヘッドを摺動面側から
見た説明図、第4図は上品タ画面上の蛍光の輝度信号波
形を示す説明図、第5図は蛍光の偏光特性とギャップ深
さGDの関係を示す関係図、第6図は磁気ギャップ部に
おける蛍光の全反射特性を示す説明図である。 1・・・・・・・・・・・・・・・・・・磁気ヘッド2
・・・・・−・・・・・・・・・・・保護膜3.4・・
・・・・・・・・・・磁性膜5・・−・・・・・・・・
・・−・・コイル6・・・・・・・・・・・−・・・・
・有機絶縁物7・・・・・・・・・・・・・・−・・磁
気ギャップ8・・・・・・・・・・・・・・−・・基板
9・・・・・・・・・・・・・・−・・対物レンズ10
゛°゛°・・・・−・・・・・グイクロイックミラ11
・・・・曲・・・・・・・照明レンズ12・・・・・・
・・・・・−・・照明光源13.15・・・・・・・・
・結像し、ズ14・・・・・・・・・・・・・・・偏光
板(検光子)16・・・・・・・・・・・・・・・TV
左カメラ7・・−・・・・・・・−・・画像加算処理装
置18°゛・1番・・・−・・モニタTV/”””“1
\ 代理人 弁理士 小 川 勝 男 11 図 π3 回 第4凹
[Brief explanation of the drawings] Figure 1 is a configuration diagram showing the configuration of an apparatus for measuring the polarization characteristics of fluorescence, Figure 2 is an explanatory diagram showing the cross-sectional shape of the magnetic head and the objective lens, and Figure 3 is the magnetic An explanatory diagram of the head viewed from the sliding surface side, Fig. 4 is an explanatory diagram showing the luminance signal waveform of fluorescence on a high quality data screen, and Fig. 5 is a relational diagram showing the relationship between polarization characteristics of fluorescence and gap depth GD. , FIG. 6 is an explanatory diagram showing the total reflection characteristics of fluorescence in the magnetic gap portion. 1・・・・・・・・・・・・・・・・・・Magnetic head 2
・・・・・・-・・・・・・・・・・・・Protective film 3.4・・
......Magnetic film 5...
・・・-・・・Coil 6・・・・・・・・・・・・・・・・・・
・Organic insulator 7・・・・・・・・・・・・・・・・・・・Magnetic gap 8・・・・・・・・・・・・・・・・・・・・Substrate 9・・・・・・・・・・・・・・・−・Objective lens 10
゛°゛°・・・・-・・・・・・Guicroic Mira 11
...Song...Lighting lens 12...
・・・・・・−・Illumination light source 13.15・・・・・・・・・
・Image is formed 14...Polarizing plate (analyzer) 16...TV
Left camera 7...--Image addition processing device 18°゛・No. 1...--Monitor TV/""""1
\ Agent Patent Attorney Masaru Ogawa 11 Figure π3 4th indentation

Claims (1)

【特許請求の範囲】[Claims] 1、磁気ヘッドの表面に特定波長の光を照射したときに
、有機物が発する蛍光を観察し、この蛍光が磁気ギャッ
プを通過する際に生ずる偏光特性を、互に90°異なる
振動方向成分の上記蛍光の強度比として検出したことを
特徴とする磁気ヘッドの有機絶縁物露出判定法。
1. When the surface of the magnetic head is irradiated with light of a specific wavelength, the fluorescence emitted by the organic matter is observed, and the polarization characteristics that occur when this fluorescence passes through the magnetic gap are determined by the above-mentioned polarization characteristics of vibration direction components that differ by 90 degrees from each other. A method for determining exposure of an organic insulator in a magnetic head, characterized by detection as a fluorescence intensity ratio.
JP24521686A 1986-10-17 1986-10-17 Method for determining organic insulator exposure of magnetic head Expired - Lifetime JPH0785294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24521686A JPH0785294B2 (en) 1986-10-17 1986-10-17 Method for determining organic insulator exposure of magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24521686A JPH0785294B2 (en) 1986-10-17 1986-10-17 Method for determining organic insulator exposure of magnetic head

Publications (2)

Publication Number Publication Date
JPS63100606A true JPS63100606A (en) 1988-05-02
JPH0785294B2 JPH0785294B2 (en) 1995-09-13

Family

ID=17130359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24521686A Expired - Lifetime JPH0785294B2 (en) 1986-10-17 1986-10-17 Method for determining organic insulator exposure of magnetic head

Country Status (1)

Country Link
JP (1) JPH0785294B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02108211A (en) * 1988-10-18 1990-04-20 Hitachi Ltd Thin film magnetic head and method for inspecting magnetic gap of such head
WO2020118284A1 (en) 2018-12-07 2020-06-11 Jacobs Vehicle Systems, Inc. Valve actuation system comprising at least two rocker arms and a one-way coupling mechanism

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02108211A (en) * 1988-10-18 1990-04-20 Hitachi Ltd Thin film magnetic head and method for inspecting magnetic gap of such head
WO2020118284A1 (en) 2018-12-07 2020-06-11 Jacobs Vehicle Systems, Inc. Valve actuation system comprising at least two rocker arms and a one-way coupling mechanism

Also Published As

Publication number Publication date
JPH0785294B2 (en) 1995-09-13

Similar Documents

Publication Publication Date Title
JP2847458B2 (en) Defect evaluation device
US7283227B2 (en) Oblique transmission illumination inspection system and method for inspecting a glass sheet
EP0856728B1 (en) Optical method and apparatus for detecting defects
KR20030032433A (en) The inspection method of thin film and the same apparatus
KR960035057A (en) Optical measuring method and device of inter-surface distance
CN110044931A (en) A kind of detection device on bend glass surface and internal flaw
JP2002107119A (en) Method and apparatus for measurement of thickness of specimen
JP2008076962A (en) Optical inspection apparatus
JP3037671B2 (en) Transparent substrate inspection method and transparent substrate inspection device
JP3109254B2 (en) Pinhole inspection equipment
JP2000097873A (en) Surface defect inspecting device
JPS63100606A (en) Method for discriminating exposing of organic insulator of magnetic head
KR100490455B1 (en) Appearance examining apparatus
JPH07318500A (en) Inspection device for vicinity of object surface
JP3886619B2 (en) Object defect inspection method and inspection apparatus
JPH0536726B2 (en)
US6236056B1 (en) Defect evaluation apparatus for evaluating defects and shape information thereof in an object or on the surface of an object
JPH05232040A (en) External appearance inspecting floodlight device
CN110044932A (en) A kind of detection method on bend glass surface and internal flaw
JP2003121385A (en) Method and device for inspecting inside of vitreous silica material for defect
KR940002504B1 (en) Detecting device for extremely small defect of thin wire
KR102125068B1 (en) Ellipsometer
JPH05232032A (en) External appearance inspecting floodlight device
JPS6179109A (en) Reflection type glass strain inspecting device
JPH0579978A (en) Thin film observing device