JPS6299916A - Magnetic recording medium and its production - Google Patents

Magnetic recording medium and its production

Info

Publication number
JPS6299916A
JPS6299916A JP23893985A JP23893985A JPS6299916A JP S6299916 A JPS6299916 A JP S6299916A JP 23893985 A JP23893985 A JP 23893985A JP 23893985 A JP23893985 A JP 23893985A JP S6299916 A JPS6299916 A JP S6299916A
Authority
JP
Japan
Prior art keywords
coercive force
magnetic
less
substrate
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23893985A
Other languages
Japanese (ja)
Inventor
Toshiaki Izumi
泉 俊明
Hitoshi Arai
均 新井
Hiroshi Okayama
岡山 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP23893985A priority Critical patent/JPS6299916A/en
Publication of JPS6299916A publication Critical patent/JPS6299916A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain high coercive force by controlling the average crystal grain size of the magnetic layer on an underlying layer contg. Ti and <=1at% O and/or N. CONSTITUTION:The underlying layer contg. Ti and <=1at% O and/or N is provided on a resin substrate having <=150 deg.C thermal deformation temp. and the magnetic layer having a columnar crystal of 10-300nm average grain size is provided on the underlying layer. The coercive force in the direction perpendicular to the film plane decreases if the average crystal grain size of the Ti underlying layer if <10nm and the coercive force decreases similarly and in addition, grain boundary noise increases and such is undesirable for practicability if said size exceeds 300nm. The magnetic recording medium which has the high coercive force in the perpendicular direction and exhibits good magnetic characteristics and physical properties is obtd.

Description

【発明の詳細な説明】 ■ 発明の背景 技術分野 本発明は、磁気記録媒体およびその製造方法に関するも
のである。 ざらに詳しくは、基板1、にTiと1at
%以下のOおよび/またはNを含有する下地層を有し、
この下地層」二に、膜面に対し゛て垂直方向に磁化容易
軸を持つ磁性層薄膜を有する。いわゆる垂直記録方式の
磁気記録媒体およびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (1) Background of the Invention Technical Field The present invention relates to a magnetic recording medium and a method for manufacturing the same. In more detail, Ti and 1at are added to substrate 1.
% or less of O and/or N,
This underlayer has a magnetic thin film having an axis of easy magnetization perpendicular to the film surface. The present invention relates to a so-called perpendicular recording type magnetic recording medium and a manufacturing method thereof.

先行技術とその問題点 近年、磁気記録媒体において高密度化が要求太れてお番
1 千れに階上る本のとして浜直記録方式が提案されて
いる。 そして、この垂直記録方式においては、膜面の
垂直方向に磁化容易軸を有する媒体が必要となる。
Prior art and its problems In recent years, the demand for higher density in magnetic recording media has increased and the Hamadao recording method has been proposed. This perpendicular recording method requires a medium having an axis of easy magnetization in the direction perpendicular to the film surface.

従来、スパッタリング法によりこのようなCo−Cr膜
が得られることが報告されているが、この方法では堆積
速度等の問題から実用化が困難である。
Conventionally, it has been reported that such a Co--Cr film can be obtained by sputtering, but this method is difficult to put into practical use due to problems such as deposition rate.

また特開昭56−127934号、特開昭56−165
931号、特開昭57−53828号、特開昭57−2
10452号、特開昭58−9220号、特開昭58−
139338号、特開昭58−148139号等には、
イオンブレーティング法を用いてCo−Cr系の垂直磁
化膜を作製する旨の提案が行われている。
Also, JP-A-56-127934, JP-A-56-165
No. 931, JP-A-57-53828, JP-A-57-2
No. 10452, JP-A-58-9220, JP-A-58-
No. 139338, JP-A-58-148139, etc.,
Proposals have been made to fabricate a Co-Cr-based perpendicularly magnetized film using an ion blating method.

しかしこれら通常のイオンブレーティング法では、イオ
ン化のために一定量以上のガスを導入する必要があり、
ガス導入の制御がむずかしく、蒸着時の圧力が高くなり
結晶配向が乱−れる、 そのため保磁力のあまり大きな
ものは得られない。
However, in these conventional ion blating methods, it is necessary to introduce a certain amount of gas for ionization.
It is difficult to control the gas introduction, and the pressure during vapor deposition is high, which disturbs the crystal orientation, so it is not possible to obtain a very large coercive force.

さらに、高い堆積速度が期待できる真空蒸着法を用いて
眞直磁化膜を作製する旨の報告がなされている(Nat
ional Technical Report Vo
l。
Furthermore, it has been reported that a directly magnetized film can be fabricated using a vacuum evaporation method that can be expected to have a high deposition rate (Nat
ional Technical Report Vo.
l.

28 NoJ Dec、1982 P4〜P14 ) 
28 NoJ Dec, 1982 P4-P14)
.

この報告では、基板として耐熱性のある高分子材料を用
い、基板温度30〜350’CにてCo −Cr膜の蒸
着を行っている。 そして、ノ^板温度が高くなるに従
い、膜面に垂直力向の保磁力が大きくなり、300℃以
上の基板温度で10000e以ヒの保磁力が得られると
されている。  しかしながら、このような従来技術で
は、ポリエチレンテレフタレート等の耐熱性の悪いフィ
ルム七に、高保磁力のCo−Cr重重心磁化膜形成する
ことは困難である。
In this report, a heat-resistant polymer material is used as the substrate, and a Co--Cr film is deposited at a substrate temperature of 30 to 350'C. As the plate temperature increases, the coercive force in the direction perpendicular to the film surface increases, and it is said that a coercive force of 10,000 e or more can be obtained at a substrate temperature of 300° C. or more. However, with such conventional techniques, it is difficult to form a Co--Cr center-of-gravity magnetization film with a high coercive force on a film having poor heat resistance such as polyethylene terephthalate.

ところで、Tiの薄膜は接着力を向旧させる目的で磁気
記録媒体の下地層として用い゛られることが一般に知ら
れている(特公昭39−26907号公報等)。
Incidentally, it is generally known that a thin film of Ti is used as an underlayer of a magnetic recording medium for the purpose of improving adhesive strength (Japanese Patent Publication No. 39-26907, etc.).

そして、Co−Crt!>垂直磁気記録媒体として、こ
のような下地層をポリイミド等の耐熱性基板の上に設け
て、Co−Cr磁性層の結晶配向性を向上させる旨の提
案(特開昭58−159225号公報、同59−222
36号公報、同59−22225号公報、同59−33
628号公報等)や媒体のカールを防1トする旨の提案
(特開昭59−75429号公報、同59−77621
号公報、同59−119541号公報等)が行われてい
る。 しかしながら、これらの提案では、膜面に垂直方
向の保磁力は向上していない。
And Co-Crt! > A proposal to improve the crystal orientation of a Co-Cr magnetic layer by providing such an underlayer on a heat-resistant substrate such as polyimide as a perpendicular magnetic recording medium (Japanese Unexamined Patent Publication No. 159225/1989, 59-222
Publication No. 36, Publication No. 59-22225, Publication No. 59-33
628, etc.) and proposals to prevent curling of media (Japanese Unexamined Patent Publication Nos. 59-75429 and 59-77621).
No. 59-119541, etc.). However, these proposals do not improve the coercive force in the direction perpendicular to the film surface.

また、前述したポリイミド等の耐熱性基板にかえて、比
較的耐熱性に劣るポリエチレンテレフタレート(PET
)を基板とし、この上に同様にTiの下地層を設け、媒
体のカールを防止する旨の提案(特開昭59−2218
28号公報、同59−221829号公報等)も行われ
ている。 この場合においても上記の場合と同様に膜面
に垂直方向の保磁力は向」二していない。
In addition, instead of the aforementioned heat-resistant substrate such as polyimide, polyethylene terephthalate (PET), which has relatively poor heat resistance, can be used.
) is used as a substrate, and a Ti underlayer is similarly provided thereon to prevent curling of the medium (Japanese Patent Laid-Open No. 59-2218
No. 28, No. 59-221829, etc.) have also been carried out. In this case as well, the coercive force in the direction perpendicular to the film surface is not in the same direction as in the above case.

そこで、このようなTiを含有する下地層をポリエチレ
ンテレフタレー!−(PET)の上に設けて、磁性層の
Co−Cr等の結晶配向性、接着性、カール防止等の優
れた効果を保持しつつ、磁性層の膜面に垂直方向の保磁
力を高くする技術が求められている。
Therefore, polyethylene terephthalate is used as the base layer containing Ti! - (PET) to maintain excellent effects such as crystal orientation, adhesion, and curl prevention of Co-Cr in the magnetic layer, while increasing coercive force in the direction perpendicular to the film surface of the magnetic layer. There is a need for technology to do this.

このような実状に鑑み、本発明者らは、先に、Ti下地
層上の磁性層の平均結晶粒径を制御したとき、高い保磁
力が得られる旨を提案している。
In view of this situation, the present inventors have proposed that a high coercive force can be obtained by controlling the average crystal grain size of the magnetic layer on the Ti underlayer.

本発明では、この提案をさらに改良して、より一層高い
保磁力を得ようとするものである。
The present invention aims to further improve this proposal and obtain an even higher coercive force.

II  発明の目的 本発明の目的は1例えばポリエチレンテレフタレート(
PET)等の熱変形温度150℃以下の基板を用いて、
より一層高い垂直方向の保磁力を有し、磁気特性および
物性が良好な特性を示す磁気記録媒体と、その製造方法
を提供することにある。
II. OBJECTS OF THE INVENTION The objects of the present invention are 1. For example, polyethylene terephthalate (
Using a substrate with a heat deformation temperature of 150°C or less, such as PET),
It is an object of the present invention to provide a magnetic recording medium that has higher coercive force in the perpendicular direction and exhibits good magnetic and physical properties, and a method for manufacturing the same.

■ 発明の開示 このような目的は、下記の本発明によって達成される。■Disclosure of invention Such objects are achieved by the invention described below.

すなわち第1の発明は、熱変形温度150℃以下の樹脂
製基板上に、Ttと1at%以下のOおよび/またはN
を含有する下地層を有し、この下地層の上に平均粒径が
10〜300nmの柱状結晶を有する磁性層を有するこ
とを特徴とする磁気記録媒体である。
That is, the first invention provides Tt and O and/or N of 1 at% or less on a resin substrate having a heat distortion temperature of 150° C. or less.
A magnetic recording medium is characterized in that it has an underlayer containing .

また第2の発明は、熱変形温度150℃以下の樹脂製基
板上に、Tiと1at%以下のOおよび/またはNを含
有する下地層を真空I!t、l!L。
In a second aspect of the invention, a base layer containing Ti and 1 at% or less of O and/or N is formed on a resin substrate having a heat deformation temperature of 150° C. or less in a vacuum I! T, l! L.

この下地層の上に、基板温度200℃未満にて平均粒径
がlO〜300n■の柱状結晶を有する磁性層を形成す
ることを特徴とする磁気記録媒体の製造方法である。
This method of manufacturing a magnetic recording medium is characterized in that a magnetic layer having columnar crystals with an average grain size of 10 to 300 nm is formed on this underlayer at a substrate temperature of less than 200 DEG C.

■ 発明の具体的構成 以ド1本発明の具体的構成について詳細に説明する。■Specific structure of the invention Hereinafter, the specific configuration of the present invention will be explained in detail.

4;発明に用いられる樹脂製基板は、熱変形温度が15
0℃以下、特に70〜120℃の物性を有する。
4; The resin substrate used in the invention has a heat distortion temperature of 15
It has physical properties at temperatures below 0°C, particularly from 70 to 120°C.

このような基板材質のうち好適なものとしては1例えば
、ポリエチレンテレフタレー) (PET)、ポリエチ
レン2.6ナフタレートなどのポリエステル等がある。
Suitable substrate materials include polyesters such as polyethylene terephthalate (PET) and polyethylene 2.6 naphthalate.

 これらのものは、フィルム状に成形された時の表面平
滑性およびその均一性がきわめて良好であって、しかも
廉価である。
These materials have extremely good surface smoothness and uniformity when formed into a film, and are inexpensive.

これら基板の形状はテープ、ディスク等種々可能であり
、その厚さについても特に制限はないが通常5〜70ル
1程度である。
These substrates can have various shapes such as tapes and disks, and their thickness is not particularly limited, but is usually about 5 to 70 mm thick.

このような基板上にはTiと1at%以下、特に0.1
〜1at%の0および/またはNを含有する下地層が設
層される。
On such a substrate, Ti and less than 1 at%, especially 0.1
An underlayer containing ~1 at% of 0 and/or N is deposited.

このような下地層の0および/またはNの総含有縫が1
at%をこえると、媒体として膜面垂直方向の保磁力が
低下する。
The total content of 0 and/or N in such a base layer is 1
When it exceeds at%, the coercive force of the medium in the direction perpendicular to the film surface decreases.

このようなOやNは通常、Tiの一部が酸化もしくは窒
化された化合物の形で含有される。
Such O and N are usually contained in the form of a compound in which Ti is partially oxidized or nitrided.

このように下地層中に含有されるOやNの含イ]硅は、
オージェ分光分析、ESCA等の元素分析法によって測
定すればよい。
In this way, silicon containing O and N contained in the base layer is
It may be measured by elemental analysis methods such as Auger spectroscopy and ESCA.

このような下地層は、蒸着法、スパッタ法。Such a base layer can be formed using a vapor deposition method or a sputtering method.

イオンブレーティング法(RF法、アーク放電法)など
の各種真空成膜法によって形成される。 この場合、成
膜条件は、通常、種々行われているような範囲で行えば
よいが、特に0゜Nの含有量を1at%以下にするため
には例えば基板を成膜前に160〜180℃まで真空中
で予備加熱したのち、基板温度を80〜100℃程度に
保持し、作動圧力0.01〜・0.1mPa程度とする
ことが効果的である。
It is formed by various vacuum film forming methods such as ion blating method (RF method, arc discharge method). In this case, the film forming conditions may be within a range that is normally used, but in particular, in order to reduce the content of 0°N to 1 at% or less, for example, the substrate may be heated to 160 to 180 It is effective to preheat the substrate to about 80 to 100 degrees Celsius and to maintain the operating pressure at about 0.01 to 0.1 mPa after preheating in vacuum to a temperature of about 80 to 100 degrees Celsius.

このようにして設層される下地層の膜厚は1000na
+以下、特に20〜600n11が好ましい、 この膜
厚が11000nをこえると媒体としての剛性が大きく
なって、ヘッドタッチが悪く、シかもノイズが発生しや
すくなる。 そして、保磁力が低fする。
The thickness of the base layer formed in this way is 1000 na.
+ or less, particularly preferably from 20 to 600n11.If the film thickness exceeds 11000n, the rigidity of the medium increases, resulting in poor head touch and a tendency to generate noise. Then, the coercive force becomes low f.

また、201111未満では保磁力向上効果が低い。Moreover, if it is less than 201111, the effect of improving coercive force is low.

なお、Ti下地層の平均結晶粒径は10〜300 nm
、より好ましくは20〜200nm、特に20〜100
nsである。
Note that the average crystal grain size of the Ti underlayer is 10 to 300 nm.
, more preferably 20 to 200 nm, especially 20 to 100 nm
It is ns.

そして、このような下地層のLには膜面の垂直方向に磁
化容易軸を有する磁性層が設層される。
A magnetic layer having an axis of easy magnetization in the direction perpendicular to the film surface is provided on L of the underlayer.

このような磁性層は通常、柱状結晶構造からなり、この
結晶の平均粒径はlO〜300I、より好ましくは20
〜200r++w、さらに好ましくは20〜1100n
である。
Such a magnetic layer usually has a columnar crystal structure, and the average grain size of the crystals is 1O to 300I, more preferably 20
~200r++w, more preferably 20~1100n
It is.

この値がlOn+s未満になると膜面に垂直方向の保磁
力が低くなり、300n■をこえると同様に保磁力が低
くなり、しかも粒界ノイズが大きくなり実用上好ましく
ない。
When this value is less than 1On+s, the coercive force in the direction perpendicular to the film surface becomes low, and when it exceeds 300 n■, the coercive force similarly becomes low, and grain boundary noise becomes large, which is not preferred in practice.

そして、このような磁性層を形成する柱状結晶は膜面に
ほぼ垂直に配向するものである。
The columnar crystals forming such a magnetic layer are oriented substantially perpendicular to the film surface.

このような磁性層の膜厚は120〜1100n騰、より
好ましくは150〜900nmである。
The thickness of such a magnetic layer is 120 to 1100 nm, more preferably 150 to 900 nm.

この磁性層の厚さが120ns未満になると強度が低下
し、また1l100iをこえるとヘッドタッチが悪くな
り、変調ノイズが大きくなってしまう。
When the thickness of this magnetic layer is less than 120 ns, the strength decreases, and when it exceeds 1l100i, head touch becomes poor and modulation noise becomes large.

本発明における柱状結晶の平均粒径および磁性層の膜厚
等は、通常、表面および破断面の電子顕微鏡写真[走査
形顕微鏡(SEM)および透過形顕微鏡(TEM)]に
よって、観測、算出することができる。
In the present invention, the average grain size of the columnar crystals, the film thickness of the magnetic layer, etc. can be usually observed and calculated using electron micrographs [scanning microscope (SEM) and transmission microscope (TEM)] of the surface and fracture surface. I can do it.

このような磁性層を構成する組成としては。The composition of such a magnetic layer is as follows.

Co−Cr、Go−V、Co−N1−P、C。Co-Cr, Go-V, Co-N1-P, C.

−P、Mn−B1.Mn−AM−Ge、Nd−Fe、N
d−Co、Co−0、M n −S b 。
-P, Mn-B1. Mn-AM-Ge, Nd-Fe, N
d-Co, Co-0, Mn-Sb.

Mn−Cu−B1.Gd−Fe、Gd−Co。Mn-Cu-B1. Gd-Fe, Gd-Co.

Pt−Co、Tb−Co、Tb−Fe−Co。Pt-Co, Tb-Co, Tb-Fe-Co.

Gd−Fe−Co、Tb−Fe−03、Gd−IG、 
 Gd−Tb−Fe  、 Gd−Tb−Fe  −C
o−Bi、Co−Fe204等のいずれであってもよい
が、好ましくは、Go−Crである。
Gd-Fe-Co, Tb-Fe-03, Gd-IG,
Gd-Tb-Fe, Gd-Tb-Fe-C
It may be o-Bi, Co-Fe204, etc., but preferably Go-Cr.

Co−Cr膜としては、磁気特性ト、膜組成としてCr
が15〜25at%含有されることが好ましい。
The Co-Cr film has magnetic properties and film composition of Cr.
is preferably contained in an amount of 15 to 25 at%.

なお、COおよびCrに加え、5vt%以下の範囲でN
i、Fe、O等が含有されていてもよい。
In addition to CO and Cr, N within a range of 5vt% or less
i, Fe, O, etc. may be contained.

このような磁性層は、蒸着法を用いて形成される。Such a magnetic layer is formed using a vapor deposition method.

真空蒸着法は蒸発源を10 ’ Torr以下の高真空
中で、エレクトロンビーム法、抵抗加熱法等により蒸発
源を加熱して融解、蒸発させて、その蒸気を例えば基体
表面に薄膜として凝着させる方法である。 この蒸発時
に蒸発粒子が得る連動エネルギーは0.leV〜1 e
 V 程a テある。
In the vacuum evaporation method, the evaporation source is heated in a high vacuum of 10' Torr or less using an electron beam method, resistance heating method, etc. to melt and evaporate it, and the vapor is deposited as a thin film on the surface of the substrate, for example. It's a method. The interlocking energy obtained by the evaporated particles during this evaporation is 0. leV~1e
V degree a te.

真空蒸着法は、公知の種々の装置を用いればよくまたハ
ース−基板間距離、膜の堆積速度などの条件設定等も適
宜決定すればよく、特に制限されるものではないが、本
発明においては。
The vacuum evaporation method may be performed using various known apparatuses, and conditions such as the distance between the hearth and the substrate and the film deposition rate may be appropriately determined, and are not particularly limited. .

磁性層を設層の際に基板温度¥t200℃未満、より好
ましくは150〜190℃程度とする。
When forming the magnetic layer, the substrate temperature is less than 200°C, more preferably about 150 to 190°C.

本発明においては、熱変形温度が150℃以下の樹脂性
基板を用いるため、磁性層を蒸着する際の基板温度が2
00℃をこえると基板のダメージが大きくなって製造−
F好ましくない。
In the present invention, since a resin substrate with a heat deformation temperature of 150°C or less is used, the substrate temperature when depositing the magnetic layer is 2.
If the temperature exceeds 00℃, the damage to the board will increase and the manufacturing process will be interrupted.
F Not desirable.

またこの温度を1例えば150°C程度未満にすると、
磁性層を構成する結晶粒について所望の平均粒径が得ら
れず、媒体の保磁力が小さくなって実用上好ましくない
Also, if this temperature is reduced to less than 150°C, for example,
The desired average grain size of the crystal grains constituting the magnetic layer cannot be obtained, and the coercive force of the medium decreases, which is not preferred in practice.

なお、本発明においては、基板が上記の温度に保たれる
時間は比較的短いために1本発明の熱変形温度を有する
基板材質であっても温度的には十分耐えうるものである
In the present invention, since the time during which the substrate is kept at the above-mentioned temperature is relatively short, even a substrate material having the heat distortion temperature of the present invention can sufficiently withstand the temperature.

さらに、磁性層設層時における作動圧力は0 、01−
10mPa、より好ましくは0.1〜1mPa程度とす
ればよい。
Furthermore, the operating pressure during magnetic layer formation is 0,01-
The pressure may be set to about 10 mPa, more preferably about 0.1 to 1 mPa.

なお、前述した樹脂基板表面の少なくとも磁性層形成面
側には、基板の各種下地処理が行われることが好ましい
Note that it is preferable that various surface treatments of the substrate be performed on at least the magnetic layer forming side of the resin substrate surface described above.

このようなr地処理の方法としては、例えばプラズマ処
理法やイオンボンバード等の真空処理方法が挙げられる
Examples of such ground processing methods include plasma processing methods and vacuum processing methods such as ion bombardment.

本発明の磁気記録奴体の磁性層」−には、種々の公知の
トップコート層を設けてもよい、 また基板四面にバッ
クコート層を設けることもできるし、磁性層と基板との
間にパーマロイ等の高透磁率金属薄膜やその他の公知の
種々の中間層を設けることもできる。
The magnetic layer of the magnetic recording body of the present invention may be provided with various known top coat layers, back coat layers may be provided on all four sides of the substrate, or a back coat layer may be provided between the magnetic layer and the substrate. A high magnetic permeability metal thin film such as permalloy or other various known intermediate layers may also be provided.

この場合、中間層とTiを含有するF地層の位置関係は
どちらが1.であってもよいが、通常は中間層を下地層
の下に設層する。
In this case, the positional relationship between the intermediate layer and the F layer containing Ti is 1. However, usually an intermediate layer is provided below the base layer.

■ 発明の具体的作用効果 本発明によれば、熱変形部If 150℃以下の基板を
用いて、磁性層の膜面垂直方向にきわめて高い保磁力を
有する媒体が得られる。
(2) Specific Effects of the Invention According to the present invention, a medium having an extremely high coercive force in the direction perpendicular to the surface of the magnetic layer can be obtained using a substrate with a thermally deformed portion If of 150° C. or less.

また、磁性層の結晶配向性、接着性も良好であり、カー
ルの発生も少ない。
Furthermore, the crystal orientation and adhesiveness of the magnetic layer are good, and curling is less likely to occur.

このような磁気記録媒体は、亀直磁化方式の磁気テープ
、磁気ディスク、フレキシブルディスク等に用いて有効
である。
Such magnetic recording media are effective for use in torsion magnetization magnetic tapes, magnetic disks, flexible disks, and the like.

■ 発明の具体的実施例 以下に本発明の具体的実施例を示す。■Specific embodiments of the invention Specific examples of the present invention are shown below.

[実施例1] 蒸発源のJX 1−25 cmの位首に170mm#の
基板ホルダーを配設し、これに厚さ50川−のポリエチ
レンテレフタレー1−(PET)フィルムノ、(板をと
りつけた。 蒸発源としてTiを用い、基板1−にTi
下地層を蒸着した。 なお、蒸着に際して、作動圧は0
.05mPa、 )&板ホルダーの温度(基板の温度)
を70”C,1着レートを10 nm/see程度とし
、設層されるTi膜厚は20〜b この後、基板ホルダーの温度(基板の温度)を180℃
とし、蒸発源をCo−Cr(Fffua比80/20)
合金(25mmφペレット)を用い、これを270°偏
向のEBガンを用いて蒸発させテJ−記Ti下地層の−
Lに、Co−Cr磁性層を蒸着した。
[Example 1] A 170 mm substrate holder was placed at the 1-25 cm position of the evaporation source, and a 50 mm thick polyethylene terephthalate (PET) film plate was attached to it. Using Ti as an evaporation source, Ti was deposited on the substrate 1-.
A base layer was deposited. Note that during vapor deposition, the working pressure is 0.
.. 05mPa, ) & board holder temperature (substrate temperature)
The temperature was 70"C, the first deposition rate was about 10 nm/see, and the thickness of the deposited Ti film was 20~20cm. After this, the temperature of the substrate holder (temperature of the substrate) was set to 180°C.
and the evaporation source is Co-Cr (Fffua ratio 80/20)
The alloy (25 mmφ pellets) was evaporated using an EB gun with a 270° deflection to form the Ti underlayer.
A Co--Cr magnetic layer was deposited on L.

なお、蒸着に先だち合金を溶融しなから膜厚コントロー
ラーにより組成分析を行い、Co/Cr比が80/20
になったときにシャッタをあけて蒸着を行った。
In addition, prior to vapor deposition, the composition was analyzed using a film thickness controller after melting the alloy, and the Co/Cr ratio was 80/20.
When the temperature was reached, the shutter was opened and vapor deposition was performed.

蒸着の条件は、作動圧約0.2mPa、蒸着レートを2
0 nm#ec程度とし、Co−crt7)膜厚は30
0〜500nmとした。
The conditions for vapor deposition were a working pressure of approximately 0.2 mPa and a vapor deposition rate of 2.
The film thickness is approximately 0 nm#ec, and the Co-crt7) film thickness is 30 nm.
The range was 0 to 500 nm.

このようにして、表1に示されるように、FJ′!!!
層の厚さおよび組成ならびにGo−Crの磁性層厚さお
よび結晶粒径を種々変えて、サンプルを作製した。 下
地層の組成分析はオージェ分析(アルパックファイ社製
モデル800)で行った。
In this way, as shown in Table 1, FJ'! ! !
Samples were prepared by varying the layer thickness and composition as well as the Go-Cr magnetic layer thickness and crystal grain size. The composition analysis of the base layer was performed by Auger analysis (Model 800 manufactured by Alpac-Phi).

なお、サンプルN008においては磁性層形成時の基板
の温度を120”eとした。
In addition, in sample No. 008, the temperature of the substrate during formation of the magnetic layer was set to 120''e.

1−述してきたようなこれらの各サンプルについて、磁
性層の膜厚および柱状結晶の平均粒径を求めた。
1-For each of these samples as described above, the thickness of the magnetic layer and the average grain size of the columnar crystals were determined.

その測定方法は表面および破断面の電子顕微鏡写真[走
査形顕微鏡(SEM)および透過形顕微鏡(TEM)]
から算出した。
The measurement method is an electron micrograph of the surface and fracture surface [scanning microscope (SEM) and transmission microscope (TEM)]
Calculated from.

さらに、各サンプルにつき、下記に示す特性を調べた。Furthermore, the characteristics shown below were investigated for each sample.

(1)膜面に6直方向の保磁力HeJ−(Oe)−・定
面積に切り出したサンプルについて、振動試料型磁力計
(VSM)を用い、最大印加磁界をl0KGとし保磁力
を測定した。
(1) Coercive force in 6 directions perpendicular to the film surface HeJ-(Oe)-- The coercive force of a sample cut into a constant area was measured using a vibrating sample magnetometer (VSM) with a maximum applied magnetic field of 10 KG.

これらの結果を表1に示す。These results are shown in Table 1.

表      1 サンプル  Ti下地層組成  下地層   磁  性
  層  Hc上1    0.3  0.6   2
0    20  450  7002    0.2
  0.6   ioo     45  380  
8803   、 0.2   O,73008050
0102040,10,33008048010805
(比較)0.5  1.5  300    80  
500  910B     0.3  0.6  5
00   110  40011207(比較)0.2
  0.5 1100   310  42O4508
0,20,7’   300    75  510 
 4709(比較)   −−−40400390表1
に示される結果より1本発明の効果が明らかである。
Table 1 Sample Ti underlayer composition Underlayer Magnetic layer On Hc1 0.3 0.6 2
0 20 450 7002 0.2
0.6 ioo 45 380
8803, 0.2 O, 73008050
0102040,10,33008048010805
(Comparison) 0.5 1.5 300 80
500 910B 0.3 0.6 5
00 110 40011207 (comparison) 0.2
0.5 1100 310 42O4508
0,20,7' 300 75 510
4709 (comparison) ---40400390 Table 1
From the results shown in Figure 1, the effects of the present invention are clear.

Claims (4)

【特許請求の範囲】[Claims] (1)熱変形温度150℃以下の樹脂製基板上に、Ti
と1at%以下のOおよび/またはNを含有する下地層
を有し、この下地層の上に平均粒径が10〜300nm
の柱状結晶を有する磁性層を有することを特徴とする磁
気記録媒体。
(1) Ti on a resin substrate with a heat distortion temperature of 150°C or less
and a base layer containing 1 at% or less of O and/or N, and on this base layer, the average particle size is 10 to 300 nm.
1. A magnetic recording medium comprising a magnetic layer having columnar crystals.
(2)下地層の膜厚が1000nm以下である特許請求
の範囲第1項に記載の磁気記録媒体。
(2) The magnetic recording medium according to claim 1, wherein the underlayer has a thickness of 1000 nm or less.
(3)磁性層がCoおよびCrを含有する特許請求の範
囲第1項または第2項に記載の磁気記録媒体。
(3) The magnetic recording medium according to claim 1 or 2, wherein the magnetic layer contains Co and Cr.
(4)熱変形温度150℃以下の樹脂製基板上に、Ti
と1at%以下のOおよび/またはNを含有する下地層
を真空成膜し、この下地層の上に、基板温度200℃未
満にて平均粒径が10〜300nmの柱状結晶を有する
磁性層を形成することを特徴とする磁気記録媒体の製造
方 法。
(4) Ti on a resin substrate with a heat distortion temperature of 150°C or less
A base layer containing 1 at% or less of O and/or N is formed in vacuum, and a magnetic layer having columnar crystals with an average grain size of 10 to 300 nm is formed on the base layer at a substrate temperature of less than 200°C. 1. A method of manufacturing a magnetic recording medium, comprising: forming a magnetic recording medium.
JP23893985A 1985-10-25 1985-10-25 Magnetic recording medium and its production Pending JPS6299916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23893985A JPS6299916A (en) 1985-10-25 1985-10-25 Magnetic recording medium and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23893985A JPS6299916A (en) 1985-10-25 1985-10-25 Magnetic recording medium and its production

Publications (1)

Publication Number Publication Date
JPS6299916A true JPS6299916A (en) 1987-05-09

Family

ID=17037525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23893985A Pending JPS6299916A (en) 1985-10-25 1985-10-25 Magnetic recording medium and its production

Country Status (1)

Country Link
JP (1) JPS6299916A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007048898A (en) * 2005-07-15 2007-02-22 Mitsubishi Electric Corp Manufacturing method of film magnet
JP2011003917A (en) * 2005-07-15 2011-01-06 Mitsubishi Electric Corp Method of manufacturing film magnet, and film magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007048898A (en) * 2005-07-15 2007-02-22 Mitsubishi Electric Corp Manufacturing method of film magnet
JP2011003917A (en) * 2005-07-15 2011-01-06 Mitsubishi Electric Corp Method of manufacturing film magnet, and film magnet
JP4609232B2 (en) * 2005-07-15 2011-01-12 三菱電機株式会社 Membrane magnet manufacturing method

Similar Documents

Publication Publication Date Title
JP4082785B2 (en) Magnetic recording medium and method for manufacturing the same
JPS60157715A (en) Magnetic recording medium
TW460588B (en) Metallic composition comprising chromium-tantalum oxides (Cr-TaOx), thin film magnetic recording media and hard disk
JPS6299916A (en) Magnetic recording medium and its production
JPH04153910A (en) Magnetic recording medium
US7214436B2 (en) Magnetic recording medium and process for producing same
JPH0254642B2 (en)
JPS6297125A (en) Magnetic recording medium and its production
JPS62143227A (en) Magnetic recording medium
JP3867544B2 (en) Magnetic recording medium and method for manufacturing the same
JPS61210521A (en) Production of magnetic disk
JPH0622052B2 (en) Magnetic disk
JPS61222024A (en) Magnetic disk
JPS6280825A (en) Magnetic recording medium
JPH1197224A (en) Granular film, magnetic recording medium and its manufacture
JPS62143228A (en) Magnetic recording medium
JPH076351A (en) Magnetic recording medium
JPH04155618A (en) Perpendicular magnetic recording medium
JPH04328324A (en) Manufacture of magnetic recording medium
JPS62143229A (en) Production of magnetic recording medium
JPH0963031A (en) Magnetic recording medium
JPH10105947A (en) Thin film magnetic recording medium
JPH0278018A (en) Production of perpendicular magnetic recording medium
JP2002367150A (en) Metal thin film type magnetic recording medium
Hirono et al. Cobalt-Carbon Nanogranular Magnetic Thin Films