JPS6299711A - Covered optical fiber core - Google Patents

Covered optical fiber core

Info

Publication number
JPS6299711A
JPS6299711A JP60239986A JP23998685A JPS6299711A JP S6299711 A JPS6299711 A JP S6299711A JP 60239986 A JP60239986 A JP 60239986A JP 23998685 A JP23998685 A JP 23998685A JP S6299711 A JPS6299711 A JP S6299711A
Authority
JP
Japan
Prior art keywords
optical fiber
layer
coating layer
modulus
young
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60239986A
Other languages
Japanese (ja)
Other versions
JPH07119858B2 (en
Inventor
Yoshiyuki Suetsugu
義行 末次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP60239986A priority Critical patent/JPH07119858B2/en
Publication of JPS6299711A publication Critical patent/JPS6299711A/en
Publication of JPH07119858B2 publication Critical patent/JPH07119858B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve low temperature characteristic by providing an intermediate buffer layer made of mold release agent at the interface between optical fiber element wire made by applying an inner layer covering layer having small coefficient of thermal expansion and an intermediate layer covering layer on bare optical fiber and an outermost layer covering layer having large coefficient of thermal expansion. CONSTITUTION:In a covered optical fiber consisting of an inner layer covering layer made of ultraviolet curing resin having Young's modulus of 0.1-2.0kg/mm<2> at normal temperature applied on a bare optical fiber to the thickness of 0.03-0.10mm, an intermediate layer covering layer made of ultraviolet curing resin having Young's modulus of 20-80kg/mm<2> at normal temperature applied on the outer periphrry of the inner layer covering layer to the thickness of 0.02-0.10mm, and an outermost layer covering layer made of nylon having Young's modulus of 20-150kg/mm at normal temperature applied on the outer periphery of the intermediate layer covering layer to the thickness of 0.10-0.30mm, an intermediate buffer layer of 0.02-0.10mm thick made of mold release agent is provided at the interface between the intermediate layer covering layer and outermost layer covering layer. Thereby, the bare optical fiber is not affected by contraction distortion of nylon, a direct outer layer covering layer and microbending due to buckling is hard to occur.

Description

【発明の詳細な説明】 〔発明の概要〕 裸光ファイバ外周に、常温におけるヤング率0.1−2
.0 Kg/mm”の嘴外線硬化樹脂による厚み0.0
3〜0.10mmの内層被覆層、常温におけるヤング率
20〜80 Kq/mm”の紫外線硬化樹脂による厚み
0.02〜0.10鵠の中間層被覆層、および常温にお
けるヤング率20〜150Kg/mm”のナイo7によ
る厚み[1,10〜0.30yamの最外層被覆層を施
した被覆光ファイバ心線の中間層被覆層と最外層被覆層
の界面に離型剤による厚み0.02〜0.10 mmの
中間緩衝層を設けることにより、低温度時において光伝
送損失の増大しにくい低温特性を保持した被覆光ファイ
バ心線。
[Detailed Description of the Invention] [Summary of the Invention] The outer periphery of a bare optical fiber has a Young's modulus of 0.1-2 at room temperature.
.. Thickness 0.0 with beak external line hardening resin of 0 Kg/mm”
An inner coating layer with a thickness of 3 to 0.10 mm, an intermediate coating layer with a thickness of 0.02 to 0.10 mm made of ultraviolet curable resin with a Young's modulus of 20 to 80 Kq/mm at room temperature, and a Young's modulus of 20 to 150 Kg/mm at room temperature. Thickness according to Naio7 of 1.10 to 0.30 yam [thickness of 0.02 to 0.02 to 0.02 to 0.30 yam due to a release agent at the interface between the intermediate coating layer and the outermost coating layer of a coated optical fiber coated with an outermost coating layer of 1.10 to 0.30 yam A coated optical fiber that maintains low-temperature properties that prevent optical transmission loss from increasing at low temperatures by providing a 0.10 mm intermediate buffer layer.

〔産業上の利用分野〕[Industrial application field]

本発明は、光伝送損失の低温特性に優れた被覆光ファイ
バ心線に関するものである。
TECHNICAL FIELD The present invention relates to a coated optical fiber having excellent low-temperature characteristics of optical transmission loss.

〔従来の技術〕[Conventional technology]

被覆光ファイバ心線の被覆構造については、既に膨大な
数の報告がなされているが、低温度時に光伝送損失が増
大しにくい特性、いわゆる低温特性を充分に満足する被
覆光ファイバ心線は未だ見出されていない。
Although a large number of reports have already been made on the coating structure of coated optical fibers, there is still no coated optical fiber that fully satisfies the so-called low-temperature characteristics, which means that optical transmission loss does not increase easily at low temperatures. Not discovered.

従来、マイクロベンディング現象による伝送特性の劣化
を防止するため、内層被覆層が低ヤング率の紫外線硬化
+lI 11旨(以下UV 44脂という。)からなり
、中間層被覆層が比較的高ヤング率のUV4#脂からな
り、最外層被覆層が高ヤング率のナイロンからなる被覆
光ファイバ心線の構造が適用され、一般には、常温にお
けるヤ/グ率0.1〜2.0Ky/ram”の低ヤング
率のUV雪’1旨により0.03〜0.10mmの厚み
で形成した内層被覆層と、常温におけるヤング率20〜
80 Kg/mm”の比較的高ヤング率のUV明脂によ
り0602〜0.10w1Lの厚みで形成した中間層被
覆層と、常温におけるヤング率が20〜1s o xc
t/mm”用されている。
Conventionally, in order to prevent deterioration of transmission characteristics due to the microbending phenomenon, the inner coating layer was made of ultraviolet curing resin with a low Young's modulus (hereinafter referred to as UV 44 resin), and the intermediate coating layer was made of ultraviolet curing resin with a relatively high Young's modulus. The structure of the coated optical fiber is made of UV4# resin and the outermost coating layer is made of nylon with a high Young's modulus, and generally has a low Young's modulus of 0.1 to 2.0 Ky/ram" at room temperature. The inner coating layer is formed with a thickness of 0.03 to 0.10 mm according to the Young's modulus of UV Snow'1, and the Young's modulus is 20 to 20 at room temperature.
The intermediate coating layer is made of UV light resin with a relatively high Young's modulus of 80 Kg/mm" and has a thickness of 0.602 to 0.10 w1L, and the Young's modulus at room temperature is 20 to 1 s oxc.
t/mm" is used.

第4図に従来の被覆光ファイバ心線の断面構造を示す。FIG. 4 shows a cross-sectional structure of a conventional coated optical fiber.

1は裸光ファイバ、2は低ヤ7’f率LDUV樹脂によ
る内層被覆層、6は比較的高いヤング率の(lv樹脂に
よる中間層被覆層、5は高ヤング率のナイロンによる最
外層被覆層である。
1 is a bare optical fiber, 2 is an inner coating layer made of a low 7'f modulus LDUV resin, 6 is an intermediate coating layer made of a relatively high Young's modulus (LV resin), and 5 is an outermost coating layer made of nylon with a high Young's modulus. It is.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のこの種の被覆光ファイバ心線は、低温特性を充分
に満足しないという欠点があった。これは最外層被覆層
のナイロンの熱膨張係数が、裸光ファイバの熱膨張係数
より3桁程度大きめため、低温度時にナイロンが収縮し
、裸光ファイバを座屈させ、マイクロベンディングが生
じ急激な光伝送損失増をもたらすことが低温特性を満た
さない主な原因であると考えられている。
Conventional coated optical fibers of this type have the drawback of not fully satisfying low-temperature characteristics. This is because the coefficient of thermal expansion of the outermost coating layer, nylon, is about three orders of magnitude larger than that of the bare optical fiber, so the nylon contracts at low temperatures, causing the bare optical fiber to buckle and cause microbending. It is believed that the main reason for not satisfying the low-temperature characteristics is the increase in optical transmission loss.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は従来の問題点を解決するため、裸光ファイバに
、常温におけるヤング率が0.1〜2.0 Kg/m−
のUV’@fFlにより0.05〜0.10mmの厚み
で施した内層被覆層と、内層被覆層の外周に常温におけ
るヤング率が20.80 Kg/mm”のUV雪(Mに
より0.02=0.10mmの厚みで施した中間層被覆
層と、中間層被覆層の外周に常温におけるヤング率が2
0〜150Kg/mm”のナイロンにより0.10〜0
.30mmの厚みで施した最外層被覆層とからなる被覆
光ファイバ心線において、中間層被覆層と最外層被覆層
の界面に、離型剤からなる0、02〜0.10mmの厚
みの中間緩衝層を設けたことを特徴としている。
In order to solve the conventional problems, the present invention provides a bare optical fiber with a Young's modulus of 0.1 to 2.0 Kg/m- at room temperature.
The inner coating layer was applied to a thickness of 0.05 to 0.10 mm using UV'@fFl of The intermediate coating layer is applied with a thickness of = 0.10 mm, and the Young's modulus at room temperature is 2 on the outer periphery of the intermediate coating layer.
0.10 to 0 by nylon of 0 to 150Kg/mm
.. In a coated optical fiber consisting of an outermost coating layer applied to a thickness of 30 mm, an intermediate buffer with a thickness of 0.02 to 0.10 mm made of a release agent is applied at the interface between the intermediate coating layer and the outermost coating layer. It is characterized by having layers.

〔作 用〕[For production]

本発明による被覆光ファイバ心線は、熱膨張係数の小さ
い内層被覆層、中間層被覆層を施した光フアイバ素線と
、熱膨張係数の大きい最外層被覆層との界面に離型剤に
よる中間緩衝層を設けたことにより、本発明の被覆光フ
ァイバ心線では、低温度時においても裸光ファイバは直
接外層被覆層であるナイロンの収縮歪を受けず、座屈に
よるマイクロベンディングが発生しにくい。従って、従
来の被覆光ファイバ心線では充分に満足できなかった低
温特性が大幅に改善されるだけでなく、耐側圧性を向上
させるため、高ヤング率の最外層被覆層の厚みを増すこ
とによる低温特性の劣化もない。以下図面にもとづき実
施例について説明する。
The coated optical fiber according to the present invention has an intermediate layer formed by applying a release agent to the interface between the optical fiber coated with an inner coating layer and an intermediate coating layer having a small coefficient of thermal expansion, and the outermost coating layer having a large coefficient of thermal expansion. By providing the buffer layer, in the coated optical fiber core of the present invention, the bare optical fiber is not directly subjected to shrinkage strain of the nylon outer coating layer even at low temperatures, and microbending due to buckling is less likely to occur. . Therefore, not only are the low-temperature properties, which were not fully satisfied with conventional coated optical fibers, significantly improved, but also the lateral pressure resistance is improved by increasing the thickness of the outermost coating layer with a high Young's modulus. There is no deterioration in low temperature characteristics. Examples will be described below based on the drawings.

〔実施例〕〔Example〕

第1図に本発明による被覆光ファイバ心線の断面構造を
示す。1は外径125μ惧φのシングルモード裸光ファ
イバ、2は常温におけるヤング率0.17Kg/1wn
”のUTl嘲噌により72.5μmの厚みで形成した内
層被覆層、3は常温におけるヤング率50Kg/mm”
のUV @IIIにより65μmの厚みで形成した中間
層被覆層、4はシリコン・オイルを雛型剤として使用し
、15INnの厚みで形成した中間緩衝層、5は常温に
おけるヤング率’+ 00 Kg/myth”のナイロ
ンにより250μmの厚みで形成した最外層被覆層であ
り、被覆光ファイバ心線の外径は930μmφであった
。な゛お本実施例において離型剤としてシリコン・オイ
ることかできる。
FIG. 1 shows a cross-sectional structure of a coated optical fiber according to the present invention. 1 is a single mode bare optical fiber with an outer diameter of 125 μm, and 2 is a Young's modulus of 0.17 Kg/1wn at room temperature.
``Inner coating layer formed with a thickness of 72.5 μm by UTl coating, 3 has a Young's modulus of 50 Kg/mm at room temperature.''
4 is the intermediate buffer layer formed with a thickness of 15 INn using silicone oil as a template agent, 5 is the Young's modulus at room temperature '+ 00 Kg/ The outermost coating layer was formed of nylon with a thickness of 250 μm, and the outer diameter of the coated optical fiber was 930 μmφ.In this example, silicone oil may be used as a mold release agent. .

第2図に本実施例の被覆光ファイバ心線の製造工程概要
を示す。光フアイバ母材から線引した直後に、UV樹脂
による内層被覆層および中間層被覆層を、それぞれUV
樹脂被覆装置により被覆し、巻取機により巻き取ったU
V樹脂被覆光ファイバ素線を光フアイバ素線サプライ6
から繰り出し、シリコン・オイル供給装置10から供給
するシリコン・オイルによる中間緩衝層をディッピング
ダイス7で施した直後、ナイロンコーティング装置8に
よりナイロンによる最外層被覆層を施して巻取機9によ
り巻き取る。
FIG. 2 shows an outline of the manufacturing process for the coated optical fiber of this example. Immediately after drawing from the optical fiber base material, the inner coating layer and the intermediate coating layer made of UV resin are each treated with UV light.
U coated with a resin coating device and wound up with a winding machine
V resin coated optical fiber wire supply 6
Immediately after applying an intermediate buffer layer of silicone oil supplied from a silicone oil supply device 10 using a dipping die 7, an outermost coating layer of nylon is applied using a nylon coating device 8, and the material is wound up using a winder 9.

また本実施例の被覆光ファイバ心線と比較するため、本
実施例で用いたUV樹脂被覆光ファイバ素線の残線を用
いて、従来の、中間緩衝層を施さない第4図に断面構造
を示した被覆光ファイバ心線も製造した。この従来形の
被覆光ファイバ心線の構造は、外径125μmφのシン
グルモード裸光ファイバ、常温におけるヤング率0.1
7Kg/m−のUV樹脂により 72.5μ惧 の厚み
で形成した内層被覆層、常温におけるヤング率50Kg
/mm”のUV樹脂により65μmの厚みで形成した中
間層被覆層、常温におけるヤング率1QQgg/mm”
のナイロンにより250μ慣の厚みで形成した最外層被
覆層からなり、この被覆光ファイバ心線の外径は900
μmであった。
In addition, in order to compare with the coated optical fiber core wire of this example, the cross-sectional structure of FIG. A coated optical fiber core exhibiting the following properties was also manufactured. The structure of this conventional coated optical fiber is a single-mode bare optical fiber with an outer diameter of 125 μmφ and a Young's modulus of 0.1 at room temperature.
Inner coating layer formed with a thickness of 72.5μ from UV resin of 7Kg/m-, Young's modulus of 50Kg at room temperature.
Intermediate coating layer formed with a thickness of 65 μm from a UV resin of 100 μm/mm”, Young's modulus at room temperature of 1QQgg/mm”
The outermost coating layer is made of nylon with a thickness of 250μ, and the outer diameter of this coated optical fiber is 900μ.
It was μm.

上述した本発明による被覆光ファイバ心線および従来形
の被覆光ファイバ心線の、波長λ=1.3μ等における
光伝送損失の温度特性の試験結果を第5図に示す。■は
本発明で■は従来形である。測定は、本発明および従来
形の被覆光ファイバそれぞれ20GQmを、Q、4mφ
の束状態にし、ボビン巻の影響を排除して行なった。こ
の結果、本発明による被覆光ファイバ心線は一60℃ま
で光損失増が見られず、従来形の被覆光ファイバ心線に
比べ、良好な低温特性を示している。なお本実施例によ
る被覆光ファイバ心線のファイバ・パラメータは、波長
1.5μmにおけるLP、、モードのモード外径9.7
μm1LP、 、モードの遮断周波数波長1.17μ雇
いクラツド径125μmφであった。
FIG. 5 shows the test results of the temperature characteristics of optical transmission loss at a wavelength λ=1.3 μ of the above-mentioned coated optical fiber according to the present invention and the conventional coated optical fiber. ■ indicates the present invention, and ■ indicates the conventional type. The measurements were carried out using coated optical fibers of the present invention and conventional type, each measuring 20GQm, Q, and 4mφ.
This was done by making the material into a bundle and eliminating the effects of bobbin winding. As a result, the coated optical fiber according to the present invention shows no increase in optical loss up to -60°C, and exhibits better low-temperature characteristics than the conventional coated optical fiber. The fiber parameters of the coated optical fiber according to this example are LP at a wavelength of 1.5 μm, mode outer diameter of 9.7
The cutoff frequency wavelength of the mode was 1.17 μm, and the cladding diameter was 125 μmφ.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明の被覆光ファイバ心線は、熱
膨張係数の小さい内層被覆層、中間層被覆層を裸光ファ
イバに施した光フアイバ素線と、熱膨張係数の大きい最
外層被覆層との界面に、離型剤による中間緩衝層を設け
た構造とすることにより、従来の被覆光ファイバ心線で
は充分に満足できなかった低温特性が大幅に改善された
。さらに耐側圧性を向上させるため、最外層被覆層の厚
みを増したり、最外層被覆層に使用するナイロンのヤン
グ率を高く設定しても、低温特性の劣化はない。
As described above, the coated optical fiber of the present invention comprises an optical fiber in which a bare optical fiber is coated with an inner coating layer and an intermediate coating layer each having a small coefficient of thermal expansion, and an outermost coating layer having a large coefficient of thermal expansion. By providing a structure in which an intermediate buffer layer made of a release agent is provided at the interface with the layer, the low-temperature characteristics, which were not fully satisfied with conventional coated optical fibers, have been significantly improved. Furthermore, in order to improve the lateral pressure resistance, even if the thickness of the outermost coating layer is increased or the Young's modulus of the nylon used for the outermost coating layer is set high, the low temperature characteristics do not deteriorate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による被覆光ファイバ心線の断面構造、
第2図は本発明による被覆光ファイバ心線の製造工程概
要、第3図は本発明および従来の被覆光ファイバ心線の
光伝送損失の温度特性試験結果、第4図は従来の被覆光
ファイバ心線の断面構造である。 1・・・裸光ファイバ、 2・・・内層被覆層、 3・・・中間層被覆層、 4・・・中間緩衝層、 5・・・最外層被覆層、 6〜・光フアイバ素線サプライ、    17・・・デ
ィッピングダイス、 8・・・ナイロンコーティング装置、 9・・・巻取機、
FIG. 1 shows a cross-sectional structure of a coated optical fiber according to the present invention.
Fig. 2 is an overview of the manufacturing process of the coated optical fiber according to the present invention, Fig. 3 is the temperature characteristic test result of optical transmission loss of the coated optical fiber of the present invention and the conventional coated optical fiber, and Fig. 4 is the result of the conventional coated optical fiber. This is the cross-sectional structure of the core wire. DESCRIPTION OF SYMBOLS 1... Bare optical fiber, 2... Inner layer coating layer, 3... Intermediate layer coating layer, 4... Intermediate buffer layer, 5... Outermost layer coating layer, 6... Optical fiber wire supply , 17... Dipping die, 8... Nylon coating device, 9... Winding machine,

Claims (1)

【特許請求の範囲】 裸光ファイバに、常温におけるヤング率が0.1〜2.
0Kg/mm^2の紫外線硬化樹脂により0.03〜0
.10mmの厚みで施した内層被覆層と、内層被覆層の
外周に常温におけるヤング率が20〜80Kg/mm^
2の紫外線硬化樹脂により0.02〜0.10mmの厚
みで施した中間層被覆層と、中間層 被覆層の外周に常温におけるヤング率が20〜150K
g/mm^2のナイロンにより0.10〜0.30mm
の厚みで施した最外層被覆層とからなる被覆光ファイバ
心線において、 前記中間層被覆層と最外層被覆層の界面に、離型剤から
なる0.02〜0.10mmの厚みの中間緩衝層を設け
てなることを特徴とする被覆光ファイバ心線。
[Claims] The bare optical fiber has a Young's modulus of 0.1 to 2.
0.03~0 due to 0Kg/mm^2 ultraviolet curing resin
.. The inner coating layer is applied to a thickness of 10 mm, and the Young's modulus at room temperature is 20 to 80 Kg/mm^ on the outer periphery of the inner coating layer.
The intermediate layer coating layer is applied with a thickness of 0.02 to 0.10 mm using the ultraviolet curable resin of No. 2, and the outer periphery of the intermediate layer coating layer has a Young's modulus of 20 to 150 K at room temperature.
0.10-0.30mm by g/mm^2 nylon
In a coated optical fiber coated wire consisting of an outermost coating layer applied to a thickness of A coated optical fiber core characterized in that it is formed by providing layers.
JP60239986A 1985-10-26 1985-10-26 Coated optical fiber Expired - Fee Related JPH07119858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60239986A JPH07119858B2 (en) 1985-10-26 1985-10-26 Coated optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60239986A JPH07119858B2 (en) 1985-10-26 1985-10-26 Coated optical fiber

Publications (2)

Publication Number Publication Date
JPS6299711A true JPS6299711A (en) 1987-05-09
JPH07119858B2 JPH07119858B2 (en) 1995-12-20

Family

ID=17052773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60239986A Expired - Fee Related JPH07119858B2 (en) 1985-10-26 1985-10-26 Coated optical fiber

Country Status (1)

Country Link
JP (1) JPH07119858B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5181268A (en) * 1991-08-12 1993-01-19 Corning Incorporated Strippable tight buffered optical waveguide fiber
WO2004019103A1 (en) * 2002-08-22 2004-03-04 Showa Electric Wire & Cable Co., Ltd. Optical fiber core wire, method of removing coating from optical fiber core wire and process for producing optical fiber part
EP2048529A1 (en) * 2006-07-28 2009-04-15 The Furukawa Electric Co., Ltd. Optical fiber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5181268A (en) * 1991-08-12 1993-01-19 Corning Incorporated Strippable tight buffered optical waveguide fiber
WO2004019103A1 (en) * 2002-08-22 2004-03-04 Showa Electric Wire & Cable Co., Ltd. Optical fiber core wire, method of removing coating from optical fiber core wire and process for producing optical fiber part
EP2048529A1 (en) * 2006-07-28 2009-04-15 The Furukawa Electric Co., Ltd. Optical fiber
EP2048529A4 (en) * 2006-07-28 2009-07-29 Furukawa Electric Co Ltd Optical fiber
US7729564B2 (en) 2006-07-28 2010-06-01 The Furukawa Electric Co., Ltd. Optical fiber provided with reliable coating layers

Also Published As

Publication number Publication date
JPH07119858B2 (en) 1995-12-20

Similar Documents

Publication Publication Date Title
CN104536085B (en) A kind of thin footpath polarization maintaining optical fibre
JP5041450B2 (en) Optical fiber colored core
US9453979B2 (en) Multi-core optical fiber tape
JPS6299711A (en) Covered optical fiber core
JPH09113773A (en) Coated optical fiber ribbon
JPS59217653A (en) Preparation of coated optical fiber
JPH07225330A (en) Optical unit for optical composite overhead earth wire
JPS596268B2 (en) Method of reinforcing glass fiber for optical transmission
JPS6273214A (en) Optical fiber strand coated with resin curable by uv rays
JPS6016891Y2 (en) optical fiber core
KR0172629B1 (en) Reinforced multicore optical fiber coupler
JPH0248607A (en) Optical fiber unit
JP2000284155A (en) Optical fiber
JPS6016892Y2 (en) optical fiber core
JP4131767B2 (en) Method for evaluating creep properties of optical fiber coating materials
JPH0425685Y2 (en)
JP2007058223A (en) Perfluoroplastic gradient index optical fiber and methods of fabrication thereof
JPS6045210A (en) Optical fiber core wire
JPS63149612A (en) Composite overhead ground-wire consisting of optical fiber
JPS59228607A (en) Optical fiber core
JP2002255590A (en) Colored optical fiber
JPS63204207A (en) Optical fiber for guiding
JPH05297255A (en) Heat resistant optical fiber
JPH02146007A (en) Production of coated optical fiber
JPH0224610A (en) Optical single-core cord

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees