JPS63149612A - Composite overhead ground-wire consisting of optical fiber - Google Patents

Composite overhead ground-wire consisting of optical fiber

Info

Publication number
JPS63149612A
JPS63149612A JP61297228A JP29722886A JPS63149612A JP S63149612 A JPS63149612 A JP S63149612A JP 61297228 A JP61297228 A JP 61297228A JP 29722886 A JP29722886 A JP 29722886A JP S63149612 A JPS63149612 A JP S63149612A
Authority
JP
Japan
Prior art keywords
optical fiber
outer periphery
silicone resin
wire
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61297228A
Other languages
Japanese (ja)
Inventor
Yoichi Suzuki
洋一 鈴木
Yoshinobu Kitayama
北山 佳延
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61297228A priority Critical patent/JPS63149612A/en
Publication of JPS63149612A publication Critical patent/JPS63149612A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4415Cables for special applications
    • G02B6/4416Heterogeneous cables
    • G02B6/4422Heterogeneous cables of the overhead type

Abstract

PURPOSE:To improve the connection workability of a cable and to prevent the generation of disconnection or the disturbance of a collective array by setting up the hardness characteristics of silicone resin on the outermost layer out of silicone resin applied to the outer periphery of glass fibers for the composite overhead ground-wire consisting of optical fibers to a specific value. CONSTITUTION:A spiral groove 2 is engraved around the outer periphery of a spacer 1 formed on the center part of the composite overhear ground-wire and optical fiber strand 3 is loosely stored in the groove 2. The spacer 1 is stored in an alminum-made protection tube 4 to form an optical fiber unit and an aluminum-coated steel wire 5 is twisted and wound around the outer periphery of the unit. The outer periphery of the stand 3 is coated with silicone resin and silicone resin forming the outermost layer of the coated resin is al lowed to have hardness characteristics indicated by <=70 Shore D measured by Shore hardness test method and >=80 JIS A in hardness regulated by JIS K 6301.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は架空送電線の系統保護、制御、監視などを正確
かつ高精度に行うことを目的として送電線鉄塔の頂部に
架線される架空地線に光ファイバを収納した構造の複合
架空地線に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an overhead transmission line installed at the top of a transmission line tower for the purpose of accurately and precisely performing system protection, control, monitoring, etc. of overhead power transmission lines. This invention relates to a composite overhead ground wire with a structure in which an optical fiber is housed in the wire.

〔従来の技術〕[Conventional technology]

第1図に従来の光ファイバ複合架空地線(以下複合架空
地線という。)の断面構造の概要を示す。複合架空地線
の中央部にスペーサlが設けられ、スペーサlの外周に
はらせん状の溝2が刻設されており、溝2に光ファイバ
素線3がルーズに収納されている。さらにスペ〜すlは
アルミ製の保護管4に収納されて光ファイバユニットを
形成している。光ファイバユニットの外周には、さらに
アルミニウム被覆鋼線5が撚合されて巻積されている。
FIG. 1 shows an outline of the cross-sectional structure of a conventional optical fiber composite overhead ground wire (hereinafter referred to as composite overhead ground wire). A spacer 1 is provided at the center of the composite overhead ground wire, and a spiral groove 2 is cut on the outer periphery of the spacer 1, and an optical fiber 3 is loosely housed in the groove 2. Further, the spacer 1 is housed in an aluminum protective tube 4 to form an optical fiber unit. Further, aluminum-coated steel wires 5 are twisted and wound around the outer periphery of the optical fiber unit.

この種の構造の光ファイバ複合架空地線は、光ファイバ
3がスペーサ1に収納され、かつ光ファイバユニット全
体が保護管4に収納されていることから、機械的強度に
優れる利点がある。
The optical fiber composite overhead ground wire having this type of structure has the advantage of excellent mechanical strength because the optical fiber 3 is housed in the spacer 1 and the entire optical fiber unit is housed in the protective tube 4.

またこの種の複合架空地線に使用する光ファイバ素線3
は、第2図に断面構造を示すように、光ファイバ(コア
/クラッド)6の外周にプライマリコート7およびバッ
ファコート8の被覆を施してあり、プライマリコート7
およびバッファコート8は通常一般に付加反応型のシリ
コン樹脂により形成される。
Also, the optical fiber strand 3 used for this type of composite overhead ground wire
As shown in FIG. 2, the outer periphery of an optical fiber (core/cladding) 6 is coated with a primary coat 7 and a buffer coat 8.
The buffer coat 8 is generally formed from an addition reaction type silicone resin.

従来の被覆材として用いる付加反応型のシリコン樹脂は
、プライマリコート7用としては石英の屈折率より高い
屈折率を有するシリコンを、またパンコアコート8用と
しては外力により発生するマイクロベンドを防止するた
めのクノンヨン効果のある低ヤング率の材料が適用され
ている。そのため、従来の被覆材は、 ASTM D 
2240に規定するショア硬さ試験法ではショア硬さの
測定がてきず、JIS K 6301に規定する試験法
で測定した時JIS A 20〜40の程度となってい
る。
Addition-reaction silicone resins used as conventional coating materials include silicone with a refractive index higher than that of quartz for primary coat 7, and silicone for pancore coat 8 to prevent microbending caused by external forces. Low Young's modulus materials with Knon Yong effect have been applied for this purpose. Therefore, conventional dressings meet ASTM D
Shore hardness cannot be measured using the Shore hardness test method specified in JIS K 6301, and the Shore hardness is in the range of JIS A 20 to 40 when measured using the test method specified in JIS K 6301.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のこの種の複合架空地線は、光ファイバ素線の被覆
材の硬度が低いことから次のような問題があった。
Conventional composite overhead ground wires of this type have the following problems due to the low hardness of the coating material of the optical fiber wire.

■ シリコン樹脂を被覆した光ファイバ素線を複数本直
接集合しているのである程度の粘着性を有するシリコン
樹脂が相互に密着し複合架空地線を形成しているケーブ
ルの接続作業性が悪い。
(2) Since a plurality of optical fiber wires coated with silicone resin are directly assembled, the silicone resin, which has a certain degree of adhesiveness, adheres to each other and forms a composite overhead ground wire.The cable connection workability is poor.

■ 製造過程においても、光ファイバ素線の集合工程に
際し光ファイバ素線が互いに密着し、光ファイバ素線の
もつれなどにより光ファイバに引張力や曲げが作用し、
伝送特性が悪化したり、時には断線または集合配列の乱
れが生じる。
■ During the manufacturing process, the optical fibers come into close contact with each other during the assembly process, and tensile force and bending are applied to the optical fibers due to entanglement of the optical fibers.
Transmission characteristics may deteriorate, and sometimes wire breaks or aggregate arrangement may be disrupted.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は従来の問題点を解決するため、この種の光ファ
イバ複合架空地線において、光ファイバ素線を形成する
ガラスファイバの外周に施す被覆材の最外層のシリコン
樹脂はt’j3TM D 2240に規定するショア硬
さ試験法により測定したンヨアD70以下でかつJIS
 K 6301に規定する硬度がJIS A 80以上
の硬さ特性を有していることを特徴とする。
In order to solve the problems of the prior art, the present invention is directed to this type of optical fiber composite overhead ground wire. Hardness D70 or less measured by the Shore hardness test method specified in
It is characterized by having a hardness characteristic of JIS A 80 or higher as defined in K 6301.

〔作 用〕[For production]

本発明の光ファイバ複合架空地線は、光ファイバ素線の
最外層の被覆シリコン樹脂の硬さ特性をASTM D 
2240に規定する/ヨア硬さ試験法により測定したシ
ョアD70 以下でかつJISK 6301に規定する
硬度がJIS A 80以上の高硬質とすることにより
、測圧などの外圧に対する抵抗力の向上とともに、製造
上の安定化がはかれる。以下実施例について説明する。
The optical fiber composite overhead ground wire of the present invention has hardness characteristics of the coating silicone resin of the outermost layer of the optical fiber wire according to ASTM D.
2240 / Shore D70 or less measured by the Yoar hardness test method, and the hardness specified in JISK 6301 is JIS A 80 or higher, which improves resistance to external pressure such as pressure measurement and improves manufacturing performance. The above is stabilized. Examples will be described below.

〔実施例〕〔Example〕

光ファイバ素線の最外層としてのハンファコート用のシ
リコン樹脂の硬さがASTM D 2240によって測
定した硬度がショアD80、ショアD70、ショアD4
0のもの、及びJIS K 6301による硬度JIS
 A 80のものを使用した光ファイバ素線試料屋1〜
4の4種を作製した。また比較のため従来のシリコン樹
脂被覆の光ファイバ素線試料洗5および6を選定し、 
JIS K 6301に準じて測定した硬度がそれぞれ
試料ira 5はJIS A 60、試料扁6はJIS
 A 40の袋さであった。これらそれぞれの試料につ
いて外観、粘着性(qr)および断線回数について測定
した結果を次表に示す。
The hardness of the silicone resin for Hanwha coat, which is the outermost layer of the optical fiber, is Shore D80, Shore D70, Shore D4, as measured by ASTM D 2240.
0 and hardness according to JIS K 6301
Optical fiber sample shop 1 using A80
4 types were produced. For comparison, we selected conventional silicone resin coated optical fiber sample washes 5 and 6.
The hardness measured according to JIS K 6301 is JIS A 60 for sample ira 5 and JIS A 60 for sample ira 6.
The size of the bag was A40. The following table shows the results of measuring the appearance, adhesion (qr), and number of disconnections for each of these samples.

表で外観とは、径180μmφのプライマリコートを被
覆されたガラスファイバに、バッファコート用シリコン
を400μmφの径にコーテンイグしたときの光ファイ
バ素線の外観である。
In the table, the appearance refers to the appearance of an optical fiber when a glass fiber coated with a primary coat having a diameter of 180 μmφ is coated with buffer coat silicon to a diameter of 400 μmφ.

粘着性は、第3図に示す試験方法により測定した結果で
ある。すなわちバッファ用のシリコン樹脂を硬化させた
長さ30耀、幅30咽、厚さ1頭のシート試料11を、
固定した鉄板lO上に載置し、その上にガラスプレート
9を介して重り12を荷重し、30秒経過後にシート試
料11の剥離力を固定した結果である。
The tackiness is the result measured by the test method shown in FIG. In other words, a sheet sample 11 with a length of 30 mm, a width of 30 mm, and a thickness of 1 mm made of hardened silicone resin for buffering was prepared.
The sheet sample 11 was placed on a fixed iron plate IO, a weight 12 was loaded thereon via the glass plate 9, and the peeling force of the sheet sample 11 was fixed after 30 seconds had elapsed.

断線回数は、光ファイバ素線試料屋1〜6のそれぞれに
ついて、3心づつ供給し、延べl0KI+集合したとき
にバッファコートのシリコン樹脂相互が密着してもつれ
を生じ、光フテイバ素線のガラスファイバに断線を生じ
た回数である。
The number of breaks is determined by supplying 3 fibers to each of the optical fiber sample shops 1 to 6, and when they are assembled, the silicone resin of the buffer coat sticks to each other and becomes tangled, causing the glass fiber of the optical fiber sample shop to This is the number of times that a wire break occurred.

実施例からも解るとおり、従来の光ファイバ素線のバッ
ファコート用シリコン樹脂は、JIS’A 60以下の
硬さ特性のため、光ファイバ素線集金時の断線の発生が
避けられなかった。これに対し本発明によるJIS A
 80以上の硬さ特性を有するシリコン樹脂は粘着性が
改善され良好な結果を示している。ただし硬度が大に過
ぎるとコーテイング性が劣り、光ファイ/イ素線の外観
が悪化し、外観の凹凸の影響により断線が発生した。し
たがってシリコン樹脂の硬さはショアD70以下が好ま
しい。
As can be seen from the examples, the conventional silicone resin for buffer coating of optical fibers has a hardness of JIS'A 60 or less, so the occurrence of wire breakage during collection of optical fibers was unavoidable. In contrast, JIS A according to the present invention
Silicone resins with hardness characteristics of 80 or higher have improved adhesion and have shown good results. However, if the hardness is too high, the coating properties will be poor, the appearance of the optical fiber/electronic wire will deteriorate, and wire breakage will occur due to the unevenness of the appearance. Therefore, the hardness of the silicone resin is preferably Shore D70 or less.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、シリコン樹脂相互は
密着することなく、ケーブルの接続作業性が改善され、
製造工程における光ファイバ素線集合に際し、光ファイ
バ素線の相互の接着によるもつれもなく、したがって引
張力や曲げなどによる測圧などの外圧の影響も防止でき
、伝送特性の悪化もなく、かつ断線または集合配列の乱
れも防止でき、効果が顕著である。
As described above, according to the present invention, the silicone resins do not come into close contact with each other, and the cable connection workability is improved.
When assembling optical fiber strands in the manufacturing process, there is no tangle due to mutual adhesion of the optical fiber strands, and therefore the influence of external pressure such as pressure measurement due to tension or bending can be prevented, there is no deterioration of transmission characteristics, and there is no disconnection. Moreover, disorder of the set arrangement can also be prevented, and the effect is remarkable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光ファイバ複合架空地線の断面構造、第2図は
光ファイバ素線の断面構造、第3図は粘着性試験方法説
明図である。 1・・・スペーサ、2・・・らせん状溝、3・・・光フ
ァイバ素線、4・・・保護管、5・・・アルミニウム被
覆鋼線、6・・・光ファイバ、7・・・プライマリコー
ト、8・・・バッファコート、9・・・ガラスプレート
、10・・・鉄板、11・・・シリコンシート試料、1
2・・・重り光ファイバ複合架空地線の断面構造 第1図 第 2 図         粘着性試験方法説明図第
3図
FIG. 1 is a cross-sectional structure of an optical fiber composite overhead ground wire, FIG. 2 is a cross-sectional structure of an optical fiber bare wire, and FIG. 3 is an explanatory diagram of an adhesion test method. DESCRIPTION OF SYMBOLS 1... Spacer, 2... Spiral groove, 3... Optical fiber wire, 4... Protection tube, 5... Aluminum coated steel wire, 6... Optical fiber, 7... Primary coat, 8...Buffer coat, 9...Glass plate, 10...Iron plate, 11...Silicon sheet sample, 1
2... Cross-sectional structure of weighted optical fiber composite overhead ground wire Figure 1 Figure 2 Explanation of adhesion test method Figure 3

Claims (1)

【特許請求の範囲】 溝付スペーサの溝内に光ファイバ素線を収納した溝付ス
ペーサの外周に保護管を配して形成した光ファイバユニ
ットの外周に導体撚線を巻積してなる光ファイバ複合架
空地線において、前記光ファイバ素線は、 ガラスファイバの外周にシリコン樹脂による被覆を施し
てなり、 前記被覆を形成するシリコン樹脂の内、最外層を形成す
るシリコン樹脂は、 ASTM D 2240に規定するショア硬さ試験法に
より測定したショアD70以下でかつJIS K630
1に規定する硬度がJIS A 80以上の硬さ特性を
有してることを特徴とする光ファイバ複合架空地線。
[Claims] An optical fiber formed by winding conductor strands around the outer periphery of an optical fiber unit formed by arranging a protective tube around the outer periphery of a grooved spacer in which an optical fiber wire is housed in the groove of the grooved spacer. In the fiber composite overhead ground wire, the optical fiber wire is formed by coating the outer periphery of a glass fiber with a silicone resin, and among the silicone resins forming the coating, the silicone resin forming the outermost layer conforms to ASTM D 2240. Shore D70 or less measured by the Shore hardness test method specified in , and JIS K630
1. An optical fiber composite overhead ground wire characterized in that the hardness specified in Item 1 is JIS A 80 or higher.
JP61297228A 1986-12-12 1986-12-12 Composite overhead ground-wire consisting of optical fiber Pending JPS63149612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61297228A JPS63149612A (en) 1986-12-12 1986-12-12 Composite overhead ground-wire consisting of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61297228A JPS63149612A (en) 1986-12-12 1986-12-12 Composite overhead ground-wire consisting of optical fiber

Publications (1)

Publication Number Publication Date
JPS63149612A true JPS63149612A (en) 1988-06-22

Family

ID=17843824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61297228A Pending JPS63149612A (en) 1986-12-12 1986-12-12 Composite overhead ground-wire consisting of optical fiber

Country Status (1)

Country Link
JP (1) JPS63149612A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02153308A (en) * 1988-08-29 1990-06-13 Nippon Sheet Glass Co Ltd Optical fiber
US4952012A (en) * 1988-11-17 1990-08-28 Stamnitz Timothy C Electro-opto-mechanical cable for fiber optic transmission systems

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02153308A (en) * 1988-08-29 1990-06-13 Nippon Sheet Glass Co Ltd Optical fiber
US4952012A (en) * 1988-11-17 1990-08-28 Stamnitz Timothy C Electro-opto-mechanical cable for fiber optic transmission systems

Similar Documents

Publication Publication Date Title
US6654527B2 (en) Optical fiber cable
JPH04112415U (en) armored fiber optic cable
JP4556372B2 (en) Coated optical fiber
JPWO2003100495A1 (en) Optical fiber ribbon
US9453979B2 (en) Multi-core optical fiber tape
CN109239877A (en) A kind of ess-strain optical cable based on ultrashort dim light grid array
JP3006484B2 (en) Optical fiber composite overhead wire
CN110824644A (en) Optical fiber bundle self-supporting aerial optical cable
JPS63149612A (en) Composite overhead ground-wire consisting of optical fiber
JPH09113773A (en) Coated optical fiber ribbon
CN208847903U (en) A kind of ess-strain optical cable based on ultrashort dim light grid array
JPH07225330A (en) Optical unit for optical composite overhead earth wire
JP2005222080A (en) Optical fiber ribbon and manufacturing method thereof
JP2001083381A (en) Coated optical fiber
JP3346254B2 (en) Optical fiber
JPS6247008A (en) Optical fiber unit
CN213302617U (en) Low-time-delay high-linear-density optical cable
EP4206774A1 (en) Embedded strength member for optical fiber cables and manufacturing method thereof
JPH0121281Y2 (en)
JPH11194242A (en) Coated optical fiber
JPS6299711A (en) Covered optical fiber core
JP3425091B2 (en) Optical cable and method of manufacturing the same
JPH01304408A (en) Optical fiber cable
JPS6273214A (en) Optical fiber strand coated with resin curable by uv rays
JP2004045937A (en) Coated optical fiber ribbon