JPS6299700A - Fluid delivery control method - Google Patents

Fluid delivery control method

Info

Publication number
JPS6299700A
JPS6299700A JP60239057A JP23905785A JPS6299700A JP S6299700 A JPS6299700 A JP S6299700A JP 60239057 A JP60239057 A JP 60239057A JP 23905785 A JP23905785 A JP 23905785A JP S6299700 A JPS6299700 A JP S6299700A
Authority
JP
Japan
Prior art keywords
fan motor
stepwise
control
fan
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60239057A
Other languages
Japanese (ja)
Inventor
Shinji Takada
高田 信治
Sachio Nakajima
中島 左千夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60239057A priority Critical patent/JPS6299700A/en
Priority to KR1019860006504A priority patent/KR900003799B1/en
Priority to DE8686114644T priority patent/DE3677164D1/en
Priority to EP86114644A priority patent/EP0225996B1/en
Priority to CA000521332A priority patent/CA1261428A/en
Priority to US06/923,090 priority patent/US4720245A/en
Publication of JPS6299700A publication Critical patent/JPS6299700A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to operate a fan motor safely, by controlling the rotating speed of the fan motor, stepwise according to the flow, and controlling the minute variation of flow in each step, by a flow control means, so as to avoid resonance point of a rotor such as a fan. CONSTITUTION:Continuous control signal Y of a control device 11 is fed to VVVF 3, after being converted into stepwise signals Y0, Y1, Y2...Yk by an input converter 16. Here, assuming that frequency control input toward VVVF 3 is Yi (Yi-1<Y<Yi), output frequency of VVVF 3 is varied stepwise by this Yi, and the rotating speed of a fan motor 4 is varied stepwise, as a result. On the other hand, output of the control device 11 and output of the input converter 16, that is, deviation of stepwise control input Y0, Y1...Yk from demand command of the load of the control input device 11, is given by a deviation signal unit 17, the opening of a damper 8 is controlled by said deviation, and the flow is controlled finely to the desired value which corresponds to the demand gas quantity. Accordingly, resonance point of a rotor is avoided, and the fan motor 4 can be operated safely.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明にファンモータによジ送出する流体のfを段階
的に制御する流体送出制御方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a fluid delivery control system for controlling stepwise f of fluid delivered to a fan motor.

〔従前i術〕[Previous i-jutsu]

第4図は従来の流体送出制御装置のブロック接続図であ
り、図において、1は商用電源、2は開閉器、3は可変
周波数電源(以下VVVF’という)、4はファンモー
タ、5はファン(ベーンを含tF)、6′は連結軸、7
はファン5により送出される空気の風道、7a、7bは
風道7の空気の入力および出0.8は風道7内に収容さ
れた流量制御手段としてのダンパ、9はダンパ8の駆動
棒、10はダンパ駆動装置、1)はVVVF 3とダン
パ駆動装[10への制御入力を発生する制御装置、12
は変圧器、13は回転数検出器、14は負荷検出器、1
3a、t3bは回転数検出器13が作動したときそれぞ
れ閉、開となる接点、14a、14bは負荷検出器14
が作動したときそれぞれ閉、開となる接点、15はVV
VF 3の出力が一定となる信号を与える固定制御入力
端子、18は駆動装置10への制御入力端子である。
FIG. 4 is a block connection diagram of a conventional fluid delivery control device. In the figure, 1 is a commercial power supply, 2 is a switch, 3 is a variable frequency power supply (hereinafter referred to as VVVF'), 4 is a fan motor, and 5 is a fan. (tF including vane), 6' is the connecting shaft, 7
7a and 7b are air input and output channels for the air sent out by the fan 5; 0.8 are dampers housed in the air channel 7 as flow control means; 9 is a drive for the damper 8; 1) is a control device that generates a control input to the VVVF 3 and the damper drive device [10;
is a transformer, 13 is a rotation speed detector, 14 is a load detector, 1
3a and t3b are contacts that close and open, respectively, when the rotation speed detector 13 is activated, and 14a and 14b are load detectors 14.
Contacts that close and open respectively when activated, 15 is VV
Fixed control input terminal 18 is a control input terminal to drive device 10 which provides a signal for which the output of VF 3 is constant.

次に動作について説明する。Next, the operation will be explained.

この流体送出制御装置は、設定風景(流量)QLに対し
てファンモータ40回転速度がある回転数NL以下にな
らないようにしており、この風tQL以下では、第5図
に示すようにダンパ8の開度ヲ小さくするようにし、具
体的には次のような制御を行っている。すなわち、可変
同波数電源3の出力周波数fと出力電圧Vは関数関係に
あり、周波数fがきまれば一義的に出力電圧Vがきまる
。すなわち、式(1)が成立する。
This fluid delivery control device prevents the rotational speed of the fan motor 40 from falling below a certain rotational speed NL with respect to the setting scenery (flow rate) QL, and when the wind is below this wind tQL, the damper 8 is turned off as shown in FIG. The opening degree is made smaller, and specifically, the following control is performed. That is, the output frequency f and the output voltage V of the variable same-wavenumber power supply 3 have a functional relationship, and once the frequency f is determined, the output voltage V is uniquely determined. That is, equation (1) holds true.

V=g(f)    ・・・・・・・・・・・・・・・
・・・・・・・・・(1)但し1g:関 数 通常に電動機の巻線飽和を避けるために式(2)の関係
とするのが一般的でろる。
V=g(f) ・・・・・・・・・・・・・・・
(1) However, 1g: Function In order to avoid saturation of the motor windings, it is common to use the relationship shown in equation (2).

g(f)、、−に、f   ・・・・・・・・・・・・
・・・・・・・・・(2)但し、K:定 数 以上の説明で可変周波数電源3の出力電圧Vから出力周
波数fを検出できることが判る。従って、町!同波数電
源3の出力電圧Vを変圧器12を介して計測に適した値
に変えて一定値以下を検出すれば、周波数f、従って式
(1)より回転数Nが一定値NL以下を検出する回転数
検出器13が得られる。
g(f),,-,f ・・・・・・・・・・・・
(2) However, K: Constant From the above explanation, it is understood that the output frequency f can be detected from the output voltage V of the variable frequency power supply 3. Therefore, the town! If the output voltage V of the same wave number power supply 3 is changed to a value suitable for measurement via the transformer 12 and a value below a certain value is detected, the frequency f, and therefore the rotation speed N from equation (1), is detected to be below the certain value NL. A rotation speed detector 13 is obtained.

回転数Nが一定値NL以上であれば回転数検出513が
不動作、従って負荷検出器14も不動作であるから、接
点13a、14aid開、接点13b 、14bは閉で
bる。従ってこの時は可変周波数電源3には制御装置1
)の制御信号が、ダンパ駆動装置10には制御入力がそ
れぞれ印加され、第5図において風量Qx、〜100%
の範囲で、全開近傍のダンパ開度θCとなる。
If the rotational speed N is greater than the fixed value NL, the rotational speed detection 513 is inactive, and therefore the load detector 14 is also inactive, so the contacts 13a and 14aid are open and the contacts 13b and 14b are closed. Therefore, at this time, the variable frequency power supply 3 has the control device 1.
), control inputs are applied to the damper drive device 10, and in FIG.
Within this range, the damper opening degree θC is close to fully open.

回転数Nが一定値NL以下になろうとすれば回転数検出
器13が作動して接点13.は閉、接点13bは開とな
る。接点13.の閉により負荷検出器14は生かされる
が、風量Qが回転数NLに相当する風量QLより小であ
れば不動作となるように設定しているので、接点14a
、14bはそれぞれ開、閉となっている。従って、この
時は可変周波数電源3には固定制御入力が与えられ回転
数はNLに固定となり、ダンパ駆動装[10には制御装
[1)の制御入力が与えられることになり、風tQL以
下の範囲では、可変周波数電源3の出力周波数fLは、 r L : NL  x  −・・・・・・・川・山・
・・・ (3)の値に固定され、この様子金弟5図(ア
)に示す。
When the rotational speed N is about to fall below a certain value NL, the rotational speed detector 13 is activated and the contact 13. is closed, and contact 13b is opened. Contact point 13. When the contact 14a is closed, the load detector 14 is activated, but if the airflow Q is smaller than the airflow QL corresponding to the rotational speed NL, the load detector 14 is set to be inactive.
, 14b are open and closed, respectively. Therefore, at this time, a fixed control input is given to the variable frequency power supply 3, and the rotation speed is fixed at NL, and a control input of the control device [1] is given to the damper drive device [10], so that the wind speed is less than or equal to tQL. In the range of , the output frequency fL of the variable frequency power supply 3 is r L : NL
... It is fixed at the value of (3), and this situation is shown in Figure 5 (A).

制御装置1)の制御信号がダンパ駆動装置10に与えら
れると要求風量となるようにダンパ8が作動じて第5図
(イ)のように風量Qt、以下でセダンバ8t−シぼり
込むこととなる。次に上記状態から風tQがQt、以上
になった時に元のダンパ開度θCの状態にもどす方法に
ついて説明する。
When the control signal from the control device 1) is given to the damper drive device 10, the damper 8 is operated so that the required air volume is achieved, and the sedan bar 8t is shrunk to the air volume Qt as shown in FIG. 5(a). Become. Next, a method of returning to the original damper opening degree θC when the wind tQ becomes equal to or higher than Qt from the above state will be explained.

回転数検出器13が動作している状態では、接点18.
が閉で負荷検出器14が生かされている。
When the rotation speed detector 13 is operating, the contact 18.
is closed and the load detector 14 is activated.

要求風量が増加して制御装fullの制御信号が増加し
、ダンパ開度θがθCに達すれば負荷検出器14が作動
して、その接点14a、14b’tそれぞれ閉、開とす
る。従って、ダンパ駆動装置10にはダンパ開度θ0で
固定となるように制御入力10+が与えられ、可変周波
数電源3には制御装置t1)の信号が与えられて、更に
出力周波数fが増加すれば、回転数検出器13が復帰し
て元の風1iQL−100%の状態にもどる。
When the required air volume increases and the control signal of the control device full increases, and the damper opening degree θ reaches θC, the load detector 14 is activated and its contacts 14a and 14b't are closed and opened, respectively. Therefore, a control input 10+ is given to the damper drive device 10 so that the damper opening degree θ0 is fixed, and a signal from the control device t1) is given to the variable frequency power supply 3, and if the output frequency f is further increased, , the rotation speed detector 13 returns to its original state of wind 1iQL-100%.

〔発明が解決し↓うとする問題点〕[Problems that the invention attempts to solve]

従来の流体送出制御方式は以上のようであるので、ファ
ンモータ4がNLから100%の回転数領域で連続的に
変化するように制御きれ、従ってその連続可変周波数の
ある領域に、ファン5の機械的振動周波数との共振点が
あると、機械振動が増巾されて、ファン5が破損するに
至るなどの問題点があった。
Since the conventional fluid delivery control system is as described above, it is possible to control the fan motor 4 so that it changes continuously in the rotation speed range from NL to 100%. If there is a resonance point with the mechanical vibration frequency, the mechanical vibration is amplified, causing problems such as damage to the fan 5.

この発明は上記のような問題点全解消するためになされ
たもので、ファンモータ4の回転中に上記のような機械
的共振点が運転用電源周波数領域にある場合でも、安全
にファンモータ4およびファンを回転できる流体送出制
御装置奮得ることを目的とする。
This invention has been made to solve all of the above-mentioned problems, and even if the mechanical resonance point as mentioned above is in the operating power supply frequency range while the fan motor 4 is rotating, the fan motor 4 can be safely operated. and a fluid delivery control device that can rotate the fan.

〔問題点を解決するための手段〕[Means for solving problems]

この発明にかかる流体送出制御方式は、流体全送出する
ファンモータを複数の段階に回転数制御するとともに各
段階における流量の微小変化を流量制御手段によって制
御するようにしたものでらる。
The fluid delivery control method according to the present invention controls the rotation speed of a fan motor that delivers all of the fluid in a plurality of stages, and also controls minute changes in the flow rate at each stage by a flow rate control means.

〔作 用〕[For production]

この発明における可変周波数電源はファンモータに対し
、段階的に変化する可変周波数の出力を供給し、機械的
共振が生じるファンモータの回転域の回転数モード全作
らないように作用する。また、段階的に変化する各回転
数域間の流量変化を、ダンパなどの流量制御手段によっ
て制御するように作用する。したがって、結果的にラン
ダムに変化する流量制御が可能になる。
The variable frequency power supply in the present invention supplies the fan motor with a variable frequency output that changes stepwise, and acts to prevent all rotational speed modes in the rotational range of the fan motor in which mechanical resonance occurs. Further, the flow rate control means such as a damper acts to control the change in the flow rate between each rotational speed range, which changes stepwise. Therefore, as a result, flow rate control that changes randomly becomes possible.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図において、16は制御装置1)が出力する連続制
御信号を段階的信号に変換する入力変換器、17は連続
制御信号と段階的信号との偏差に対応する信号を発生す
る偏差信号器である。なお、このほかの第4図に示した
ものと同一の構成部分には同一符号を付して、その重複
する説明を省略する。
In FIG. 1, 16 is an input converter that converts the continuous control signal output by the control device 1) into a stepwise signal, and 17 is a deviation signal device that generates a signal corresponding to the deviation between the continuous control signal and the stepwise signal. It is. Note that other components that are the same as those shown in FIG. 4 are designated by the same reference numerals, and redundant explanation thereof will be omitted.

次に動作について説明する。Next, the operation will be explained.

いま、ファンモータ4が駆動σれると、第2図に示すよ
うにファン5の各ブレードが風道7の出ロアb部分を通
過するごとに、ファン5が気圧の変化による機械的ショ
ックを受けることになる。
Now, when the fan motor 4 is driven σ, the fan 5 receives a mechanical shock due to a change in air pressure every time each blade of the fan 5 passes through the lower exit part b of the air passage 7, as shown in FIG. It turns out.

ここで、ブレードの数を21フアン5の回転敷金X (
RPM)とすると、上記の機械的ショックの振動数Rは
2φX(RPM)となジ、ファン5.特に構造が複雑で
羽根の数が多いファン5の固有振動数と一致する可能性
が高い。なお、機械系で発生する共振として、ファンモ
ータ4、ファン5、連結軸6相互の振動によるものなど
がある。この発明では、制御装置1)の連続制御信号Y
i、入力変換器16によって段階的信号Yo、Y+、Y
2.・・・YKに変換して、VVVF’3に供給する。
Here, the number of blades is 21 fan 5 rotating deposit X (
RPM), the frequency R of the above mechanical shock is 2φX(RPM), and the fan 5. In particular, it is highly likely that the natural frequency matches the natural frequency of the fan 5, which has a complex structure and a large number of blades. Note that resonance occurring in the mechanical system includes resonance caused by mutual vibrations among the fan motor 4, fan 5, and connecting shaft 6. In this invention, the continuous control signal Y of the control device 1)
i, stepwise signals Yo, Y+, Y by the input converter 16
2. ...converted to YK and supplied to VVVF'3.

ここでV V V F 3 ヘ(D 周波m 制御人7
1 k Yi (Yi−+ <Y < Y i )とす
ると、このYiによってVVVF3の出力周波数は段階
的に変化し、結果として、ファンモータを第3図に示す
ように、nl、n2.・・・。
Here, V V V F 3 (D Frequency m Controller 7
1 k Yi (Yi-+ < Y < Y i ), the output frequency of the VVVF3 changes stepwise due to this Yi, and as a result, the fan motor is changed to nl, n2 . ....

nKのように変化させる。Change it like nK.

一方、上記制御装[1)および入力変換器16の各出力
、すなわち段階的制御人力Yo 、 Y+ 、・・・。
On the other hand, each output of the control device [1) and the input converter 16, ie, the stepwise control human power Yo, Y+, . . .

YKと制御入力装置1)の負荷の要求指令との偏差が偏
差信号器17によって求められ、その偏差に応じた信号
によって駆動装置が作動し、これによリダンパ8の開度
がコントロールされ、制御信号による要求風量に相当す
る目標値へ微調整される。従って、要求に量Qが Ql−1≦Q≦Q1     ・・・・・・・・・・・
・・・・・・・(4)のときは、ファンモータ4の回転
数Nはn、となり、ダンパ8は開度θCとθdの間で変
化する。このように段階的に回転数N(i−選定して、
ファン5などが共振する周波数(回転数)を、通常のフ
ァンモータの回転数と重ならないようにすることができ
る。
The deviation between the YK and the load request command of the control input device 1) is determined by the deviation signal device 17, and the drive device is actuated by a signal corresponding to the deviation, thereby controlling the opening degree of the redamper 8. Fine adjustment is made to the target value corresponding to the required air volume based on the signal. Therefore, the quantity Q in the request is Ql-1≦Q≦Q1 ・・・・・・・・・・・・
In the case of (4), the rotation speed N of the fan motor 4 is n, and the damper 8 changes between the opening degrees θC and θd. In this way, the number of revolutions N (i- is selected in stages,
The frequency (number of rotations) at which the fan 5 and the like resonate can be made not to overlap the number of rotations of a normal fan motor.

なお、上記の実施例では、ファンモータ4の負荷として
、ファン5を接続する例で説明したが、ファンに限らず
ポンプ等の他の回転体であってもよい。
In the above embodiment, the fan 5 is connected as the load of the fan motor 4, but the load is not limited to the fan, but may be another rotating body such as a pump.

また、風量金ダニ/パ8で制御する場合について説明し
たが、ベーン、バルブ等の他のどのような機械的制御機
構でも、同様の効果を奏する。
Further, although the case where the air volume is controlled by the air flow rate plate 8 has been described, any other mechanical control mechanism such as a vane or a valve can produce the same effect.

さらに、第3図では、説明を簡単にするために、ダンパ
開度がθCとθdの間で変化する場合について説明した
が、θCとθdは各風量Q1−1〜Q1間で異なった値
であっても良い。
Furthermore, in order to simplify the explanation, in Fig. 3, we have explained the case where the damper opening degree changes between θC and θd, but θC and θd are different values between each air volume Q1-1 to Q1. It's okay to have one.

また、以上の説明では、共振点を回避することで説明し
たが、ファン5等では、動作の不安定なサージング域等
のように運転の禁止域があり、これらを回避する場合に
もこの発明は有効であり、一般的なファン等の回転体の
運転禁止域′に避ける場合に広く利用できる。
In addition, in the above explanation, the resonance point was explained as being avoided, but in the fan 5, etc., there are areas where operation is prohibited, such as a surging area where operation is unstable, and the present invention can also be used to avoid these areas. is effective and can be widely used to avoid operating prohibited areas for rotating bodies such as general fans.

さらに、副次的な効果として、負荷の微少調節をダンパ
8で行うので、回転数の減少方向の速度を増すために、
VVVF 3に回生装置を従来は必要としていたが、こ
の方式では回生装置が不要となる。
Furthermore, as a secondary effect, since the damper 8 performs minute adjustment of the load, in order to increase the speed in the direction of decreasing rotation speed,
Conventionally, the VVVF 3 required a regenerative device, but this method eliminates the need for a regenerative device.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、可変周波数電源によ
って駆動するファンモータを、回転体たるファンなどの
回転数が段階的に変化するように運転するので、上記フ
ァンなどの回転体の共振点を避けて、ファンモータを安
全運転することができる。かくして、従来におけるごと
きファンの破損事故等全未然に防止できるものが得られ
る効果がある。
As described above, according to the present invention, the fan motor driven by the variable frequency power supply is operated so that the rotation speed of the rotating body such as the fan changes in stages, so that the resonance point of the rotating body such as the fan is The fan motor can be operated safely by avoiding this. In this way, it is possible to completely prevent accidents such as damage to the fan as in the prior art.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による流体送出制御方式全
説明するためのブロック接続図、第2図は機械的共振点
発生部位の概略構成図、第3図は風量に対する回転数お
よびダンパ開度の特性図、第4図は従来の流体送出制御
装置のブロック接続図、第5図は従来の風量に対する回
転数およびダンパ開度の特性図である。 :H−を可変周波数電源、4はファンモータ、5はファ
ン、8は流量制御手段、1)は制御装置、16は入力変
換器、17は偏差信号器。 なお、図中、同一符号は同一、または相当部分を示す。 第4図 第5図
Fig. 1 is a block connection diagram for explaining the entire fluid delivery control system according to an embodiment of the present invention, Fig. 2 is a schematic configuration diagram of a mechanical resonance point generation site, and Fig. 3 shows the rotation speed and damper opening with respect to air volume. FIG. 4 is a block connection diagram of a conventional fluid delivery control device, and FIG. 5 is a conventional characteristic diagram of rotation speed and damper opening with respect to air volume. :H- is a variable frequency power supply, 4 is a fan motor, 5 is a fan, 8 is a flow rate control means, 1) is a control device, 16 is an input converter, and 17 is a deviation signal device. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. Figure 4 Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)負荷の要求指令によつて出力周波数が変化する可
変周波数電源によりファンモータを運転し、このファン
モータによつて送出する流体の量を流量制御手段により
制御する流体供給制御方式において、上記ファンモータ
の回転数を流量に応じて段階的に制御し、各段階におけ
る流量の微小変化を上記流量制御手段によつて制御する
ようにしたことを特徴とする流体送出制御方式。
(1) In the fluid supply control method described above, a fan motor is operated by a variable frequency power supply whose output frequency changes according to a load request command, and the amount of fluid sent out by this fan motor is controlled by a flow rate control means. A fluid delivery control system characterized in that the rotational speed of a fan motor is controlled in stages according to the flow rate, and minute changes in the flow rate at each stage are controlled by the flow rate control means.
(2)負荷の要求指令と可変周波数電源への段階的制御
入力との偏差によつて、流量制御手段を制御するように
したことを特徴とする特許請求の範囲第1項記載の流体
送出制御方式。
(2) Fluid delivery control according to claim 1, characterized in that the flow rate control means is controlled based on the deviation between the load request command and the stepwise control input to the variable frequency power source. method.
JP60239057A 1985-10-25 1985-10-25 Fluid delivery control method Pending JPS6299700A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP60239057A JPS6299700A (en) 1985-10-25 1985-10-25 Fluid delivery control method
KR1019860006504A KR900003799B1 (en) 1985-10-25 1986-08-07 Flow rate control system
DE8686114644T DE3677164D1 (en) 1985-10-25 1986-10-22 PRESSURE FLOW CONTROL SYSTEM FOR A DEVICE WITH FLUID INLET AND DRAINAGE.
EP86114644A EP0225996B1 (en) 1985-10-25 1986-10-22 Flow rate control system in fluid supply and drain apparatus
CA000521332A CA1261428A (en) 1985-10-25 1986-10-24 Flow rate control system in fluid supply and drain apparatus
US06/923,090 US4720245A (en) 1985-10-25 1986-10-24 Flow rate control system in fluid supply and drain apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60239057A JPS6299700A (en) 1985-10-25 1985-10-25 Fluid delivery control method

Publications (1)

Publication Number Publication Date
JPS6299700A true JPS6299700A (en) 1987-05-09

Family

ID=17039224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60239057A Pending JPS6299700A (en) 1985-10-25 1985-10-25 Fluid delivery control method

Country Status (1)

Country Link
JP (1) JPS6299700A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60209694A (en) * 1984-04-02 1985-10-22 Mitsubishi Electric Corp Air flow amount control device
JPS6058895B2 (en) * 1979-05-24 1985-12-23 株式会社日本触媒 Method for producing alkylene glycol

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6058895B2 (en) * 1979-05-24 1985-12-23 株式会社日本触媒 Method for producing alkylene glycol
JPS60209694A (en) * 1984-04-02 1985-10-22 Mitsubishi Electric Corp Air flow amount control device

Similar Documents

Publication Publication Date Title
US6353303B1 (en) Control algorithm for induction motor/blower system
US4255089A (en) Method of controlling series fans driving a variable load
JPH0665926B2 (en) Air volume control method
JPS6299700A (en) Fluid delivery control method
JP3174538B2 (en) Furnace pressure control method of combustion furnace
US6353302B1 (en) Speed computation function for induction motor/blower systems control algorithm
JPH02219941A (en) Method for controlling air conditioner
JPH0249983A (en) Capacity control device for compressor
JP3558800B2 (en) Control method of furnace pressure
JPH01179856A (en) Air deliverey rate control device for air conditioner
JPH07143781A (en) Inverter
JPS60104797A (en) Wind quantity control device
JPH0248821B2 (en)
JPH04144A (en) Control of air conditioner
JP2002130185A (en) Control method for blower
JP2521042B2 (en) Speed control system
JP3182624B2 (en) Control device for rotary fluid machinery
JPH04309743A (en) Method of adjusting louver of air conditioner
JPH05236777A (en) Controller for air-conditioner
JPH0387546A (en) Air conditioner
JPH04198649A (en) Inverter with 1/f fluctuation function for air conditioning
JPS6136640A (en) Concentrated discharging system
JPH03156194A (en) Air conditioner
JPS608623A (en) Controller for airflow of boiler
JPH0252776B2 (en)