JPS6299527A - Wear-resistance cutting blade for construction machine and its manufacture - Google Patents

Wear-resistance cutting blade for construction machine and its manufacture

Info

Publication number
JPS6299527A
JPS6299527A JP23546485A JP23546485A JPS6299527A JP S6299527 A JPS6299527 A JP S6299527A JP 23546485 A JP23546485 A JP 23546485A JP 23546485 A JP23546485 A JP 23546485A JP S6299527 A JPS6299527 A JP S6299527A
Authority
JP
Japan
Prior art keywords
cemented carbide
cutting blade
filler metal
wear
brazing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23546485A
Other languages
Japanese (ja)
Other versions
JPH0747857B2 (en
Inventor
Goji Kajiura
豪二 梶浦
Katsutoshi Sakashita
坂下 勝敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP60235464A priority Critical patent/JPH0747857B2/en
Publication of JPS6299527A publication Critical patent/JPS6299527A/en
Publication of JPH0747857B2 publication Critical patent/JPH0747857B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/28Small metalwork for digging elements, e.g. teeth scraper bits
    • E02F9/2808Teeth
    • E02F9/285Teeth characterised by the material used

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Component Parts Of Construction Machinery (AREA)

Abstract

PURPOSE:To prevent the breakage of a cutting blade, enhance the penetrating force of the blade, land lengthen the wear-resistant life of the blade by fitting a superhard alloy into grooves formed in the longitudinal direction of the front face to be worn out of a steel cutting blade and then fixed by brazing. CONSTITUTION:Rectangular or square grooves 3 of a width of 10mm or less are formed in the front face to be worn out 2 of a lipper point 1. A superhard alloy piece 4 formed by sintering tungsten carbode fine particles with 3-30wt% Co, Ni, etc., in an amount of 0.5-100g with 3-50vol% are buried through a heat-resistant thin solder plate 5 having specific hardness and composition in the grooves 3. They are then heated to temperature higher than the melting point of the solder 5 under vacuum or in an inert atmosphere to form the melt of the solder 5 and then slowly cooled to just below the solidifying point of the solder 5 into solid form. Furthermore, cold inert gas is blown onto them to quickly cool to fix the superhard alloy pieces 4 by soldering.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、建設機械用の1酊摩耗性の大きな超硬合金を
り合した鋼製切刃及びその製造法に関するも、のである
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a steel cutting blade made of cemented carbide with high wear resistance for use in construction machinery, and a method for manufacturing the same.

従来の技術 ブルドーザやパワーショベルなどの建設機械では、土工
機装置の先端にリンパポイントやバケットツースと呼ば
れる鋼製の切刃が装着され、岩盤を掘削するのに用いら
れている。例えば、従来用いられているりツバポイント
1の形状は第3図に示すとおりであり、その先端部には
予め摩耗代部分2が設けである。第3図は初期形状を示
すが、摩耗後には破線6で示す位置まで摩耗し、先端が
鈍化する。すなわち、所定−IF耗し、切刃先端が鈍化
した時点で寿命に達する。
Conventional technology Construction machines such as bulldozers and power shovels have steel cutting blades called lymph points and bucket teeth attached to the tip of the earthmoving equipment, and are used to excavate rock. For example, the shape of a conventionally used brim point 1 is as shown in FIG. 3, and a wear allowance portion 2 is provided in advance at its tip. FIG. 3 shows the initial shape, but after wear it wears down to the position indicated by the broken line 6, and the tip becomes blunt. In other words, the life span is reached when the cutting edge has become worn down to a predetermined level and the tip of the cutting edge has become dull.

発明が解決しようとする問題点 近年、機械の大型化に伴がい、これら切刃に加わる負荷
は著しく増加し、また過酷な作業条件下で使用されるた
め、その耐摩耗性不足が問題となっており、切刃先端が
短時間に鈍化して貫入力が低下するという問題がある。
Problems that the invention aims to solve In recent years, as machines have become larger, the load applied to these cutting blades has increased significantly, and as they are used under harsh working conditions, their lack of wear resistance has become a problem. However, there is a problem in that the tip of the cutting edge becomes dull in a short period of time, reducing the penetration force.

特に、ブルドーザのリンパポイントは、硬い岩盤を掘削
するので、摩耗が著しく、極端な場合には1時間足らず
の作業で寿命に至ることもある。
In particular, bulldozer lymph points are subject to significant wear as they excavate through hard rock, and in extreme cases can reach the end of their lifespan after less than an hour of work.

このような過酷な作業においては、切刃先端の温度が6
00〜700℃にも上昇する。従って、焼もどし軟化抵
抗の大きな合金鋼を使用しても、切刃を構成する合金鋼
が変質軟化し、摩耗を促進し、摩耗寿命が短いという問
題があった。
In such harsh work, the temperature at the tip of the cutting edge is 6.
The temperature rises to 00-700°C. Therefore, even if alloy steel with high resistance to temper softening is used, there is a problem that the alloy steel constituting the cutting edge undergoes deterioration and softening, accelerating wear and shortening the wear life.

従来、この軟化を防止する目的で、シリコンや強炭化物
生成傾向元素を多量に添加した焼もどし軟化抵抗の大き
な鋼が開発されてきた。しかしながら、このような対策
も、その効果が発現されるのtよおよそ550℃が限度
であった。一方、これより高温で高い硬さを保持してい
る材料としては、炭化タングステンの微粒子をコバルト
、ニッケル、鉄で結合した超硬合金が知られている。し
かしながら、超硬合金は靭性に乏しく、建設機械用の切
刃に使用した場合には切刃が折損してしまうという問題
があり、実用化されていないのが現状である。
Conventionally, in order to prevent this softening, steels with high resistance to tempering and softening have been developed by adding large amounts of silicon and elements that tend to form strong carbides. However, the effect of such measures is limited to approximately 550°C. On the other hand, as a material that maintains high hardness at higher temperatures, cemented carbide, which is made by bonding fine particles of tungsten carbide with cobalt, nickel, and iron, is known. However, cemented carbide has poor toughness, and when used as a cutting blade for construction machinery, there is a problem in that the cutting blade breaks, so it has not been put to practical use at present.

従って、本発明の目的は、前記したような従来の問題点
を解決し、折損しにくく耐摩耗性に優れた建設機械用の
切刃を提供することにある。
Therefore, an object of the present invention is to solve the above-mentioned conventional problems and provide a cutting blade for construction machinery that is difficult to break and has excellent wear resistance.

本発明の他の目的は、耐摩耗性に優れると共に、自己鈍
利化作用に優れ貫入力が増強しつる切刃及びその製造法
を提供することにある。
Another object of the present invention is to provide a helical cutting blade that is excellent in wear resistance, has a self-blurring effect, and has increased penetration force, and a method for manufacturing the same.

本発明の他の目的は、上記目的と関連して、長期間の耐
摩寿命が得られるように最適に設計された建設機械用の
鋼製切刃及びその製造法を提供することにある。
Another object of the present invention, in conjunction with the above object, is to provide a steel cutting blade for construction machinery that is optimally designed to provide a long wear life, and a method for manufacturing the same.

本発明のさらに他の目的は、上記のような優れた性能を
有する建設機械用切刃に好適な超硬台金、並びに超硬合
金の鋼製切刃へのf111単なるう付けによる複合方法
及びそれに適したろう材を提供することにある。
Still other objects of the present invention are a cemented carbide base metal suitable for cutting blades for construction machinery having excellent performance as described above, a composite method of simply attaching F111 to a steel cutting blade of cemented carbide, and Our goal is to provide brazing filler metals that are suitable for this purpose.

問題点を解決するための手段 前記したような問題点を解決するためには、鋼と比べて
耐摩耗性の者しく大きな超硬合金の急当鉦を切刃の摩耗
代部分の前面部に複合することが有効であることが見い
出された。
Means for Solving the Problems In order to solve the problems mentioned above, we installed a cemented carbide stopper, which has significantly greater wear resistance than steel, on the front surface of the wear area of the cutting edge. It has been found that combining them is effective.

すなわち、本発明は、鋼製切刃の摩耗代部分の前面部に
長手方向に異音形成し、該宥の中に超硬合曾金埋め込ん
でろう付けされ7’(尉)詠耗住に操れた建設機械用の
!M表切刃を提供するものである。
That is, in the present invention, an abnormal sound is formed in the longitudinal direction on the front surface of the wear portion of the steel cutting blade, and a carbide alloy is embedded in the hole and brazed to the 7' (long) wear housing. For controllable construction machinery! It provides an M surface cutting edge.

ここで吠閘する超硬台金としては、超硬粒子を3〜30
車、、Iiiφの金属結合相で焼結したものが好ましく
、またその鋼製切刃の摩耗代部分への抜合量は3〜50
体槓%の範囲が好ましい。
The cemented carbide base metal used here includes 3 to 30 carbide particles.
It is preferable to use a metal bonding phase sintered with a metal bonding phase of 3 to 50 mm.
A range of % body weight is preferred.

さらに、上記溝の断面形状は、溝加工性、超硬合金のマ
クロ破砕防止、及びろう材接合部の破壊防止の見地から
、巾tOW以下の長方形又は正方形であることが好まし
い。
Further, the cross-sectional shape of the groove is preferably rectangular or square with a width tOW or less from the viewpoint of groove machinability, prevention of macro-fracture of the cemented carbide, and prevention of destruction of the brazing material joint.

このよう々ろう付は法による超硬付合複合切刃の!18
i造法としては、本発明に従って、鋼製切刃の摩耗代部
分の前面部に長平方向に溝を形成し、超鋼合金片を薄板
状ろう材を介在させて上記溝に装着し、この装着物を真
空もしくは不活性社団気中でろう材の融点以上に加熱し
て超硬合金と鋼との間にろう材の融液を形成し、次いで
ろう材の凝固温度直下まで徐冷してろう材を凝固させた
のち、冷たい不活性ガスを吹きつけて急冷する方法が最
適である。
In this way, brazing is done using carbide composite cutting blades! 18
In accordance with the present invention, the i-manufacturing method involves forming a groove in the elongated direction on the front surface of the wear portion of the steel cutting blade, and attaching a cemented carbide alloy piece to the groove with a thin brazing filler metal interposed therebetween. The attachment is heated in a vacuum or in an inert atmosphere above the melting point of the filler metal to form a melt of the filler metal between the cemented carbide and the steel, and then gradually cooled to just below the solidification temperature of the filler metal. The best method is to solidify the brazing filler metal and then rapidly cool it by blowing cold inert gas onto it.

発明の作用及び態様 先に説明したように、例えば@3図に示すようなりツバ
ポイントなど“の先端には予め摩耗代部分が設けてあり
、本発明では、このような鋼製切刃の摩耗代部分に超硬
合金を複合するものであって、これにより顕著な耐摩耗
性が得られる。
Effects and aspects of the invention As explained above, a wear allowance is provided in advance at the tip of the flange point as shown in Fig. The replacement portion is made of cemented carbide, which provides outstanding wear resistance.

超硬合金を鋼製切刃に独合する方法としては、超硬合金
と鋼をろう付けすることが最も簡単である。この場合、
超硬合金は薄板状のろう材を介在させてろう付けされる
が、その位置決めの精度、露出量の減少並びに接合強度
の増加の目的で、鋼製切刃、例えば第1図に示すリンパ
ポイント1の摩耗代部分2の前面部に長平方向に溝3を
形成し、この溝3の中に超硬合金片4を入れ、ろう材5
によりろう付けする。このように負荷の大きな前面部に
ろう付けすることによって、超硬合金の体積率が少なく
でき、しかも士p KIthI′摩耗性が改善されると
共に、後面部との耐間粍性に差をつけることによって、
すなわ゛ち後面部の卑゛粍が早いために使用するにつれ
て摩耗代部分が鋭利となる自己鋭利化作用が発現し、貫
入力を持続することができる。また、超硬台金は鋼と比
べておよそ25〜3倍の弾性率を持つため、掘削作業に
おいて51fI4製母材より大きな応力が発生し、脆性
傾向の大きな超硬合金が欠損することがある。これを防
止するためには、超硬合金を0.5〜100yの小片と
して前記溝に複数個ろう付けすることが有効である。こ
うすることによって軟質のろう材層による応力緩和が実
現され、また1つの超硬合金片に亀裂が発生しても他の
小片への亀裂伝播を阻止することができる。
The easiest way to integrate cemented carbide into a steel cutting blade is to braze the cemented carbide and steel. in this case,
Cemented carbide is brazed with a thin plate of filler metal interposed, but in order to improve positioning accuracy, reduce exposure, and increase joint strength, a steel cutting blade, such as the lymph point shown in Figure 1, is used. A groove 3 is formed in the longitudinal direction on the front face of the wear allowance portion 2 of 1, a piece of cemented carbide 4 is inserted into this groove 3, and a brazing filler metal 5 is formed.
Braze by. By brazing the front part, which is subjected to a large load, the volume fraction of cemented carbide can be reduced, and the wear resistance is improved, and the wear resistance is different from that of the rear part. By this,
In other words, since the rear surface deteriorates quickly, a self-sharpening effect occurs in which the wear margin becomes sharper as it is used, and the penetration force can be maintained. In addition, since cemented carbide base metal has an elastic modulus approximately 25 to 3 times that of steel, greater stress is generated during excavation work than that of the 51fI4 base metal, which may cause fractures in the cemented carbide, which has a strong tendency to be brittle. . In order to prevent this, it is effective to braze a plurality of pieces of cemented carbide into the groove in the form of small pieces of 0.5 to 100 y. By doing this, stress relaxation is realized by the soft brazing material layer, and even if a crack occurs in one piece of cemented carbide, it is possible to prevent the crack from propagating to other pieces.

鋼製切刃に設ける溝の断面形状は、溝加工の容易さ及び
超硬合金塊の成形の各易さの観点から、正方形ないし長
方形が有効であり、この溝に、好ましくは前記したよう
に長さ方向に幾つかに分割された超硬合金の小塊の検数
が、あるいは場合によっては溝の全長にわたって1つの
塊状体が、埋め込まれろう付けされる。このように超硬
合金を複合した切刃は、従来の鋼製切刃に比べて約2倍
の耐摩耗性を有する。しかし、超硬合金をろう付けする
溝の寸法形状が適正でない場合には、例えば硬質岩盤を
掘削した場合には、超硬合金のマクロ破砕あるいはろう
付は部分の破壊により、超硬合金が切刃から脱落し。
The cross-sectional shape of the groove provided in the steel cutting blade is preferably square or rectangular from the viewpoint of ease of groove machining and ease of forming the cemented carbide ingot. A number of cemented carbide nodules, which are divided into several lengthwise sections, or, if appropriate, one mass over the entire length of the groove, are embedded and soldered. A cutting blade made of cemented carbide in this way has approximately twice the wear resistance as compared to a conventional steel cutting blade. However, if the size and shape of the groove to which the cemented carbide is brazed is not appropriate, for example when hard rock is excavated, macro-fracture of the cemented carbide or brazing may cause the cemented carbide to be cut due to fracture of the part. It fell off the blade.

むしろ鋼単味の切刃よりも耐摩耗性が低くなるという問
題が生じ、超硬合金をろう付けする溝の幅が広くなる程
著しいことが判明した。このような超硬合金のマクロ破
砕及びろう材接合部の破壊は、溝の@を1o■以下にす
ることによってほぼ防止でき、優れた耐摩耗性が得られ
る。
In fact, it has been found that the wear resistance is lower than that of a single steel cutting edge, and this problem becomes more pronounced as the width of the groove into which the cemented carbide is brazed becomes wider. Such macro-fractures of the cemented carbide and destruction of the brazing material joints can be almost prevented by making the @ of the grooves 1° or less, and excellent wear resistance can be obtained.

第4図は、前記の溝3に超硬合金4をろう付けしたもの
により岩盤を掘削作業した時の状態をモデル的に示した
ものである。超硬合金塊に作用する力で最も大きなもの
は、先端の角部に加わる力l・゛であり、 Fユf−W で表わされる。ここで、fは先端角部の単位畏さ当りに
加わる力、tVは溝3の幅である。
FIG. 4 is a model showing the state in which rock is excavated using the groove 3 in which the cemented carbide 4 is brazed. The largest force acting on the cemented carbide lump is the force l·゛ applied to the corner of the tip, which is expressed as F-W. Here, f is the force applied per unit height of the tip corner, and tV is the width of the groove 3.

従って、Fの溝長手方向との角度をθとすると、超硬合
金4をろう付は部分でせん断させようとする力は Fcosθ= f −W cosθ となる。
Therefore, if the angle between F and the longitudinal direction of the groove is θ, the force that tends to shear the cemented carbide 4 at the brazed portion is Fcosθ=f−Wcosθ.

一方、超硬合金を切刃にろう付けしている部分の面BS
は、超硬合金の長さをり、高さをHとすると 5=tI/・L+211L である。
On the other hand, the surface BS of the part where the cemented carbide is brazed to the cutting edge
is the length of the cemented carbide and the height is H, then 5=tI/·L+211L.

従って、ろう付は部分のせん断応力τはとなる。Therefore, the shear stress τ of the brazed portion becomes τ.

上′、4e(1)式から明らかなように、せん断応カτ
はHが大きい程、またWが小きい程小さくなり。
As is clear from equation 4e(1) above, the shear stress τ
becomes smaller as H becomes larger and as W becomes smaller.

ろう付は部分の破壊は起りにくくなる。しかし、実用的
観点からは、切刃の耐折損性を確保するためには、Hを
いくらでも大きくするというわけには行かない。従って
、ろう付は部分の破壊を防止するためには、#!p幅I
P’を小さくし、溝の本数を増すことによって、切刃の
摩耗代部分における超硬合金の体積分率を確保するのが
有効である。これは、後述するように、ろう材のせん断
強度は最大でも約30 k? / mytiの水準にあ
り、切刃母材、超硬合金の各せん断強度と比べて著しく
低いからである。
Brazing makes parts less likely to break. However, from a practical point of view, in order to ensure breakage resistance of the cutting edge, H cannot be increased arbitrarily. Therefore, brazing is #! in order to prevent parts from breaking. p width I
It is effective to secure the volume fraction of the cemented carbide in the wear area of the cutting edge by decreasing P' and increasing the number of grooves. This means that, as will be explained later, the shear strength of the brazing filler metal is approximately 30 k at maximum. / myti, which is significantly lower than the respective shear strengths of the cutting blade base material and cemented carbide.

#幅Wが大きいことによる不利益は、超硬合金のマクロ
破砕を促進することである。脆性材料である超硬合金は
亀裂が進展し易いため、IVが大きいと亀裂がn@を横
断し、大きな塊りで脱落し易くなる。
#The disadvantage of having a large width W is that it promotes macrofracture of the cemented carbide. Cemented carbide, which is a brittle material, is prone to crack propagation, so if IV is large, cracks will cross n@, and large chunks will likely fall off.

しかし、上記の解析は定性的であって、溝の幅Wの限界
値を決定するものではない。現実の岩盤掘削作業は複雑
であり、パラメータf、θは実際上計測困難である。ま
た、超硬合金の長さLも摩耗と共に変化する。従って、
溝幅Wの最適値は、これらの耐岸耗性切刃が必要とされ
る大型建設機械の硬岩盤掘削試験によって決定しなくて
はならない。そこで、後述する実施例2に示すように、
世界最大級のブルドーザである小松製作所要D455ブ
ルドーザを用いて掘削試験を行なった結果、溝幅WはI
O+a+以下が有効であることが明らかになった。
However, the above analysis is qualitative and does not determine the limit value of the groove width W. Actual rock excavation work is complicated, and parameters f and θ are difficult to measure in practice. Further, the length L of the cemented carbide also changes with wear. Therefore,
The optimum value of the groove width W must be determined by hard rock excavation tests for large construction machines that require these bank wear-resistant cutting edges. Therefore, as shown in Example 2 described later,
As a result of an excavation test using Komatsu's D455 bulldozer, one of the largest bulldozers in the world, the trench width W was I
It has become clear that O+a+ or lower is effective.

ろう付けの方法としては、前記のように鋼製切片の摩耗
代部分2の前面部に長手方向に予め形成された溝3に、
好ましくは後述するような組成及び硬さを持った薄板状
のろう材5を介在させて超硬合金片4を装看し、これを
真空もしくは不活性雰囲気中でろう材の融点以上に加険
して超硬合金と鋼との間にろう材の融液を形成し、次い
で冷却してろう材を凝固させる通常のろう付けを行なう
。これKよって、耐熱性と強度を備えたろう付は継手が
得られる。この場合、ろう付は温度はおよそ1000℃
以上になり1通常のろう付は方法では鋼の母材硬さが/
/RC25以下に低下し、掘削作業で切刃が変形するこ
とがある。この問題を防止するためには、鋼に例えばS
KD  6Jなどの焼入性の大きな材料を選定すると共
に、ろう材の凝固「直下の温度まで徐冷し、ろう材の凝
固直下の温度から冷たい不活性ガスを吹きつける方法に
よって冷却速度を大きくすることが有効であり、こうす
ることによって、母材の方が焼入れされることになり、
鋼の硬さをHac30以上にすることが可能となる。
As for the brazing method, as mentioned above, a groove 3 formed in the longitudinal direction on the front surface of the wear allowance part 2 of the steel section is used.
Preferably, a cemented carbide piece 4 is mounted with a thin plate-shaped brazing filler metal 5 having a composition and hardness as described later interposed therebetween, and the cemented carbide piece 4 is heated to a temperature higher than the melting point of the brazing filler metal in a vacuum or an inert atmosphere. Normal brazing is performed by forming a melt of the filler metal between the cemented carbide and the steel, and then cooling to solidify the filler metal. As a result, a brazed joint with heat resistance and strength can be obtained. In this case, the brazing temperature is approximately 1000℃
1 In the normal brazing method, the hardness of the steel base material is /
/RC25 or less, and the cutting edge may become deformed during excavation work. To prevent this problem, it is necessary to use steel such as S
In addition to selecting a material with high hardenability such as KD 6J, the cooling rate is increased by gradually cooling the filler metal to a temperature just below the solidification temperature and then blowing cold inert gas from the temperature just below the solidification temperature of the filler metal. This is effective, and by doing this, the base material will be quenched,
It becomes possible to increase the hardness of steel to Hac30 or higher.

鋼製切刃の摩耗代部分への超硬合金の複合量は3〜50
体積チが好ましい。超硬合金の含有量が3体積−以下で
は耐摩耗性の効果は小さく、また50体積チ以上では折
損に対する抵抗が小さいので好ましくない。
The amount of cemented carbide added to the wear portion of the steel cutting edge is 3 to 50.
Volume 1 is preferred. If the content of cemented carbide is less than 3 volumes, the wear resistance effect will be small, and if it is more than 50 volumes, the resistance to breakage will be low, which is not preferable.

また、超硬合金としては、炭化タングステン微粒子′t
−3〜30重量%のコバルト、ニッケル、鉄あるいはこ
れらの合金で焼結した超硬合金が最適である。超硬合金
の結合金槙相の索が少ない程耐摩耗性は大きいが、3重
is以下では脆弱になり、欠損し易くなる。一方、30
重量%以上では#f摩耗性の改善効果が小さいので好ま
しくない。
In addition, as a cemented carbide, tungsten carbide fine particles't
A cemented carbide sintered with -3 to 30% by weight of cobalt, nickel, iron, or an alloy thereof is optimal. The fewer the number of bonded metal-layer fibers in the cemented carbide, the greater the wear resistance, but if it is less than 3 layers, it becomes brittle and easily breaks. On the other hand, 30
If it exceeds #f by weight, the effect of improving the abrasion properties will be small, which is not preferable.

上記超硬合金の鋼中の体積率及び超硬合金の結合金執相
の量が耐摩耗性に及ぼす影舎を、試験例を示して説明す
る。
The effects of the volume fraction of the cemented carbide in the steel and the amount of the cemented carbide interlayer on the wear resistance will be explained using test examples.

試験例 切刃の作業現場における耐摩耗性の精度の良い測定は、
岩盤の性状が一定にならないため困難である。そこで、
切刃の摩耗をモデル化したガウジング摩耗試験によって
耐摩耗試験を行なつた。
Test example Accurate measurement of the wear resistance of cutting blades at work sites is
This is difficult because the properties of the bedrock are not constant. Therefore,
A wear resistance test was conducted using a gouging wear test that modeled cutting edge wear.

渠5 i¥Iは、切刃の摩耗代部分に相当する超硬合金
を含有した釧試験片を示し、硬さノアRC50に熱処理
した直径10醜の5KD6J鋼棒7に、3%、10%及
び30%のコバルトで炭化タングステン微粒子を焼結し
た超硬合金製の棒gを種々の体積率となるように貫入し
た。超硬合金の体積率は、その直径及び貫入本数により
変化させた。例えば、直径4關の超硬合金製棒を2本貫
入した場合には32体積チに相当する。また、Huc 
50の5KD61鋼は、従来の切刃とほぼ同じ耐摩耗性
を有する。
5 i¥I indicates a test piece containing cemented carbide corresponding to the wear allowance of the cutting edge, and 5KD6J steel bar 7 with a diameter of 10 mm was heat treated to hardness Noah RC50, and 3% and 10% were added. A rod g made of cemented carbide made of tungsten carbide fine particles sintered with 30% cobalt was penetrated at various volume percentages. The volume fraction of the cemented carbide was varied depending on its diameter and the number of penetrations. For example, if two cemented carbide rods with a diameter of 4 mm are penetrated, this corresponds to 32 volume squares. Also, Huc
50's 5KD61 steel has about the same wear resistance as conventional cutting edges.

ガウジング摩耗試験装置の概略を第6図に示す。周速+
35m1分で回転する粒度24、結合度l?のSiCI
Jビトリファイド砥石9に試験片10を面圧52 k内
で押しつけ、その摩耗体積から耐摩耗性を評価する。
Figure 6 shows an outline of the gouging wear test device. Circumferential speed +
35m Rotates in 1 minute Particle size 24, Cohesion degree l? SiCI of
The test piece 10 is pressed against the J vitrified grindstone 9 under a surface pressure of 52 k, and the wear resistance is evaluated from the wear volume.

この方法は、切刃の摩耗状況をよく再現することが確認
・されており、また前記条件では鋼の!耗面温度がおよ
そ700℃になることが予め測定されている。
This method has been confirmed to reproduce the wear condition of the cutting edge well, and under the above conditions, it has been confirmed that this method can reproduce the wear condition of the cutting edge well. It has been previously measured that the wear surface temperature is approximately 700°C.

上記)J粍試験の結果を第7図及び第8図に示す。第7
図に示されるように、摩耗量比(5KI)61鋼のAn
耗量を1としたときの摩耗量)と超硬合金の含有量とは
、単純な線型関係にならないことが明らかになった。す
なわち、超硬合金3体tA%以上で明らかな摩耗量の減
少効果がみられ、摩耗量は20〜30体積チまで急速に
減少する。しかしながら、50体積チ以上では摩耗量の
減少傾向は少なくなる。さらに、耐摩耗性の改善効果は
超硬合金の結合金属相の量にも大きく影弄され、コバル
ト量が22重童チのものは6〜1Si址慢のものと比べ
効果がかなり少なくなることがわかった(第8図参照)
The results of the J-ring test (above) are shown in FIGS. 7 and 8. 7th
As shown in the figure, the wear ratio (5KI) of An
It has become clear that there is no simple linear relationship between the amount of wear (when the amount of wear is taken as 1) and the content of cemented carbide. That is, a clear effect of reducing the amount of wear is seen when the three cemented carbide alloys exceed tA%, and the amount of wear rapidly decreases up to 20 to 30 volume. However, at 50 volume squares or more, the tendency for the amount of wear to decrease decreases. Furthermore, the effect of improving wear resistance is greatly affected by the amount of the binder metal phase in the cemented carbide, and those with a cobalt content of 22 layers are significantly less effective than those with a 6 to 1 Si layer. (See Figure 8)
.

実施例 以下、添付図面に示す実施例を説明しつつ、本発明につ
いて具体的に説明する。
EXAMPLES Hereinafter, the present invention will be specifically explained by explaining examples shown in the accompanying drawings.

実施例 1 第1図に示すように、5KI) 61鋼製のリンパポイ
ント1の摩耗代部分2の前面部に幅5簡、深さ9m+、
長さ102閣の#3を7本形成し、この溝3の中に、第
2図に示すように、厚さ4,7喘、幅& 6 wm 、
長さ255m+の超硬合金片4を28個埋め込み、ろう
材5により真空ろう付けし、次いでろう付は後の冷却過
程で液化窒素を気化させた窒素ガスを吹きつけることに
よって端部分を焼入硬化した。
Example 1 As shown in Fig. 1, the front part of the wear allowance part 2 of the lymph point 1 made of 5KI) 61 steel has a width of 5 strips, a depth of 9 m+,
Form 7 #3 grooves with a length of 102 cm, and in this groove 3, as shown in Figure 2, have a thickness of 4.7 mm, a width of &6 mm,
28 cemented carbide pieces 4 with a length of 255 m+ are embedded and vacuum brazed with a brazing filler metal 5, and then the end portions are hardened by blowing nitrogen gas made from vaporized liquefied nitrogen during the brazing process. Hardened.

超硬合金を鋼製切刃にろう付けする場合、ろう材として
は耐熱性の高いものが望ましい。
When brazing cemented carbide to a steel cutting blade, it is desirable to use a brazing material with high heat resistance.

超硬合金と鋼のろう付は用ろう材としては、切削工具な
どでは銀ろうや黄銅ろうを用いるのが一般的である。し
かし、建設機械用切刃は、前記したように作業の際に切
刃先端の温度が600〜700℃にも上昇し、かつ大き
な応力を発生するために、これらの一般的ろう材では耐
熱性と強度の点で不十分である。また、高温用ろう材と
しては、純銅ろうやNi −Mn 共晶ろうも知られて
いるが、前者は強度が低く、鋼の粒界を侵食することが
明らかになり、また後者は超硬合金を侵食することが明
らかになった。
When brazing cemented carbide and steel, silver solder or brass solder is generally used for cutting tools and the like. However, as mentioned above, when cutting blades for construction machinery are used, the temperature at the tip of the cutting blade rises to 600 to 700 degrees Celsius during work, and large stresses are generated, so these general brazing materials have poor heat resistance. and is insufficient in terms of strength. In addition, pure copper solder and Ni-Mn eutectic solder are also known as high-temperature brazing fillers, but it has been revealed that the former has low strength and corrodes the grain boundaries of steel, and the latter is used for cemented carbide. It has become clear that it is eroding.

本発明者らは、このような問題を解決すべく研究を行な
った結果、以下のようなろう材が建設機械用切刃に超硬
合金をろう付けする場合に最適であることを見い出した
The present inventors conducted research to solve such problems and found that the following brazing filler metal is optimal for brazing cemented carbide to cutting blades for construction machinery.

第9図に超硬合金と鋼を純銅でろう付けした接合部の断
面のミクロ組織を、第10図に超硬合金と鋼をCu−2
2Mn −I 0co−9Niろう材でろう付けした接
合部の断面のミクロ組織を示す。また、銅合金系のろう
材の硬さに対するSi  添加量の影響を第11図に、
また第13図に示すせん断強度測定法に従って測定した
超硬合金と鋼のろう接合強度とろう材の硬度の関係を第
12図に示す。なお、上記せん断強度測定法を模式的に
示す第13図において、Pは荷重、11は超硬合金、1
2は上記超硬合金の両側部にろう付けされた鋼、13は
受は台を示す。
Figure 9 shows the microstructure of the cross section of the joint where cemented carbide and steel are brazed with pure copper, and Figure 10 shows the microstructure of the joint where cemented carbide and steel are brazed with Cu-2.
The microstructure of a cross section of a joint brazed with 2Mn-I0co-9Ni brazing material is shown. In addition, Fig. 11 shows the effect of Si addition amount on the hardness of copper alloy brazing filler metal.
Further, FIG. 12 shows the relationship between the brazing strength of cemented carbide and steel and the hardness of the brazing metal, measured according to the shear strength measurement method shown in FIG. 13. In addition, in FIG. 13 schematically showing the above shear strength measurement method, P is load, 11 is cemented carbide, 1 is
Reference numeral 2 indicates steel brazed to both sides of the cemented carbide, and reference numeral 13 indicates a stand.

本発明に係るろう材もCu、を基本としたろう材である
が、純CTLでは鋼の結晶粒界を侵食すると共にせん断
強度が小さいという前記したような問題がある(第9図
参照)。Ni及びl「ルはこのような鋼の粒界侵食を防
止し、さらにMnはろう材と鋼の界面に固溶体相を形成
し、ろう材と鋼の「ぬれ性」を改善する効果のあること
がわかった(第10図参照)。
The brazing material according to the present invention is also a brazing material based on Cu, but pure CTL has the above-mentioned problem that it erodes the grain boundaries of steel and has low shear strength (see FIG. 9). Ni and L have the effect of preventing such grain boundary erosion of steel, and furthermore, Mn forms a solid solution phase at the interface between the brazing metal and steel and improving the "wettability" of the brazing metal and steel. was found (see Figure 10).

また、Coはろう材の硬さを増加させると共に、超硬合
金とろう材の界面に固溶体相を形成させる働きがあり、
超硬合金との「ぬれ性」を改善することがわかった。
In addition, Co has the function of increasing the hardness of the brazing filler metal and forming a solid solution phase at the interface between the cemented carbide and the brazing filler metal.
It was found that the "wettability" with cemented carbide was improved.

また、Siはろう材の硬さを増加させる効果が大さく、
硬さは第11図に示すようにSilil量%添加により
HV 25〜35に囚増加することがわかつfc。
In addition, Si has a large effect of increasing the hardness of the brazing filler metal,
As shown in FIG. 11, it can be seen that the hardness increases from HV 25 to 35 by adding % Silil.

一方、建設機械の切刃用ろう材としては、耐熱性の観点
からろう材の液相生成温度が950℃以上であることが
望ましく、ま九1150℃を越えると鋼の結晶粒が粗大
化し、母材強度を下げるので1150℃以下が望ましい
On the other hand, as a brazing filler metal for cutting blades of construction machinery, it is desirable that the liquid phase formation temperature of the filler metal is 950°C or higher from the viewpoint of heat resistance.If the temperature exceeds 1150°C, the crystal grains of the steel will become coarse. The temperature is preferably 1150°C or lower since it lowers the strength of the base material.

AIn 、 Stは液相生成温度を下げ、Ni、Co 
 は上昇させるので、ろう材の液相生成温度i 950
〜1150℃の範囲にするためには、これら合金元素の
組合せ及びその組成範囲には限界がある。
AIn, St lowers the liquid phase formation temperature, and Ni, Co
increases, so the liquid phase formation temperature of the brazing filler metal i 950
In order to achieve a temperature in the range of ~1150°C, there are limits to the combinations of these alloying elements and their composition ranges.

また、ろう材の硬さはCo量とSt量、特にSt量に強
く依存するが、継手のせん断強度と硬さの間には直線関
係はみられないことがわかった。
It was also found that although the hardness of the brazing filler metal strongly depends on the Co content and the St content, especially the St content, there is no linear relationship between the shear strength and hardness of the joint.

すなわち、継手のせん断強度は、第12図に示すように
、硬さBV150までは硬さと共に増加するが、これ以
上では低下し、特に硬さ#V2O0以上では脆性的な破
壊状態となる。したがって、Co量特にSt量にはせん
断強度の点で上限がある。
That is, as shown in FIG. 12, the shear strength of the joint increases with hardness up to a hardness of BV150, but decreases above this, and in particular, when the hardness is #V2O0 or higher, it becomes a brittle fracture state. Therefore, there is an upper limit to the amount of Co, especially the amount of St, in terms of shear strength.

本発明に最適なろう材の組成範囲は、このような合金元
素の特徴を踏まえて総合的に決定されたもノテ、CTL
−Ni−Si系では2〜10%Ni、好ましくは5〜1
0チNi、1〜8%Si;Cu−Mn −Ni−Si系
ではl O〜25 %Mn、 5〜I O%Ni11〜
3%SL;またはCu −un−Ni −Co −Si
系ではI 5〜30 %Mn、  5〜I 0%Ni、
5〜IO%Co、0.5〜1.5%Siが適当である。
The optimum composition range of the brazing filler metal for the present invention is determined comprehensively based on the characteristics of such alloying elements.
-Ni-Si system: 2-10% Ni, preferably 5-1
0% Ni, 1~8%Si; Cu-Mn-Ni-Si system: lO~25%Mn, 5~IO%Ni11~
3%SL; or Cu-un-Ni-Co-Si
In the system, I 5-30%Mn, 5-I 0%Ni,
5 to IO% Co and 0.5 to 1.5% Si are suitable.

また、ろう材の硬さは第12図からビッカース硬さ約7
5〜200ψ−1より好ましくは100〜200唱−の
範囲が好ましい。
Also, the hardness of the brazing filler metal is approximately 7 Vickers hardness from Figure 12.
The range of 100 to 200 psi is more preferable than 5 to 200 ψ.

実施例 2 037%C,0,68%SL、1,09%M n 、 
0.93係Cr、1.03 % JIio、 0.51
%V1残部Ftから成る鋼を熱間鍛造し、リッパポイン
トを製作した。
Example 2 037%C, 0.68%SL, 1.09%Mn,
0.93 Cr, 1.03% JIio, 0.51
A ripper point was manufactured by hot forging steel consisting of %V1 balance Ft.

次に焼鈍後、機械加工によって各リッパポイントの壓耗
代部分の前面部に、第1図に示すようVて、各種断面寸
法の芯を長手方向に形成した。
Next, after annealing, cores with various cross-sectional dimensions were formed in the longitudinal direction on the front surface of the wear portion of each ripper point, as shown in FIG. 1, by machining.

溝の断面形状は長刀プしでめり、溝部分の体積が元のリ
ンパポイントの摩耗代部分の体積の15〜20%となる
ように溝の本数を満節した。この溝部分にW C−14
%Coの組成を持つ超硬合金’−を埋め込み、CL−N
i−Siろう刊で真空ろう付けし、次いでろう付は後の
冷@I過程で液化窒素を気化させた窒素ガスを吹きつけ
ることによって網部分を焼入硬化し、硬さを1iac 
5 Qに調整した。
The cross-sectional shape of the grooves was cut using a long knife, and the number of grooves was increased to the maximum so that the volume of the groove portion was 15 to 20% of the volume of the worn portion of the original lymph point. W C-14 in this groove part
Cemented carbide with a composition of %Co is embedded, CL-N
Vacuum brazing is performed using an i-Si brazing machine, and then during the brazing process, the mesh part is quenched and hardened by blowing nitrogen gas made by vaporizing liquefied nitrogen, and the hardness is reduced to 1 iac.
Adjusted to 5 Q.

このようにして製作したりソバポイントを小松製作所製
大型ブルドーザI)z55に装着し、岩盤の掘削試験を
実施し、耐摩耗性、超硬合金の脱落程度及びリッパポイ
ントの岩盤への貫入深さを評価した。テストを行なった
岩盤は弾性波伝播速度2200 m、Aec、岩負はチ
ャートで、最も硬い岩盤に属する。
The Soba Point manufactured in this way was installed on a large bulldozer I)z55 made by Komatsu Ltd., and a rock excavation test was conducted to evaluate the wear resistance, the extent to which the cemented carbide fell off, and the depth of penetration of the ripper point into the rock. was evaluated. The rock mass tested was chert with an elastic wave propagation velocity of 2200 m, Aec, and rock density, which is among the hardest rock mass.

性能評価は溝の断面形状を変化させて行なったが、比較
のために超硬合金を全く複合しない鋼単味のりツバポイ
ントもテストした。その結果を下記表−1に示す。
The performance evaluation was performed by changing the cross-sectional shape of the groove, but for comparison, we also tested a plain steel laminated point without any cemented carbide composite. The results are shown in Table 1 below.

以下余白 表−1から明らかなように、溝幅Wが101の場合には
超硬合金のマクロ破砕及びろう付は部分の破壊によって
超硬合金の脱落が一部生じているが、耐摩耗性、貫入深
さの改善効果がまた保持されている。しかし、溝幅Wを
20mとすると、ろう付は部分が破壊し、超硬合金が脱
落し、改善効果はみられない。溝幅Wが6慎及びByで
はろう付は部分の破壊、超硬合金の脱落はごく少なく、
優れた改善効果が得られた。
As is clear from Margin Table 1 below, when the groove width W is 101, some of the cemented carbide falls off due to macro-fracture and brazing of the cemented carbide, but the wear resistance is , the improvement effect on penetration depth is also maintained. However, when the groove width W is set to 20 m, the brazing part breaks, the cemented carbide falls off, and no improvement effect is seen. When the groove width W is 6mm and By, the brazing causes only a few parts to break and the cemented carbide to fall off is very rare.
Excellent improvement effects were obtained.

発明の効果 以上のように、本発明に係る建設機械用耐摩耗切刃は、
鋼製切刃の摩耗代部分の前面部に長手方向に溝を形成し
、この溝の中に超硬合金を埋め込んでろう付けしたもの
であるため、−耐摩耗性に優れ折損しにくいという基本
的効果を有すると共に、後面部との耐摩耗性に差をつけ
ることになって、使用につれて自己鋭利化作用が発現し
て摩耗代部分が鋭利となり1貫入力を持続することがで
きるという利点が得られ、またこの溝に複数個の超硬合
金片をろう付けすることによって、掘削作業において鋼
製母材よりも大きな応力が超硬合金に発生しても、軟質
のろう材層による応力緩和によって超硬合金の欠損が防
止され、またたとえ超硬合金片の1つに亀裂が発生して
も他の小片への亀裂伝播が阻止され、さらに溝へのろう
付けによるため超硬合金の位置決めの精度がよくなり、
露出量も減少でき、さらに接合強度も増加するという利
点が得られる。
Effects of the Invention As described above, the wear-resistant cutting blade for construction machinery according to the present invention has the following advantages:
A groove is formed in the longitudinal direction on the front surface of the wear area of the steel cutting blade, and cemented carbide is embedded in this groove and brazed to it, so it has excellent wear resistance and is difficult to break. This has the advantage that it has a different wear resistance from the rear part, and as it is used, a self-sharpening effect develops and the wear margin becomes sharper, making it possible to sustain one penetration force. By brazing multiple pieces of cemented carbide into this groove, even if greater stress is generated in the cemented carbide than in the steel base material during excavation work, the soft brazing material layer can relieve the stress. This prevents chipping of the cemented carbide, and even if a crack occurs in one of the cemented carbide pieces, it prevents the crack from propagating to other pieces, and furthermore, the brazing into the groove prevents the cemented carbide from being positioned. The accuracy of
The advantage is that the amount of exposure can be reduced and the bonding strength can also be increased.

また、上記溝の幅を10闇以下にすることによって、脆
性破壊し易い超硬合金の欠点を補い、かつせん断強度の
低いろう材部分のせん断破壊を少なくすることができる
。この結果、従来の鋼製切刃と比べて1.5倍以上の耐
摩寿命が得られ、さらに摩耗が進行した段階でも硬い岩
盤に対する優れた買入力が得られる。
Further, by setting the width of the groove to 10 mm or less, it is possible to compensate for the drawback of cemented carbide which is prone to brittle fracture, and to reduce shear fracture in the brazing material portion having low shear strength. As a result, the wear life is more than 1.5 times longer than that of conventional steel cutting blades, and even in the advanced stage of wear, excellent purchasing power against hard rock can be obtained.

このような特性を備えかつ鋼製部分の硬さがJlnc 
3 Q以上の超硬合金複合切刃は、本発明の方法によっ
て簡便に得ることができる。また、前記したような最適
のろう材を用いることによって、鋼製部分と超硬合金と
のろう付は継手部が耐熱性と強度とを兼ね備え、得られ
た超硬台   □全複合切刃は上記特性全十分に発揮で
きるという利点がある。
With these characteristics and the hardness of the steel parts, Jlnc
A cemented carbide composite cutting edge of 3 Q or more can be easily obtained by the method of the present invention. In addition, by using the optimal brazing filler metal as described above, the joint part has both heat resistance and strength when brazing the steel part and the cemented carbide. It has the advantage of fully exhibiting all of the above characteristics.

近年、土木開発の進行と共に硬い岩盤を破壊する必要性
が増している。これら作業地の多くは住宅地と接近して
いるために、発破を使用することができず、建設機械に
よって岩盤掘削をする必要がある。本発明は、このよう
な作業機において大きな問題となっていた切刃の寿命と
   □作業性を大幅に改善するもので、工業上極めて
   □有効である。
In recent years, with the progress of civil engineering development, the need to destroy hard rock has increased. Many of these work sites are located close to residential areas, so blasting cannot be used and it is necessary to excavate the rock using construction machinery. The present invention greatly improves the life span and workability of cutting edges, which have been major problems in such working machines, and is extremely effective in industry.

なお、前記実施例においてはブルドーザ用リッパポイン
トに関して有効性を示したが、本発明はこの他ブルドー
ザやモータグレーダのカッティングエッヂ、パワーショ
ベル、ブルドーザ、   □ホイルローダのパケットツ
ースなどに同様に適用できることはいうまでもない。
Although the above-mentioned embodiments have shown the effectiveness with respect to ripper points for bulldozers, the present invention can be similarly applied to cutting edges of bulldozers and motor graders, power shovels, bulldozers, packet teeth of wheel loaders, etc. Not even.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明をリンパポイントに適用した一実施例を
示す斜視図、第2図は第1図のn−II線断面図、第3
図は従来のリッパポイントの斜視図、第4図は超硬合金
複合切刃の岩盤掘削作業時の状態を示す模式図、第5図
はガウジング摩耗試験に供した試験片の部分斜視図、第
6図はガウジング摩耗試験の概念を示す概略図、第7図
は摩耗量比と超硬合金体積率との関係を示すグラフ、第
8図は摩耗量比と超硬合金中OCO量との関係を示すグ
ラフ、第9図は超硬合金と鋼を純銅でろう付けした接合
部の断面の顕微鏡写X(倍率X 40(J )、第10
図は超硬合金と鋼をCu−22ノWyL−IQCo−q
Ni  ろう材でろう付けした接合部の断面の顕微鏡写
真(倍率X 400 )、第11図は銅合金系のろう材
硬さとSi添加址の関係を示すグラフ、第12図は超硬
合金と鋼のろう接合強度(せん断破壊強度)とろう材の
硬さの関係を示すグラフ、第13図はせん断強度測定法
の概略構成図である。 1・・・リンパポイント、2・・・摩耗代部分、3・・
・溝、4・・・超硬合金片、5・・・ろう材。 第2図 第4図 第5図 第6図 第7図 三 疋又慶孜伴1干1voL%J 超j更合金中のC0量(献Z) 第9図 第10図 (メイ00> 第11図 Si 添加t  <wz)
FIG. 1 is a perspective view showing an embodiment in which the present invention is applied to a lymph point, FIG. 2 is a cross-sectional view taken along the line n-II in FIG. 1, and FIG.
The figure is a perspective view of a conventional ripper point. Figure 6 is a schematic diagram showing the concept of the gouging wear test, Figure 7 is a graph showing the relationship between the wear amount ratio and the cemented carbide volume fraction, and Figure 8 is the relationship between the wear amount ratio and the amount of OCO in the cemented carbide. Figure 9 is a micrograph X (magnification X 40 (J), 10th
The figure shows cemented carbide and steel Cu-22WyL-IQCo-q
A micrograph (magnification x 400) of a cross-section of a joint brazed with Ni brazing filler metal, Figure 11 is a graph showing the relationship between the hardness of copper alloy brazing filler metal and Si addition, and Figure 12 is a graph showing the relationship between cemented carbide and steel. FIG. 13 is a graph showing the relationship between the brazing joint strength (shear fracture strength) and the hardness of the brazing material, and is a schematic diagram of the shear strength measuring method. 1... Lymph point, 2... Wear area, 3...
- Groove, 4... Cemented carbide piece, 5... Brazing metal. Fig. 2 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Figure Si addition t <wz)

Claims (1)

【特許請求の範囲】 1、切刃の摩毛代部分の前面部に長手方向に溝を形成し
、溝の中に超硬合金を埋め込んでろう付けされた建設機
械用鋼製切刃。 2、溝の断面形状が長方形又は正方形で、巾が10mm
以下である特許請求の範囲第1項に記載の切刃。 3、摩耗代部分に3〜50体積%の超硬合金を含有する
特許請求の範囲第1項又は第2項に記載の切刃。 4、超硬合金が3〜30重量%の金属結合相を含む特許
請求の範囲第1項又は第3項に記載の切刃。 5、ろう付用ろう材が、Cu−Ni−Si系、Cu−M
n−Ni−Si系、又はCu−Mn−Ni−Co−Si
系ろう付である特許請求の範囲第1項乃至第4項のいず
れかに記載の切刃。 6、ろう付用ろう材が、2〜10重量%Ni、1〜8重
量Si、残部Cuの組成を有するCu−Ni−Si系ろ
う材である特許請求の範囲第5頁に記載の切刃。 7、ろう付用ろう材が、10〜25重量%Mn、5〜1
0重量%Ni、1〜3重量%Si、残部Cuの組成を有
するCu−Mn−Ni−Si系ろう材である特許請求の
範囲第5項に記載の切刃。 8、ろう付用ろう材が、15〜30重量%Mn、5〜1
0重量%Ni、5〜10重量%Co、0.5〜1.5重
量%Si、残部Cuの組成を有するCu−Mn−Ni−
Co−Si系ろう材である特許請求の範囲第5項に記載
の切刃。 9、鋼製部分の硬さがH_R_C30以上である特許請
求の範囲第1項乃至第8項のいずれかに記載の切刃。 10、超硬合金が重さ0.5〜100gの範囲の小片よ
り成り、該小片の複数個がろう付けされてなる特許請求
の範囲第1項乃至第9項のいずれかに記載の切刃。 11、鋼製切刃の摩耗代部分の前面部に長手方向に溝を
形成し、超硬合金片を薄板状ろう材を介在させて上記溝
に装着し、この装着物を真空もしくは不活性雰囲気中で
ろう材の融点以上に加熱して超硬合金と鋼との間にろう
材の融液を形成し、次いでろう材の凝固温度直下まで徐
冷してろう材を凝固させたのち、冷たい不活性ガスを吹
き付けて急冷することを特徴とする建設機械用鋼製切刃
の製造法。
[Claims] 1. A steel cutting blade for construction machinery, in which a groove is formed in the longitudinal direction on the front surface of the cutting blade's buffing area, and a cemented carbide is embedded and brazed in the groove. 2. The cross-sectional shape of the groove is rectangular or square, and the width is 10 mm.
A cutting blade according to claim 1 as follows: 3. The cutting blade according to claim 1 or 2, which contains 3 to 50% by volume of cemented carbide in the wear portion. 4. The cutting blade according to claim 1 or 3, wherein the cemented carbide contains 3 to 30% by weight of a metal binder phase. 5. The brazing filler metal is Cu-Ni-Si type, Cu-M
n-Ni-Si system or Cu-Mn-Ni-Co-Si
The cutting blade according to any one of claims 1 to 4, which is brazed. 6. The cutting blade according to page 5 of the claims, wherein the brazing filler metal is a Cu-Ni-Si brazing filler metal having a composition of 2 to 10% by weight Ni, 1 to 8% by weight Si, and the balance Cu. . 7. The brazing filler metal contains 10 to 25% by weight Mn, 5 to 1
The cutting blade according to claim 5, which is a Cu-Mn-Ni-Si brazing filler metal having a composition of 0% by weight Ni, 1 to 3% by weight Si, and the balance Cu. 8. The brazing filler metal contains 15 to 30% by weight Mn, 5 to 1
Cu-Mn-Ni- having a composition of 0 wt% Ni, 5 to 10 wt% Co, 0.5 to 1.5 wt% Si, and the balance Cu.
The cutting blade according to claim 5, which is a Co-Si brazing filler metal. 9. The cutting blade according to any one of claims 1 to 8, wherein the steel part has a hardness of H_R_C30 or more. 10. The cutting blade according to any one of claims 1 to 9, wherein the cemented carbide is made of small pieces having a weight in the range of 0.5 to 100 g, and a plurality of the small pieces are brazed together. . 11. A groove is formed in the longitudinal direction on the front surface of the wear area of the steel cutting blade, a piece of cemented carbide is installed in the groove with a thin plate brazing material interposed, and the installed object is placed in a vacuum or an inert atmosphere. A melt of the filler metal is formed between the cemented carbide and the steel by heating it above the melting point of the filler metal, and then slowly cooling it to just below the solidification temperature of the filler metal. A method for manufacturing steel cutting blades for construction machinery, which is characterized by rapid cooling by spraying with inert gas.
JP60235464A 1985-10-23 1985-10-23 Steel cutting edge for construction machinery and its manufacturing method Expired - Lifetime JPH0747857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60235464A JPH0747857B2 (en) 1985-10-23 1985-10-23 Steel cutting edge for construction machinery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60235464A JPH0747857B2 (en) 1985-10-23 1985-10-23 Steel cutting edge for construction machinery and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS6299527A true JPS6299527A (en) 1987-05-09
JPH0747857B2 JPH0747857B2 (en) 1995-05-24

Family

ID=16986478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60235464A Expired - Lifetime JPH0747857B2 (en) 1985-10-23 1985-10-23 Steel cutting edge for construction machinery and its manufacturing method

Country Status (1)

Country Link
JP (1) JPH0747857B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5081774A (en) * 1988-12-27 1992-01-21 Sumitomo Heavy Industries Foundry & Forging Co., Ltd. Composite excavating tooth
FR2667088A1 (en) * 1990-09-20 1992-03-27 Technogenia Sa TOOTH FOR EXCAVATION TOOL.
WO2001029331A1 (en) * 1999-10-07 2001-04-26 Shimura, Kiyomitsu Excavating ripper (tooth)
US7836615B2 (en) * 2007-04-25 2010-11-23 Winter Equipment Company Road machinery blade wear resistors
KR101404587B1 (en) * 2012-09-12 2014-06-09 (주)신우중공업 Multi layer shank for excavator bucket and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100783100B1 (en) * 2006-11-17 2007-12-07 주식회사 티엠시 Tip for a buchket of an excavator and method for manufacturing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5081774A (en) * 1988-12-27 1992-01-21 Sumitomo Heavy Industries Foundry & Forging Co., Ltd. Composite excavating tooth
FR2667088A1 (en) * 1990-09-20 1992-03-27 Technogenia Sa TOOTH FOR EXCAVATION TOOL.
US5375350A (en) * 1990-09-20 1994-12-27 Technogenia S.A. Excavating tool tooth
WO2001029331A1 (en) * 1999-10-07 2001-04-26 Shimura, Kiyomitsu Excavating ripper (tooth)
EP1174546A1 (en) * 1999-10-07 2002-01-23 Shimura, Kiyomitsu Excavating ripper (tooth)
EP1174546A4 (en) * 1999-10-07 2003-01-15 Shimura Kiyomitsu Excavating ripper (tooth)
US7836615B2 (en) * 2007-04-25 2010-11-23 Winter Equipment Company Road machinery blade wear resistors
KR101404587B1 (en) * 2012-09-12 2014-06-09 (주)신우중공업 Multi layer shank for excavator bucket and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0747857B2 (en) 1995-05-24

Similar Documents

Publication Publication Date Title
US4101318A (en) Cemented carbide-steel composites for earthmoving and mining applications
US4024902A (en) Method of forming metal tungsten carbide composites
US4146080A (en) Composite materials containing refractory metallic carbides and method of forming the same
Mukhopadhyay et al. On bond wear, grit-alloy interfacial chemistry and joint strength of synthetic diamond brazed with Ni-Cr-B-Si-Fe and Ti activated Ag-Cu filler alloys
CA1060683A (en) Composite wear-resistant alloy, and tools from same
US4052802A (en) Ground-engaging tool with wear-resistant insert
US4608318A (en) Casting having wear resistant compacts and method of manufacture
US7661491B2 (en) High-strength, high-toughness matrix bit bodies
US2833638A (en) Hard facing material and method of making
US7807099B2 (en) Method for forming earth-boring tools comprising silicon carbide composite materials
CA2625521C (en) System, method, and apparatus for enhancing the durability of earth-boring bits with carbide materials
EP0106929B1 (en) Wear-resistant and shock-resistant tools and method of manufacture thereof
EP0238938B1 (en) Pocketed stud for polycrystalline diamond cutting blanks
JP2013500920A (en) Polycrystalline diamond composite compact
CN109736713A (en) A kind of diamond core bit and its laser welding preparation process
US20100112374A1 (en) Material and method for coating a surface
US4584020A (en) Wear part with high wear strength
Mashloosh et al. Abrasive wear and its application to digger teeth
GB2098112A (en) Casting incorporating hard, e.g. wear-resistant, insert
JPS6299527A (en) Wear-resistance cutting blade for construction machine and its manufacture
EP1569778A2 (en) Frame saw for cutting granite and method to improve performance of frame saw for cutting granite
Perrott Tool materials for drilling and mining
JPS61124505A (en) Composite cutting blade consisting of sintered hard alloy and its production
US3128165A (en) Hard surfacing material
Röttger et al. Abrasion in tunneling and mining