JPS6299416A - Production of case hardening steel - Google Patents

Production of case hardening steel

Info

Publication number
JPS6299416A
JPS6299416A JP23953085A JP23953085A JPS6299416A JP S6299416 A JPS6299416 A JP S6299416A JP 23953085 A JP23953085 A JP 23953085A JP 23953085 A JP23953085 A JP 23953085A JP S6299416 A JPS6299416 A JP S6299416A
Authority
JP
Japan
Prior art keywords
less
content
steel
sol
formation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP23953085A
Other languages
Japanese (ja)
Inventor
Susumu Kanbara
神原 進
Kenji Aihara
相原 賢治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP23953085A priority Critical patent/JPS6299416A/en
Publication of JPS6299416A publication Critical patent/JPS6299416A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the formation of coarse austenite crystal grains in the state of a high-temp. surface treatment of a case hardening steel in the stage of producing the case hardening steel by adding a specific ratio of Nb to said steel to decrease the content of N and adding elements having high affinity to N to said steel. CONSTITUTION:N is decreased to <0.009% and at least one kind among <0.05% SolAl, <0.04% Ti and <0.05% Zr having the affinity to N higher than the affinity of Nb are added to the case hardening steel contg. 0.10-0.45% C, <1.5% Si and 0.1-1.5% Mn and the content of Nb is decreased to 0.01-0.14% expressed by formula (1) according to the ratio thereof in order to accelerate the formation of Nb carbide for preventing the formation of the coarse austenite crystal grains in the stage of the high-temp. surface treatment by carburization and further to prevent the formation of the Nb nitride having the lower effect of preventing the formation of the coarse austenite crystal grains. Otherwise, >=1 kinds of Cr, Mo, and Ni or >=1 kinds of S, Pb, Ca, and Te are added alone or in combination to said steel and after the steel is worked at >=1,050 deg.C, the steel is immediately heated and held for >=10min at 400-880 deg.C to prevent the formation of the coarse austenite crystal grains by the formation of the Nb carbide.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、肌焼鋼の製造方法に関する。さらに詳細には
、本発明は、結晶粒の粗大化を抑制しつつ、浸炭等の表
面硬化処理を行い得る肌焼鋼の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing case hardening steel. More specifically, the present invention relates to a method for manufacturing case hardening steel that can be subjected to surface hardening treatment such as carburization while suppressing coarsening of crystal grains.

(従来の技術) 構造用炭素肌焼鋼および合金肌焼鋼は、産業機械、建設
機械、自動車等の動力伝達部品、摺動部品などに使用さ
れるが、耐摩耗性、高疲労強度、高面圧強度が必要なた
め、脱燐処理すなわち表面硬化処理を施されるのが、一
般的である。表面硬化には種々の方法があるが、浸炭焼
入れあるいは浸炭窒化焼入れは、鋼の特性向上が著しい
ため、現在でもその主流を占めている。しかし、浸炭あ
るいは浸炭窒化処理では、通常900〜950℃で数時
間加熱するため、オーステナイト結晶粒力<m大化しや
すくなる。
(Prior art) Structural carbon case-hardened steel and alloy case-hardened steel are used for power transmission parts and sliding parts of industrial machinery, construction machinery, automobiles, etc. Since surface pressure strength is required, dephosphorization treatment, that is, surface hardening treatment is generally performed. There are various methods for surface hardening, but carburizing and quenching or carbonitriding and quenching are still the mainstream methods because they significantly improve the properties of steel. However, in carburizing or carbonitriding, heating is usually performed at 900 to 950°C for several hours, which tends to increase the austenite grain strength <m.

そこで、その対策として八QとNをバランスよく添加し
、へQ窒化物によって結晶粒の成長を抑制する効果(ピ
ンニング効果)によりオーステナイト結晶粒の粗大化を
防止する方法が考えられていた。
Therefore, as a countermeasure to this problem, a method has been considered in which 8Q and N are added in a well-balanced manner and the austenite crystal grains are prevented from becoming coarser by the effect of suppressing the growth of crystal grains (pinning effect) by the 8Q nitride.

しかしながら、実際にはこのような対策だけでは十分で
なく、特に950℃以上の高温浸炭を行った場合には、
オーステナイト粒の粗大化を■止することは著しく困難
となる。
However, in reality, these measures alone are not sufficient, especially when high-temperature carburizing is performed at 950°C or higher.
It becomes extremely difficult to stop the coarsening of austenite grains.

そこで、従来からいろいろな検討がなされ、オーステナ
イト粒の9In大化しにくい鋼として、例えば特公昭5
2−5003月、同54−1647号、同57−156
57号公報などに記載するようにNbを添加した鋼が提
案されている。
Therefore, various studies have been carried out in the past, and for example, 9In was developed as a steel that is difficult to increase in austenite grain size.
2-500 March, No. 54-1647, No. 57-156
Steels to which Nb is added have been proposed as described in Publication No. 57 and the like.

これらの提案の基本的な考え方は、いずれもNb炭窒化
物を析出させてオーステナイト粒界におけるピンニング
効果を活用しようとするものである。
The basic idea of these proposals is to precipitate Nb carbonitride and utilize the pinning effect at austenite grain boundaries.

例えば、特公昭5’l−1565’7号にはボロン処理
肌焼鋼が開示されているが、これはそれまでBの無効化
を防1ト[るためにAlで十分脱酸してからTiを添加
し生成するTiNの結晶粒成長抑制効果を利用していた
のに対し、TiNの効果が十分でないため、Nb添加に
より生成したNb炭化物とTiNとの共存による相乗作
用によって結晶粒の微細化が顕著となるというのである
。しかし、いかにしてNb炭化物を微細、均一に析出さ
せるかについては特に開示していない。なお、Nbば従
来は窒化物として結晶粒成長抑制効果を利用していたの
であった。
For example, Japanese Patent Publication No. 5'l-1565'7 discloses boron-treated case-hardened steel, but until then it had been sufficiently deoxidized with Al in order to prevent the nullification of B. The grain growth suppressing effect of TiN produced by adding Ti was utilized, but since the effect of TiN is not sufficient, the synergistic effect of the coexistence of Nb carbide produced by Nb addition and TiN causes finer grains. This means that the change will become more noticeable. However, it does not specifically disclose how to finely and uniformly precipitate Nb carbide. Note that Nb has conventionally been used as a nitride to suppress crystal grain growth.

また、特公昭54−1647号にはNb、八Qの化合物
(窒化物、炭化物)を多量にオーステナイト中に分解固
溶・uしめ、熱間加工後、$n粒(粒度番号5以下)の
まま冷却することが開示されている。このような相粒絹
織であれば、浸炭処理時にも粒成長力が小さくなり、」
−記Nb、へQ化合物析出による粒成長抑制効果を最大
限に利用できる状況となるというのである。
In addition, in Japanese Patent Publication No. 54-1647, a large amount of Nb, 8Q compounds (nitrides, carbides) is decomposed into austenite as a solid solution, and after hot working, $n grains (particle size number 5 or less) are formed. It is disclosed that the material is cooled as it is. With this type of phase-grained silk weave, the grain growth force will be small even during carburization.
- It is said that the situation will be such that the grain growth suppressing effect due to the precipitation of Nb and Q compounds can be utilized to the maximum.

しかし、これらの場合はいずれも、いかにしてNb炭化
物を微細かつ均一に析出させるかについては何ら言及す
ることがなく、またNb炭化物の析出形態とその粒成長
抑制効果との関連についても明らかにすることがtr 
<、しかもNb化合物の効果に関しても、浸炭あるいは
浸炭窒化処理前の熱加玉届歴によって、その効Wは大幅
に変化し、極めて不安定である。
However, in all of these cases, there is no mention of how to precipitate Nb carbide finely and uniformly, and the relationship between the precipitation form of Nb carbide and its grain growth suppressing effect has not been clarified. It is tr to do
Moreover, regarding the effect of the Nb compound, the effect W varies greatly depending on the history of hot balling before carburizing or carbonitriding, and is extremely unstable.

(発明が解決しようとする問題点) 本発明の目的は、上記した如き従来技術の問題を解決す
ることにあり、さらに詳細には、Nb添加効果を最大限
に利用してオーステナイト粒の和犬化を確実に防Iトシ
ながら、脱燐処理を実施できる構造用炭素鋼および合金
鋼の製造方法を提供することである。
(Problems to be Solved by the Invention) The purpose of the present invention is to solve the problems of the prior art as described above. It is an object of the present invention to provide a method for producing structural carbon steel and alloy steel that can perform dephosphorization treatment while reliably preventing corrosion.

(問題点を解決するための手段) すなわち、本発明者らは、オーステナイト粒の粗大化の
ない肌焼鋼を提供せんと鋭意、実験、検討を重ねた結果
、浸炭あるいは浸炭窒化処理を行う直前の段階で、固i
Nbが残存しないよう、鋼中に含有されるNbをすべて
Nb炭窒化物として微細かつ均一に析出させることによ
り、Nbのピンニング効果が最大限に発揮されるごとを
知見した。また、このためには、浸炭あるいは浸炭窒化
処理も含めて学なる熱処理で析出したNb炭窒化物はほ
とんど有効に作用せず、1050℃以上に加熱してNb
炭窒化物の大半を固溶せしめた状態で加工し、しかる後
直ちに400〜800℃の温度に保持した時に析出する
黴細なNb炭窒化物が非常に有効であることが判明した
。すなわち、熱間加工後、直接保熱(いわゆるダイレク
トチャージ)を行うのである。
(Means for Solving the Problems) That is, the present inventors have conducted extensive experiments and studies to provide a case hardening steel in which the austenite grains do not become coarse. At the stage of
It has been found that the pinning effect of Nb can be maximized by precipitating all the Nb contained in the steel finely and uniformly as Nb carbonitride so that no Nb remains. In addition, for this purpose, Nb carbonitrides precipitated by various heat treatments including carburizing or carbonitriding have little effect, and Nb carbonitrides must be heated to 1050°C or higher
It has been found that the fine Nb carbonitrides that precipitate when processed with most of the carbonitrides in solid solution and then immediately maintained at a temperature of 400 to 800°C are very effective. That is, after hot working, direct heat retention (so-called direct charge) is performed.

さらに、鋼に含有されるNbをすべてオーステナイト粒
の粗大化を防止するのに有効な炭窒化物として析出さゼ
るためには、熱間加工後オーステナイトを再結晶させて
おくと一層有効であり、このためには、800℃以上の
温度域で加工度10%以上の熱間加工が望ましいことを
知見した。すなわち、加ニオーステナイトMi織または
加ニオーステナイト組織が変態した直後のフェライト・
パーライト組織には無数の転位が存在し、これが微細か
つ均一に析出するNb炭化物の発生核となるのである。
Furthermore, in order to precipitate all the Nb contained in steel as carbonitrides, which are effective in preventing coarsening of austenite grains, it is more effective to recrystallize austenite after hot working. For this purpose, it has been found that hot working with a working degree of 10% or more in a temperature range of 800° C. or more is desirable. In other words, the ferrite immediately after the Kaniostenite Mi weave or the Kaniostenite structure is transformed.
Innumerable dislocations exist in the pearlite structure, and these become the generation nuclei of Nb carbides that are finely and uniformly precipitated.

これを−巨室温にまで冷却してから再加熱すると再加熱
中にひずみは解放され、転位は消滅してしまう。したが
って、前述のように、熱間加工(あるいは温間加工)後
、直ちに保熱を行うのである。
If this is cooled to -giant room temperature and then reheated, the strain will be released during reheating and dislocations will disappear. Therefore, as mentioned above, heat retention is performed immediately after hot working (or warm working).

また、本発明者らはさらに検討を重ね、以下のことを見
い出した。すなわち、Nb炭化物はNb窒化物より固溶
温度が高く、高温まで固溶しない。一方、炭窒化物は、
加工ひずみを導入されると固溶温度が低下する。したが
って、加工を受けた冷間鍛造材あるいは温間鍛造材に通
常浸炭を行う場合や、さらには高温浸炭を行う場合には
、Nb窒化物よりもNb炭化物の方が結晶粒粗大化の抑
制には有効であることが明らかとなった。
Further, the present inventors conducted further studies and discovered the following. That is, Nb carbide has a higher solid solution temperature than Nb nitride, and does not dissolve until high temperatures. On the other hand, carbonitrides are
When processing strain is introduced, the solid solution temperature decreases. Therefore, when performing normal carburizing or high-temperature carburizing on processed cold-forged or warm-forged materials, Nb carbide is more effective at suppressing grain coarsening than Nb nitride. was found to be effective.

したがって、本発明では、N含有量を規制するとともに
、Nとの結合力がNbより強い、八(1,Ti。
Therefore, in the present invention, the N content is regulated and 8(1, Ti) has a stronger bonding force with N than Nb.

Zrを添加してNを固定しくすなわち.Al窒化物、T
i窒化物、Zr窒化物を生成させ)、Nb炭化物の生成
の促進を図る。
Zr is added to keep N fixed. Al nitride, T
i nitride, Zr nitride) and Nb carbide.

さらに、本発明者らは検討を進めた結果、Nb炭化物を
生成し得る固溶Nb (すなわち、固溶N量に相当する
化学当量分を差し引いたNb量)の総量Nb”が鋼中に
少なくとも0.01%以−ヒの量で存在するごとが必要
であることが判明した。
Furthermore, as a result of our studies, the present inventors found that the total amount of solute Nb (that is, the amount of Nb after subtracting the chemical equivalent amount corresponding to the amount of solute N) that can form Nb carbides in the steel is at least It has been found that it is necessary to be present in an amount of 0.01% or more.

したがって、本発明では、Nb含有量、sol.AlC
含有量Ti含有量、Zr含有量およびN含有量で規定さ
れる固溶Nbの総1iNb“が0.01%より大である
ことを規定する。ずなわち、Nb含有量、sol.Al
C含有量Ti含有猷、Zr含有量およびNb含有量の間
に下記の関係式が満足されることを要件とした。
Therefore, in the present invention, Nb content, sol. AlC
It is specified that the total 1iNb'' of solid solution Nb defined by the content Ti content, Zr content and N content is greater than 0.01%. That is, the Nb content, sol.Al
The requirement was that the following relational expression be satisfied among the C content, Ti content, Zr content, and Nb content.

したがって、本発明の要旨とするところは、重上%で、 C:0.10〜0.45%、  Si: 1.5%以下
、Mn: 0.1〜1.5%、  Nb: 0.01〜
0.14%、N:0.009%以下を含み、 さらにsol.Al: 0.05%以下、Ti: 0.
04%以下およびZr: 0.05%以下の1種または
2種を含有し、さらに必要により、Cr: 1.5%以
下、Mo: 0.03%以下および旧:2.0%以下の
1種または2種以−ヒを含有し、 さらに好ましくは、S:0.04〜0.13%、Pb:
0.03〜0.35%、Ca: 0.0(II 〜0.
01%およびTe: 0.005〜0.05%の1種ま
たは2種以上を含有し、 残部Feと不可避的不純物 からなり、かつNb含有1ji、sol、へQ含有量、
Ti含有量、Zr含有量およびN含有量によって下式の
如く決定されるNb”が0.旧%1双−1−である化学
組成を有する鋼を、 1050℃以上に加熱した後加工を施し、その後直ちに
400〜800℃の温度範囲内に10分間以上保熱する
ことを特徴とする結晶粒の粗大化しにくい肌焼鋼の製造
方法である。
Therefore, the gist of the present invention is that, in weight percent, C: 0.10 to 0.45%, Si: 1.5% or less, Mn: 0.1 to 1.5%, Nb: 0. 01~
0.14%, N: 0.009% or less, and sol. Al: 0.05% or less, Ti: 0.
04% or less and Zr: 0.05% or less, and if necessary, Cr: 1.5% or less, Mo: 0.03% or less, and old: 2.0% or less. or more preferably S: 0.04 to 0.13%, Pb:
0.03-0.35%, Ca: 0.0(II-0.
01% and Te: 0.005 to 0.05% of one or more kinds, the balance consists of Fe and inevitable impurities, and contains Nb 1ji, sol, Q content,
A steel having a chemical composition in which Nb", which is determined by the following formula according to the Ti content, Zr content, and N content, is 0.%1 double-1- is heated to 1050°C or higher and then processed. This is a method for producing case-hardened steel in which crystal grains are less likely to become coarse, which is characterized in that the steel is heated in a temperature range of 400 to 800° C. for 10 minutes or more immediately thereafter.

(作用) 以下に、本発明の方法において鋼の成分範囲および製造
条件を上述のように限定した理由を述べる。なお、1%
−11J特にことわりのない限幻「重量%」である。
(Function) The reason why the composition range and manufacturing conditions of the steel are limited as described above in the method of the present invention will be described below. In addition, 1%
-11J This is a phantom "weight %" without particular mention.

C:Cは強度確保のための基本成分であり、肌焼鋼とし
て浸炭あるいは浸炭窒化焼入れ、焼戻し後の中心部硬さ
は少なくともHac20は必要であり、このためにはC
計は最低0.05%含有することが必要である。また、
構造用部材として必要な特性である疲労強度は、表層部
に導入された圧縮残留応力によって大きく左右されるが
、これは表面硬化後の表面と中心部の硬度差に依存して
おり、硬度差が大きいほど圧縮残留応力は大きくなり、
疲労強度も向上する。したがって、中心部硬さをあまり
上昇させると表面との硬度差が小さくなるので疲労強度
の点から不利であるばかりでなく、耐衝撃特性が著しく
劣化する。
C: C is a basic component to ensure strength, and as a case hardening steel, the center hardness after carburizing or carbonitriding and tempering is required to be at least Hac20.
It is necessary that the total content be at least 0.05%. Also,
Fatigue strength, which is a necessary property for structural members, is greatly influenced by compressive residual stress introduced into the surface layer, but this depends on the difference in hardness between the surface and the center after surface hardening. The larger the compressive residual stress,
Fatigue strength is also improved. Therefore, if the center hardness is increased too much, the hardness difference with the surface becomes small, which is not only disadvantageous in terms of fatigue strength, but also significantly deteriorates the impact resistance.

この限界は、一般にuic45程度であり、このために
はC量は0.40%以下に抑える必要がある。
This limit is generally about uic45, and for this purpose, the amount of C needs to be suppressed to 0.40% or less.

しかし、本発明ではNb炭化物生成により固溶C量が減
少することを考慮すると、C量の下限値、−I−限値と
もそれぞれ増量する必要がある。したがって、Nb炭化
物の生成に必要なCの量を0.05%と考え、C含有量
の下限値を0.10%、上限値を0.45%とした。好
ましくは0.15〜0.40%である。
However, in the present invention, considering that the amount of solid solute C decreases due to the formation of Nb carbides, it is necessary to increase both the lower limit and the -I- limit of the amount of C. Therefore, the amount of C required to generate Nb carbide was considered to be 0.05%, and the lower limit of the C content was set to 0.10% and the upper limit to 0.45%. Preferably it is 0.15 to 0.40%.

Si: Siは通常、脱酸剤として添加されるが、場合
によってはMn.Alの添加だけでも十分に脱酸し得る
。Siはフェライトに固溶して鋼の延靭性、冷間加工性
、切削性を低下せしめる元素であるため、少ないほど好
ましいが、1.5%まではその弊害は小さいので、Si
含有量の上限値を1.5%に規定した。好ましくは0.
05〜1.0%である。
Si: Si is usually added as a deoxidizing agent, but in some cases Mn. Addition of Al alone can sufficiently deoxidize. Si is an element that dissolves in ferrite and reduces the ductility, cold workability, and machinability of steel, so it is preferable to have less Si.
The upper limit of the content was set at 1.5%. Preferably 0.
05-1.0%.

Mn: Mnは脱酸剤として不可欠であるばかりでなく
、鋼の強度、靭性の向上にも効果がある。また、肌焼鋼
として重要な特性である焼入性の向上にも最も有効な元
素であり、他の焼入性向上元素との相乗作用を考慮して
少なくとも0.1%添加することが好ましい。一方、1
.5%を越えて添加すると熱間加工性の劣化を招くとと
もに、切削性が急激に低下し始める。したがって、Mn
含有量の下限値を0.1 %、」−限値を1.5%とし
た。
Mn: Mn is not only essential as a deoxidizing agent, but also effective in improving the strength and toughness of steel. It is also the most effective element for improving hardenability, which is an important property for case hardening steel, and it is preferable to add at least 0.1% in consideration of synergistic effects with other hardenability improving elements. . On the other hand, 1
.. When added in excess of 5%, hot workability deteriorates and machinability begins to drop rapidly. Therefore, Mn
The lower limit of the content was set at 0.1%, and the lower limit was set at 1.5%.

Nb: Nbは400〜800℃での保熱中にCと結合
し、微細かつ均一なNb炭化物となる。この効果が発揮
されるためには少なくとも0.01%必要である。
Nb: Nb combines with C during heat retention at 400 to 800°C to form fine and uniform Nb carbide. At least 0.01% is required for this effect to be exhibited.

しかし、0.14%を越えて添加すると固溶Cが著しく
減少し、強度低下を招く恐れがある。したがって、Nb
金含有の下限値を0.01%、」二限値を0.14%と
した。好ましくは0.01〜0.07%である。
However, if it is added in an amount exceeding 0.14%, the solid solution C will be significantly reduced, which may lead to a decrease in strength. Therefore, Nb
The lower limit of gold content was 0.01%, and the second limit was 0.14%. Preferably it is 0.01 to 0.07%.

sol、へQ;へQ l;を通常、脱酸剤として添加さ
れるが、場合によってはSiXMnの添加だけでも十分
に脱酸される。本発明においては、前述のようにNb炭
化物によるピンニング効果でオーステナイト粒の粗大化
を抑制しようとするものであり、したがって、Nbとの
結合力がCより強いNはずべて固定してしまう必要があ
る。このためには、Nとの結合力がNbより強いMを添
加することは有効であるが、添加量が多くなるほどアル
ミナ系の介在物が増加して鋼の表面の疵が増加するとと
もに、生成するへQ窒化物が凝集粗大化して、Nb炭化
物の微細分散化に悪影響を及ぼず。したがって、sol
.Al添加鼠は少ないほど好ましいが、0.05%まで
(,1その弊害はわずかであるので、s。
sol, heq; heql; are usually added as deoxidizing agents, but in some cases, the addition of SiXMn alone can be sufficient to deoxidize. In the present invention, as mentioned above, the purpose is to suppress the coarsening of austenite grains by the pinning effect of Nb carbides, and therefore, it is necessary to fix all N, which has a stronger bonding force with Nb than C. be. For this purpose, it is effective to add M, which has a stronger bonding force with Nb than Nb, but as the amount added increases, alumina-based inclusions increase, which increases the number of defects on the surface of the steel. However, the Q nitrides aggregated and coarsened, and the fine dispersion of the Nb carbides was not adversely affected. Therefore, sol
.. The smaller the amount of Al added, the more preferable it is, but up to 0.05% (1), since its adverse effects are slight.

1.Al含有量の上限値を0.05%とした。1. The upper limit of the Al content was set to 0.05%.

Ti1T目)前述のAlと同様、Nb炭化物生成のため
のTiNは形状が大きく、切削性を劣化させるので、T
i添加星は少ないほど好ましい。したがって、切削性劣
化の小さい範囲の0.04%以下をTiの含有範囲とし
た。
Ti1T) Similar to the above-mentioned Al, TiN for Nb carbide generation has a large shape and deteriorates machinability, so T
The fewer i-added stars, the better. Therefore, the Ti content range was set at 0.04% or less, which is the range in which the deterioration of machinability is small.

Zr: Zrもsol、八Q、 Tiと同様、N固定に
非常に有効な元素である。しかし、多尾に添加すると、
切削性の劣化を招くとともに、7.r窒化物が凝集粗大
化してNb炭化物の微細分散化に悪影響を及ばず。この
ような悪影響を及ぼさないZr含有にの限界が0.05
%であるので下限値0.05%とした。
Zr: Like sol, 8Q, and Ti, Zr is a very effective element for N fixation. However, when added to Tao,
In addition to causing deterioration of machinability, 7. The r-nitrides do not aggregate and become coarse, which does not adversely affect the fine dispersion of the Nb carbides. The limit for Zr content that does not have such a negative effect is 0.05
%, the lower limit was set at 0.05%.

このように、sol、八Q、 TiおよびZrはN固定
元素として少なくとも1種添加される。
In this way, at least one of sol, 8Q, Ti, and Zr is added as an N-fixing element.

N:本発明においては、前i!!; したようにNb窒
化物の生成は好ましくないためN固定のためにsol。
N: In the present invention, the previous i! ! ; As mentioned above, the formation of Nb nitride is undesirable, so sol is used to fix N.

Al、、TiXZrの少なくとも1種の添加を要求して
いるが、これらの元素の添加量は少ないほど好ましい。
Although at least one of Al, TiXZr is required to be added, it is preferable that the amount of these elements added be as small as possible.

したがって、固定すべきNの含有量も少ない方が好まし
い。そこでN含有量を0.009%以下に制限すること
によって、Nを固定するために添加されるSOl.Al
、、Ti、 Zrの悪影響は全く無視できる程度になる
。したがってN含有量の−LI旧直を0.009%とし
た。
Therefore, it is preferable that the content of N to be fixed is also small. Therefore, by limiting the N content to 0.009% or less, SOl. Al
, Ti, Zr have a completely negligible effect. Therefore, the N content of -LI was set at 0.009%.

Cr: Crば任意添加元素であり、鋼の焼入性を向上
させるとともに、浸炭性を良好にし、浸炭後も耐摩耗性
の向−1−に有効である。しかし、1.5%を越えて添
加すると、過剰浸炭する傾向が大きくなり、表面層に網
状のセメンタイトが生成して、疲労強度、耐ピツチング
性を大幅に劣化させるので、Cr含有量の上限値を1.
5%とした。
Cr: Cr is an optionally added element that improves the hardenability of steel, improves carburizability, and is effective in improving wear resistance even after carburizing. However, if it is added in excess of 1.5%, there is a tendency for excessive carburization to occur, and a network of cementite is formed on the surface layer, which significantly deteriorates fatigue strength and pitting resistance, so the upper limit of the Cr content is 1.
It was set at 5%.

Mo: Mo4)Crと同様、焼入性、浸炭性を向上さ
せる任意添加元素である。また、51.、Mns Cr
と異なり、Feより酸化ポテンシャルが低いため、浸炭
時に酸化されにくく、したがって表面層にできるいわゆ
る浸炭異常層(不完全焼入層)の生成を抑制する作用が
ある。さらに、MOは焼入れ焼戻し脆化を阻止する効果
もある。したがって、添加量が多いほど好ましいが、高
価な元素であるため、Mn、Cr等の他の焼入性向上元
素と複合添加させることを考慮すれば、肌焼鋼として0
゜3%を越えて添加することは得策でない。し7たがっ
て、MO金含有の−1−II旧直を0.3%とした。
Mo: Mo4) Like Cr, it is an optionally added element that improves hardenability and carburizability. Also, 51. , Mns Cr
Unlike Fe, since it has a lower oxidation potential than Fe, it is less likely to be oxidized during carburizing, and therefore has the effect of suppressing the formation of a so-called abnormal carburized layer (incompletely quenched layer) that forms on the surface layer. Furthermore, MO also has the effect of preventing quenching and tempering embrittlement. Therefore, it is preferable to add a larger amount, but since it is an expensive element, if you consider adding it in combination with other hardenability improving elements such as Mn and Cr, it is possible to make case hardening steel.
It is not a good idea to add more than 3%. Therefore, the MO gold-containing -1-II original concentration was set at 0.3%.

Ni:任意添加元素である旧も焼入性向に元素であり、
また靭性を著しく向上させる効果を有する。
Ni: Ni, which is an optionally added element, is also an element that affects hardenability.
It also has the effect of significantly improving toughness.

さらにMoと同様浸炭異常層生成を抑制するが、高価な
元素であり、浸炭性をIIJ1害する作用も有するので
、多V添加は好ましくない。したがって、Ni含有屋の
上限値を2.0%とした。
Further, like Mo, it suppresses the formation of an abnormal carburized layer, but it is an expensive element and also has the effect of impairing carburizability, so adding a large amount of V is not preferable. Therefore, the upper limit of Ni content was set at 2.0%.

なお、C,Si、、Mn、、Cr、 MoXNiはオー
ステナイト粒粗粒化挙動には影響しない。
Note that C, Si, Mn, Cr, and MoXNi do not affect the coarsening behavior of austenite grains.

S 、Pb、Ca、、Te: これらの元素は、任意添h11元素であって、浸炭ある
いは浸炭窒化処理前に切削を施す場合の切削性向上に有
効である。切削方法、切削速度、切込み深さなどに応じ
て、これらの元素の1種または2種以上添加するのが好
ましい。なお、これらの元素は、オーステナイト粒粗大
化傾向と浸炭性には全く影響を及ぼさない。
S, Pb, Ca, Te: These elements are optionally added h11 elements and are effective in improving machinability when cutting is performed before carburizing or carbonitriding. It is preferable to add one or more of these elements depending on the cutting method, cutting speed, depth of cut, etc. Note that these elements have no effect on the austenite grain coarsening tendency and carburizability.

構造用鋼の切削性を高めるのに必要な最少限の添加量は
、S:0.04%、ph: 、o、oa%、Ca:0.
001%、Te : 0 、005%である。またSは
0.13%、pbは0.35%を越えると強度、靭性の
低下が著しくなり、Caば製鋼技術−hO,01%を越
えて添加することは困難であり、Teは0.05%を越
えると熱間加工性が急激に低下するので、Sについては
下限(直を0.04%、」二lIR値を0.13%、P
bについては下限値を0.03%、」二限値を0.35
%、Caについては下限値を0.001%、上限値を0
.01%、Teについては下限値を0.005%、上限
値を0.05%とした。
The minimum addition amounts necessary to improve the machinability of structural steel are: S: 0.04%, pH: , o, oa%, Ca: 0.04%.
001%, Te: 0, 005%. Moreover, if S exceeds 0.13% and Pb exceeds 0.35%, the strength and toughness will deteriorate significantly, and it is difficult to add more than 0.01% of Ca, O, and 0.01% of Te. If it exceeds 0.05%, the hot workability decreases rapidly, so the lower limits for S (direct: 0.04%, IR value: 0.13%, P
For b, the lower limit is 0.03%, and the second limit is 0.35.
%, Ca, the lower limit is 0.001% and the upper limit is 0.
.. For Te, the lower limit was 0.005% and the upper limit was 0.05%.

Nb、 5olJQいTi、、Nの関係式:本発明では
、すでに述べたようにNb炭化物を析出させる必要があ
り、このためにNbと結合し得るN含有量を規制し、さ
らにSol.Al、、Ti、 Zrを添加してNの固定
を図っている。
Relational expression between Nb, 5olJQ, Ti, and N: In the present invention, as described above, it is necessary to precipitate Nb carbide, and for this purpose, the N content that can be combined with Nb is regulated, and the Sol. Al, Ti, and Zr are added to fix N.

したがって、オーステナイト粒粗大化のためには、Cと
結合し得るNbの量、つまりNb″′が少なくとも0.
01%以上必要であるので、Nb”の下限値を0.01
%とした。
Therefore, in order to coarsen the austenite grains, the amount of Nb that can bond with C, that is, Nb"', must be at least 0.
0.01% or more is required, so the lower limit of Nb” is set to 0.01% or more.
%.

次に製造条件を限定した理由を述べる。Next, the reason for limiting the manufacturing conditions will be explained.

加191支: 本発明は、均一分散した微細なNb炭化物によりオース
テナイト粒の粗大化を防止しようとするものである。こ
のためには、単なる熱処理、すなわち、常温から温間な
いしは熱間温度域まで昇温し、保持冷却する処理(浸炭
あるいは浸炭窒化処理も含む)で析出させたNb炭化物
では効果が小さく、不十分であるが、温間加工または熱
間加工を施した後の保熱中に析出するNb炭化物はオー
ステナイト粒の粗大化防1]二のためには極めて有効で
ある。
Support 191: The present invention aims to prevent coarsening of austenite grains by uniformly dispersed fine Nb carbides. For this purpose, Nb carbide precipitated by a simple heat treatment, that is, a treatment in which the temperature is raised from room temperature to a warm or hot temperature range and then held and cooled (including carburizing or carbonitriding), is ineffective and insufficient. However, Nb carbide precipitated during heat retention after warm working or hot working is extremely effective for preventing coarsening of austenite grains.

しかし、加工前の加熱時にNb炭窒化物が多量に存在し
ていると、保熱中に析出するNb炭化物は残存炭窒化物
を核にして凝集粗大化するため、オーステナイト粒の成
長防止に対する効果は著しく低下する。したがって、加
工、保熱前に予めNb炭窒化物の大半を固溶せしめる必
要があり、このためには、加熱温度を1050℃以上に
する必要がある。なお、固INbをすべてオーステナイ
ト粒の粗大化を防止するのに有効な炭化物として析出さ
せるためには、加工後オーステナイト粒を再結晶させて
おくと特に有効であるため、1050℃以上に加熱した
後の加工は800℃以上で10%以上の熱間加工が望ま
しい。
However, if a large amount of Nb carbonitrides are present during heating before processing, the Nb carbides that precipitate during heat retention will agglomerate and coarsen using the remaining carbonitrides as nuclei, and therefore will not be effective in preventing the growth of austenite grains. Significantly decreased. Therefore, it is necessary to dissolve most of the Nb carbonitride in advance before processing and heat retention, and for this purpose, it is necessary to raise the heating temperature to 1050° C. or higher. In addition, in order to precipitate all of the solid INb as carbides that are effective in preventing coarsening of austenite grains, it is particularly effective to recrystallize austenite grains after processing, so after heating to 1050°C or higher, It is desirable that hot working be performed at 800° C. or higher and at a rate of 10% or higher.

保熱条件: 本発明は上述のとおり、加工後に直ちに行なわれる保熱
中に析出するNb炭化物のピンニング効果を最大限に利
用するものである。400℃より低い温度では長時間保
熱してもNb炭化物は析出し得す、また800℃より高
い温度で保熱するとNb炭化物は凝集粗大化してピンニ
ング効果が十分に発揮されない。したがって、保熱温度
は400〜800℃にする必要がある。換言すれば加工
後、鋼の温度が800℃より低くなる前に保熱炉に装入
し、該保熱炉で400〜800℃で保熱するのである。
Heat Retention Conditions: As described above, the present invention makes maximum use of the pinning effect of Nb carbide precipitated during heat retention immediately after processing. At a temperature lower than 400°C, Nb carbide may precipitate even if the heat is kept for a long time, and if the heat is kept at a temperature higher than 800°C, the Nb carbide aggregates and coarsens, and the pinning effect is not sufficiently exerted. Therefore, the heat retention temperature needs to be 400 to 800°C. In other words, after processing, before the temperature of the steel becomes lower than 800°C, it is charged into a heat retention furnace and kept at a temperature of 400 to 800°C.

また、この範囲の温度に保持する場合、10分未満の保
熱では、微細なNb炭化物が十分に析出せず、オーステ
ナイト粒成長阻止効果が小さくなるため、保熱時間は1
0分間以上とした。最長40分の保熱時間で十分である
。なお、この間の保熱湯度は上記温度範囲内にある限り
、一定に保定しておく必要はない。
In addition, when maintaining the temperature within this range, if the heat is held for less than 10 minutes, fine Nb carbides will not precipitate sufficiently and the austenite grain growth inhibiting effect will be reduced, so the heat holding time should be 1
The duration was 0 minutes or more. A heat retention time of up to 40 minutes is sufficient. It should be noted that the hot water temperature during this period does not need to be kept constant as long as it is within the above temperature range.

(実施態様) 次に、本発明の実施態様を以下に説明する。(Embodiment) Next, embodiments of the present invention will be described below.

棒鋼、鋼管、厚鋼板の製造においては、第1図に模式的
に示すように、素材ビレットまたはブルームを加熱炉■
で1050℃以上に加熱し、棒鋼圧延機または鋼管圧延
機または鋼板圧延機■により圧延し、400〜800℃
に保定した保熱炉■に直送し10分間以上保持すること
により本発明を実施し得る。
In the production of steel bars, steel pipes, and thick steel plates, billets or blooms are heated in a heating furnace, as schematically shown in Figure 1.
heated to 1050°C or higher, then rolled using a bar rolling mill, steel pipe rolling mill, or steel plate rolling mill to 400-800°C.
The present invention can be carried out by directly conveying the material to a heat retention furnace (2) maintained at a temperature of 1000 mL and holding it there for 10 minutes or more.

また、線材においては第2図に示すように素材ビレット
を加熱炉■で1050℃以上にガU熱した後、線材圧延
機■を用いて線材に圧延し、線材巻取機■を用いて40
0〜800℃に保定した保熱炉■に直接巻取り、10分
間以上保持することにより、本発明を実施し得る。
For wire rods, as shown in Fig. 2, the material billet is heated to 1050°C or higher in a heating furnace (■), then rolled into a wire rod using a wire rod rolling machine (■), and then rolled into a wire rod using a wire winding machine (■) for a
The present invention can be carried out by directly winding up the film in a heat retention furnace (1) kept at 0 to 800°C and holding it for 10 minutes or more.

さらにm鋼板においては、第3図に示すように素材スラ
ブを加熱炉■で1050℃以」−に加熱した後、銅板圧
延機■を用いて圧延し、その後直ちに400〜800℃
に保定した保熱炉0内で巻取り、10分間1ソ1−保持
することにより、本発明を実施し得る。
Furthermore, as shown in Fig. 3, for M steel plates, the raw material slab is heated to 1050°C or higher in a heating furnace (1), then rolled using a copper plate rolling mill (2), and then immediately heated to 400 to 800°C.
The present invention can be carried out by winding up the material in a heat retention furnace maintained at 0 and holding it for 10 minutes.

lソ下に本発明を実施例により説明するが、これらの実
施例は本発明の単なる例示であって、本発明の技術的範
囲を何ら制限するものではない。
The present invention will be explained below with reference to Examples, but these Examples are merely illustrative of the present invention and do not limit the technical scope of the present invention in any way.

実施例 第1表に示す39種類の鋼を高周波誘導溶解炉にてそれ
ぞれ溶解し、鍛造により50φmmに成形して試片素材
を準備した。
EXAMPLES Thirty-nine types of steel shown in Table 1 were melted in a high-frequency induction melting furnace and forged to a diameter of 50 mm to prepare sample materials.

これらの試片を第1図に示す加熱炉■にて1100℃に
1時間加熱した後、棒鋼圧延機■を用いて30φmm 
(波面率43.8%)まで圧延し、その後直ちに700
℃に保定した保熱炉■に装入し30分間保持した。また
、試片階5については保熱温度を220℃1360℃、
420℃、500℃、620℃、780℃、850℃、
930℃にしてそれぞれ30分間保持するとともに、7
00℃の保熱湯度で3分、8分、12分、20分、40
分間保持するテストも行った。なお、保熱終了後はいず
れも大気放冷した。
These specimens were heated to 1100°C for 1 hour in the heating furnace (■) shown in Fig. 1, and then rolled to 30φmm using a steel bar rolling machine (■).
(Wave surface ratio 43.8%), and then immediately rolled to 700%
It was charged into a heat retention furnace (2) maintained at ℃ and held for 30 minutes. In addition, for specimen floor 5, the heat retention temperature was set at 220°C and 1360°C.
420℃, 500℃, 620℃, 780℃, 850℃,
Hold at 930°C for 30 minutes, and
3 minutes, 8 minutes, 12 minutes, 20 minutes, 40 minutes at 00℃ hot water temperature
I also did a test where I held it for a minute. In addition, after completion of heat retention, all samples were allowed to cool in the atmosphere.

得られた試片をそれぞれ10mmの厚さに切断し、95
0℃に4時間保持後水冷した後、ピクリン酸飽和水溶液
に界面活性剤を添加した腐食液で旧オーステナイト粒界
を現出させ、オーステナイト粒度判定を行った。
The obtained specimens were each cut to a thickness of 10 mm, and
After being held at 0° C. for 4 hours and cooling with water, prior austenite grain boundaries were exposed using a corrosive solution prepared by adding a surfactant to a saturated aqueous solution of picric acid, and the austenite grain size was determined.

第1表には、Nb炭化物をつくり得るNb−1、Nb”
の計算値と700℃×30分保熱したときの試片に関す
るオーステナイト粒度を併記している。
Table 1 shows Nb-1, Nb”, which can form Nb carbide.
The calculated value and the austenite grain size of the sample when heated at 700°C for 30 minutes are also shown.

試片階1〜27は本発明に係る鋼であり、試片隘28〜
30はNb含有量ないしはNb”量の点で、試片隘31
、隘32はN含有量の点で、試片11に133、階34
はs。
Specimen floors 1 to 27 are steel according to the present invention, and specimen floors 28 to 27 are steel according to the present invention.
30 is the sample size 31 in terms of Nb content or Nb amount.
, floor 32 is 133 in specimen 11 and floor 34 in terms of N content.
is s.

1、A(!含有量の点で、試片階35〜374;l: 
T I含有量の点で、試片階38、隘39はZr含有酸
の点で、それぞれ本発明の範囲外の比較鋼である。
1. A (! In terms of content, specimens are 35 to 374; l:
In terms of T I content, specimens 38 and 39 are comparative steels that are outside the scope of the present invention, respectively, in terms of Zr-containing acid.

第1表に示す結果かられかるように、本発明鋼はすべて
オーステナイト粒度は8.5番以上の整細粒になってい
るのに対し、比較鋼の試片階28〜34、隘38、隘3
9はいずれも5番以下の粗粒になっている。
As can be seen from the results shown in Table 1, all of the steels of the present invention have fine austenite grain sizes of 8.5 or higher, whereas the comparative steel specimens have grades 28 to 34, 38 and 38. Room 3
No. 9 has coarse grains of No. 5 or below.

また、第4図はT+含有量以外は実質的に同一成分であ
る試片隘3.11に17、阻8、階35、階36、MB
2を超硬合金P20のバイトで切込み0.8mm 、送
り0.25mm/rev、 、無潤滑の切削試験を行っ
た時のバイトのフランク摩耗が0.2mmになるまでの
時間をTi含有量で整理したものである。第4図に示す
ように、Ti含有量が0.05%を越えると工具寿命は
急激に低下している。
In addition, Figure 4 shows specimens 3.11, 17, 8, 35, 36, MB, which have substantially the same components except for the T+ content.
2 with a cutting tool made of cemented carbide P20 at a cutting depth of 0.8 mm, feed rate of 0.25 mm/rev, and no lubrication, the time required for flank wear of the tool to reach 0.2 mm depending on Ti content. It is organized. As shown in FIG. 4, when the Ti content exceeds 0.05%, the tool life rapidly decreases.

次に、第5図は試片l1kL5のオーステナイト粒度と
保熱湯度の関係を示すが、本発明の範囲をはずれると、
急激にオーステナイト粒が粗大化することがわかる。
Next, FIG. 5 shows the relationship between the austenite grain size and the heat retention temperature of the sample l1kL5, which is outside the scope of the present invention.
It can be seen that the austenite grains suddenly become coarser.

さらに第6図には、同じく試片N115のオーステナイ
ト粒度と保熱時間の関係を示すが、本発明範囲をはずれ
ると、やはり急激に粗粒化し始めてい1表 (次頁につづく) (発明の効果) 以」−に説明した如く、本発明はNb析出物のピンニン
グ効果を最大限に発揮・lしめるため、1050℃以上
の温度に加熱してNbを完全に固溶さセた状態で加工し
、次いで400〜800℃の温度に10分間以上保持す
ることによって微細かつ均一に分散したNb炭化物を析
出せしめ、さらに鋼の化学組成を禰整することによって
、Nbを固溶温度の高いNb炭化物として析出させるこ
とに特徴を有するものである。このため、Nb含有量の
うちNb炭化物となり得るNbの総量Nb”を0.橿%
以−にと規定している。
Furthermore, FIG. 6 shows the relationship between the austenite grain size and heat retention time for specimen N115, which shows that once the range of the present invention is exceeded, the grains begin to coarsen rapidly. (Effects) As explained below, in order to maximize the pinning effect of Nb precipitates, the present invention heats the Nb precipitates to a temperature of 1050°C or higher and processes them in a state where Nb is completely dissolved. Then, by holding the temperature at 400 to 800°C for 10 minutes or more to precipitate fine and uniformly dispersed Nb carbide, and further adjusting the chemical composition of the steel, Nb is converted into Nb carbide with a high solid solution temperature. It is characterized by the fact that it is precipitated as Therefore, the total amount of Nb that can become Nb carbide in the Nb content is reduced to 0.0%.
It stipulates that:

このようにして本発明の方法により処理された鋼材は高
温度の表面硬化熱処理を受けてもオーステナイト粒が粗
大化せず、焼入後の熱処理ひずみが小さく、かつ母材の
靭性が優れ、良好な耐摩耗性、疲労強度および面圧強度
を有する肌焼鋼として使用できるのである。
In this way, the steel treated by the method of the present invention does not coarsen the austenite grains even when subjected to high-temperature surface hardening heat treatment, has small heat treatment strain after quenching, and has excellent base material toughness. It can be used as a case-hardened steel with excellent wear resistance, fatigue strength, and surface pressure strength.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図は、本発明を実施するための各種の
圧延−保熱装置の配置例を示す模式図;第4図は、超硬
合金バイトで切削試験を行ったときのTi含有量とフラ
ンク摩耗の関係を示すグラフ; 第5図は、オーステナイト粒度と保熱温度の関係を示す
グラフ;および 第6図は、オーステナイト粒度と保熱時間の関係を示す
グラフである。
Figures 1 to 3 are schematic diagrams showing examples of the arrangement of various rolling and heat retention devices for carrying out the present invention; Figure 4 is a diagram showing the Ti content when a cutting test was conducted with a cemented carbide tool bit. FIG. 5 is a graph showing the relationship between austenite grain size and heat retention temperature; and FIG. 6 is a graph showing the relationship between austenite grain size and heat retention time.

Claims (4)

【特許請求の範囲】[Claims] (1)重量%で、 C:0.10〜0.45%、Si:1.5%以下、Mn
:0.1〜1.5%、Nb:0.01〜0.14%、N
:0.009%以下、sol.Al:0.05%以下、
Ti:0.04%以下およびZr:0.05%以下の1
種または2種以上、残部Feと不可避的不純物 からなり、かつNb含有量、sol.Al含有量、Ti
含有量、Zr含有量およびN含有量によって下式の如く
決定されるNb^*が0.01%以上である化学組成を
有する鋼を、 1050℃以上に加熱した後加工を施し、その後直ちに
400〜800℃の温度範囲内に10分間以上保熱する
ことを特徴とする結晶粒の粗大化しにくい肌焼鋼の製造
方法。 ▲数式、化学式、表等があります▼
(1) In weight%, C: 0.10 to 0.45%, Si: 1.5% or less, Mn
:0.1~1.5%, Nb:0.01~0.14%, N
: 0.009% or less, sol. Al: 0.05% or less,
Ti: 0.04% or less and Zr: 0.05% or less 1
species or two or more species, the balance being Fe and unavoidable impurities, and Nb content, sol. Al content, Ti
A steel having a chemical composition of 0.01% or more of Nb^*, which is determined by the following formula according to the Zr content and N content, is processed after being heated to 1050°C or higher, and then immediately heated to 400°C. 1. A method for producing case-hardened steel in which crystal grains are less likely to become coarse, the method comprising retaining heat within a temperature range of ~800° C. for 10 minutes or more. ▲Contains mathematical formulas, chemical formulas, tables, etc.▼
(2)重量%で、 C:0.10〜0.45%、Si:1.5%以下、Mn
:0.1〜1.5%、Nb:0.01〜0.14%、N
:0.009%以下、sol.Al:0.05%以下、
Ti:0.04%以下およびZr:0.05%以下の1
種または2種以上、Cr:1.5%以下、Mo:0.3
%以下、Ni:2.0%以下の1種または2種以上、残
部Feと不可避的不純物 からなり、かつNb含有量、sol.Al含有量、Ti
含有量、Zr含有量およびN含有量によって下式の如く
決定されるNb^*が0.01%以上である化学組成を
有する鋼を、 1050℃以上に加熱した後加工を施し、その後直ちに
400〜800℃の温度範囲内に10分間以上保熱する
ことを特徴とする結晶粒の粗大化しにくい肌焼鋼の製造
方法。 Nb^*=Nb(%)−(93/14)〔N(%)−(
14/27)sol.Al(%)−(14/48)Ti
(%)−(14/91)Zr(%)〕
(2) In weight%, C: 0.10 to 0.45%, Si: 1.5% or less, Mn
:0.1~1.5%, Nb:0.01~0.14%, N
: 0.009% or less, sol. Al: 0.05% or less,
Ti: 0.04% or less and Zr: 0.05% or less 1
species or two or more species, Cr: 1.5% or less, Mo: 0.3
% or less, Ni: 2.0% or less of one or more types, the balance consisting of Fe and unavoidable impurities, and Nb content, sol. Al content, Ti
A steel having a chemical composition of 0.01% or more of Nb^*, which is determined by the following formula according to the Zr content and N content, is processed after being heated to 1050°C or higher, and then immediately heated to 400°C. 1. A method for producing case-hardened steel in which crystal grains are less likely to become coarse, the method comprising retaining heat within a temperature range of ~800° C. for 10 minutes or more. Nb^* = Nb (%) - (93/14) [N (%) - (
14/27) sol. Al(%)-(14/48)Ti
(%) - (14/91) Zr (%)]
(3)重量%で、 C:0.10〜0.45%、Si:1.5%以下、Mn
:0.1〜1.5%、Nb:0.01〜0.14%、N
:0.009%以下、sol、Al:0.05%以下、
Ti:0.04%以下およびZr:0.05%以下の1
種または2種以上、S:0.04〜0.13%、Pb:
0.03〜0.35%、Ca:0.001〜0.01%
、Te:0.005〜0.05%の1種または2種以上
、残部Feと不可避的不純物 からなり、かつNb含有量、sol.Al含有量、Ti
含有量、Zr含有量およびN含有量によって下式の如く
決定されるNb^*が0.01%以上である化学組成を
有する鋼を、 1050℃以上に加熱した後加工を施し、その後直らに
400〜800℃の温度範囲内に10分間以上保熱する
ことを特徴とする結晶粒の粗大化しにくい肌焼鋼の製造
方法。 Nb^*=Nb(%)−(93/14)〔N(%)−(
14/27)sol.Al(%)−(14/48)Ti
(%)−(14/91)Zr(%)〕
(3) In weight%, C: 0.10 to 0.45%, Si: 1.5% or less, Mn
:0.1~1.5%, Nb:0.01~0.14%, N
: 0.009% or less, sol, Al: 0.05% or less,
Ti: 0.04% or less and Zr: 0.05% or less 1
species or two or more species, S: 0.04-0.13%, Pb:
0.03-0.35%, Ca: 0.001-0.01%
, Te: 0.005 to 0.05% of one or more kinds, the balance being Fe and inevitable impurities, and Nb content, sol. Al content, Ti
A steel having a chemical composition of 0.01% or more of Nb^*, which is determined by the following formula according to the Zr content and N content, is heated to 1050°C or higher, processed, and then processed immediately. A method for producing case hardened steel in which crystal grains are less likely to become coarse, the method comprising retaining heat within a temperature range of 400 to 800°C for 10 minutes or more. Nb^* = Nb (%) - (93/14) [N (%) - (
14/27) sol. Al(%)-(14/48)Ti
(%) - (14/91) Zr (%)]
(4)重量%で、 C:0.10〜0.45%、Si:1.5%以下、Mn
:0.1〜1.5%、Nb:0.01〜0.14%、N
:0.009%以下、sol.Al:0.05%以下、
Ti:0.04%以下およびZr:0.05%以下の1
種または2種以上、Cr:1.5%以下、Mo:0.3
%以下、Ni:2.0%以下の1種または2種以上、S
:0.04〜0.13%、Pb:0.03〜0.35%
、Ca:0.001〜0.01%、Te:0.005〜
0.05%の1種または2種以上、残部Feと不可避的
不純物 からなり、かつNb含有量、sol.Al含有量、Ti
含有量、Zr含有量およびN含有量によって下式の如く
決定されるNb^*が0.01%以上である化学組成を
有する鋼を、 1050℃以上に加熱した後加工を施し、その後直ちに
400〜800℃の温度範囲内に10分間以上保熱する
ことを特徴とする結晶粒の粗大化しにくい肌焼鋼の製造
方法。 Nb^*=Nb(%)−(93/14)〔N(%)−(
14/27)sol.Al(%)−(14/48)Ti
(%)−(14/91)Zr(%)〕
(4) In weight%, C: 0.10 to 0.45%, Si: 1.5% or less, Mn
:0.1~1.5%, Nb:0.01~0.14%, N
: 0.009% or less, sol. Al: 0.05% or less,
Ti: 0.04% or less and Zr: 0.05% or less 1
species or two or more species, Cr: 1.5% or less, Mo: 0.3
% or less, Ni: 1 type or 2 or more types of 2.0% or less, S
:0.04~0.13%, Pb:0.03~0.35%
, Ca: 0.001~0.01%, Te: 0.005~
0.05% of one or more kinds, the balance being Fe and unavoidable impurities, and Nb content, sol. Al content, Ti
A steel having a chemical composition of 0.01% or more of Nb^*, which is determined by the following formula according to the Zr content and N content, is processed after being heated to 1050°C or higher, and then immediately heated to 400°C. 1. A method for producing case-hardened steel in which crystal grains are less likely to become coarse, the method comprising retaining heat within a temperature range of ~800° C. for 10 minutes or more. Nb^* = Nb (%) - (93/14) [N (%) - (
14/27) sol. Al(%)-(14/48)Ti
(%) - (14/91) Zr (%)]
JP23953085A 1985-10-28 1985-10-28 Production of case hardening steel Withdrawn JPS6299416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23953085A JPS6299416A (en) 1985-10-28 1985-10-28 Production of case hardening steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23953085A JPS6299416A (en) 1985-10-28 1985-10-28 Production of case hardening steel

Publications (1)

Publication Number Publication Date
JPS6299416A true JPS6299416A (en) 1987-05-08

Family

ID=17046172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23953085A Withdrawn JPS6299416A (en) 1985-10-28 1985-10-28 Production of case hardening steel

Country Status (1)

Country Link
JP (1) JPS6299416A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002266053A (en) * 2001-03-08 2002-09-18 Sanyo Special Steel Co Ltd Carburizing steel
US10519536B2 (en) 2015-10-20 2019-12-31 Toyota Jidosha Kabushiki Kaisha Method of producing carburizing forging steel material
CN112853208A (en) * 2020-12-31 2021-05-28 江苏铸鸿锻造有限公司 High-thermal-stability steel for injection molding machine screw and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556456A (en) * 1978-06-29 1980-01-17 Daido Steel Co Ltd Blank for surface hardened material having less heat treatment strain
JPS5529126A (en) * 1978-08-23 1980-03-01 Hitachi Ltd Self-protecting type semiconductor controlled rectifying device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556456A (en) * 1978-06-29 1980-01-17 Daido Steel Co Ltd Blank for surface hardened material having less heat treatment strain
JPS5529126A (en) * 1978-08-23 1980-03-01 Hitachi Ltd Self-protecting type semiconductor controlled rectifying device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002266053A (en) * 2001-03-08 2002-09-18 Sanyo Special Steel Co Ltd Carburizing steel
US10519536B2 (en) 2015-10-20 2019-12-31 Toyota Jidosha Kabushiki Kaisha Method of producing carburizing forging steel material
CN112853208A (en) * 2020-12-31 2021-05-28 江苏铸鸿锻造有限公司 High-thermal-stability steel for injection molding machine screw and preparation method thereof
CN112853208B (en) * 2020-12-31 2022-01-07 江苏铸鸿锻造有限公司 High-thermal-stability steel for injection molding machine screw and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6031022B2 (en) Steel wire for bolt excellent in delayed fracture resistance, high-strength bolt, and method for producing them
JP4581966B2 (en) Induction hardening steel
JPS59182952A (en) Case hardening steel
JPH06172867A (en) Production of gear excellent in impact fatigue life
JP4464861B2 (en) Case hardening steel with excellent grain coarsening resistance and cold workability
JPH039168B2 (en)
JP3954437B2 (en) Method for producing case-hardened boron steel to prevent abnormal grain growth of crystal grains
JP4488228B2 (en) Induction hardening steel
JP4807949B2 (en) Rolled steel bar for case hardening with excellent high-temperature carburizing characteristics
JP4344126B2 (en) Induction tempered steel with excellent torsional properties
JP2009293070A (en) Case hardening steel for shaft having excellent low cycle twisting fatigue strength
JP2006219718A (en) Steel for high strength bolt with excellent delayed fracture resistance, and high strength bolt
JPS6299416A (en) Production of case hardening steel
JPH08260039A (en) Production of carburized and case hardened steel
JP3211627B2 (en) Steel for nitriding and method for producing the same
JP3552286B2 (en) Manufacturing method of machine structural steel having excellent machinability, cold forgeability and fatigue strength after quenching and tempering, and a method of manufacturing the member
JPH05339676A (en) Steel for machine structure excellent in cold workability and its manufacture
JP3760535B2 (en) Roughened grain-hardened case-hardened steel, surface-hardened parts excellent in strength and toughness, and method for producing the same
JPH0576523B2 (en)
JP3875605B2 (en) High strength steel with excellent cold workability and delayed fracture resistance
JP3878051B2 (en) Manufacturing method of carburizing steel products with excellent grain size characteristics and machinability
JP2000282170A (en) Grain coarsening resistant case hardening steel, surface hardened parts excellent in strength and toughness, and production thereof
JP3217943B2 (en) Method for producing steel for machine structural use having excellent machinability, cold forgeability and fatigue properties after quenching and tempering
JP2546045B2 (en) Case hardening steel
JP3903996B2 (en) Steel bar and machine structural member for cold forging with excellent machinability, cold forgeability and fatigue strength characteristics after quenching and tempering

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees