JPS6299343A - Homophthalic acid derivative and acid anhydride thereof - Google Patents

Homophthalic acid derivative and acid anhydride thereof

Info

Publication number
JPS6299343A
JPS6299343A JP23981985A JP23981985A JPS6299343A JP S6299343 A JPS6299343 A JP S6299343A JP 23981985 A JP23981985 A JP 23981985A JP 23981985 A JP23981985 A JP 23981985A JP S6299343 A JPS6299343 A JP S6299343A
Authority
JP
Japan
Prior art keywords
compound
acid
formula
general formula
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23981985A
Other languages
Japanese (ja)
Other versions
JPH0692346B2 (en
Inventor
Yasumitsu Tamura
田村 恭光
Manabu Sasho
学 佐生
Shuji Akai
周司 赤井
Yasuyuki Kita
泰行 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP23981985A priority Critical patent/JPH0692346B2/en
Publication of JPS6299343A publication Critical patent/JPS6299343A/en
Publication of JPH0692346B2 publication Critical patent/JPH0692346B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

NEW MATERIAL:A homophthalic acid derivative shown by the formula I (R<1> is H or lower alkoxy; R<2> is lower alkanoyl) or its acid anhydride. EXAMPLE:2'-Acetoxyhomophthalic acid. USE:An intermediate for synthesizing daunomycin and adriamycin. PREPARATION:For example, a compound shown by the formula II is reacted with a compound shown by the formula III in a proper inert solvent in the presence of a basic compound at -80 deg.C-about room temperature to give a compound shown by formula IV. Then this compound shown by the formula IV is oxidized in a proper inert solvent in the presence of an oxidizing agent such as lead tetraacetate, etc., at about room temperature, to give a compound shown by the formula I.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、新規なホモフタル酸誘導体及びその酸無水物
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to novel homophthalic acid derivatives and their acid anhydrides.

従来の技術 従来、ダウノマイシン(oaunomyc in )及
びアドリアマイシン(Adriamycin)の合成中
間体(下記一般式(1)で表わされる化合物)は、既に
テトラヘドロン、生Ω、4539 (1984)に報告
されている。
BACKGROUND ART Conventionally, synthetic intermediates of daunomycin and adriamycin (compounds represented by the following general formula (1)) have already been reported in Tetrahedron, Sei Ω, 4539 (1984).

〔式中R1は水素原子又は低級アルコキシ基を、R2は
低級アルカノイル基を示す。〕 しかしながら、上記文献に記載の方法では、一般式(1
)の化合物を収率よく製造し得ず、工業的に満足できる
ものではない、。
[In the formula, R1 represents a hydrogen atom or a lower alkoxy group, and R2 represents a lower alkanoyl group. ] However, in the method described in the above literature, the general formula (1
) cannot be produced in good yield and is not industrially satisfactory.

問題点を解決するための手段 本発明者らは、ダウンマイシン及びアドリアマイシンの
合成中間体である上記一般式(1)の化合物を収率よく
製造すべく鋭意研究を重ねた結果、下記一般式(2)で
表わされるホモフタル酸誘導体及びその酸無水物を経由
する場合に本発明の所期の効果を達成し得ることを見い
出した。本発明は斯かる知見に基づき完成されたもので
おる。
Means for Solving the Problems The present inventors have conducted extensive research to produce the compound of the above general formula (1), which is a synthetic intermediate for downmycin and adriamycin, in a high yield, and as a result, the following general formula ( It has been found that the desired effect of the present invention can be achieved through the homophthalic acid derivative represented by 2) and its acid anhydride. The present invention has been completed based on this knowledge.

本発明のホモフタル酸誘導体は、文献未記載の新規化合
物であって、下記一般式(2)で表わされる。
The homophthalic acid derivative of the present invention is a novel compound that has not been described in any literature, and is represented by the following general formula (2).

(式中R1は水素原子又は低級アルコキシ基を、R2は
低級アルカノイル基、を示す。)また上記ホモフタル酸
誘導体の酸無水物も、文献未記載の新規化合物であって
、下記一般式(3)%式% 〔式中R1及びR2は前記に同じ。〕 本明細書において、低級アルキル基としては、例えばメ
チル、エチル、n−プロピル、イソプロピル、n−ブチ
ル、tert−ブチル、n−ペンチル、n−ヘキシル基
等の炭素数1〜6の直鎖又は分枝鎖状のアルキル基を挙
げることができる。
(In the formula, R1 represents a hydrogen atom or a lower alkoxy group, and R2 represents a lower alkanoyl group.) The acid anhydride of the above homophthalic acid derivative is also a new compound that has not been described in any literature, and is represented by the following general formula (3). % Formula % [In the formula, R1 and R2 are the same as above. ] In this specification, lower alkyl groups include straight chain or carbon alkyl groups having 1 to 6 carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-butyl, n-pentyl, and n-hexyl groups. Branched alkyl groups can be mentioned.

低級アルカノイル基としては、例えばホルミル、アセチ
ル、プロピオニル、ブチリル、ペンタノイル、ヘキサノ
イル基等の炭素数1〜6の直鎮又は分枝鎖状のアルカノ
イル基を挙げることができる。
Examples of the lower alkanoyl group include straight or branched alkanoyl groups having 1 to 6 carbon atoms, such as formyl, acetyl, propionyl, butyryl, pentanoyl, and hexanoyl groups.

低級アルコキシ基としては、例えばメトキシ、エトキシ
、プロポキシ、イソプロポキシ、ブトキシ、tert−
ブトキシ、ペンチルオキシ、ヘキシルオキシ基等の炭素
数1〜6の直鎖又は分枝鎖状のアルコキシ基を挙げるこ
とができる。
Examples of lower alkoxy groups include methoxy, ethoxy, propoxy, isopropoxy, butoxy, tert-
Examples include straight-chain or branched alkoxy groups having 1 to 6 carbon atoms such as butoxy, pentyloxy, and hexyloxy groups.

上記一般式(2)及び一般式(3)で表わされる本発明
の化合物は、例えば下記反応行程式−1に示す方法によ
り製造される。
The compounds of the present invention represented by the above general formulas (2) and (3) are produced, for example, by the method shown in the following reaction scheme-1.

反応行程式−1 C式中R′及びR2は前記に同じ。R3及びR’は各々
低級アルキル基を、R5は水素原子、低級アルキル基又
はトリ(低級アルキル)シリル基を、Xは塩素原子、臭
素原子等のハロゲン原子を示す。〕 反応行程式−1によれば、公知の一般式(4)で表わさ
れる化合物に公知の一般式(5)で表わされる化合物を
反応させることにより一般式(6)で表わされる化合物
が製造され、次いで該化合物(6)を酸化することによ
り一般式(2)で表わされる本発明の化合物が製造され
、更に該化合物(2)に一般式(7)で表わされる化合
物を作用させることにより一般式(3)で表わされる本
発明の化合物が製造される。
Reaction Scheme-1 In formula C, R' and R2 are the same as above. R3 and R' each represent a lower alkyl group, R5 represents a hydrogen atom, a lower alkyl group or a tri(lower alkyl)silyl group, and X represents a halogen atom such as a chlorine atom or a bromine atom. ] According to Reaction Scheme-1, a compound represented by general formula (6) is produced by reacting a known compound represented by general formula (4) with a known compound represented by general formula (5). Then, by oxidizing the compound (6), the compound of the present invention represented by the general formula (2) is produced, and by further reacting the compound (2) with the compound represented by the general formula (7), the compound of the present invention is produced by oxidizing the compound (6). A compound of the present invention represented by formula (3) is produced.

化合物(4)と化合物(5)との反応は、適当な不活性
溶媒中、強塩基性化合物の存在下、−80’C〜室温程
度の温度条件下に30分〜4時間程度で実施される。使
用される不活性溶媒としては、特に限定されるものでは
なく、反応に悪影響を及ぼさない通常の溶媒を広く使用
でき、例えばテトラヒドロフラン、ジオキサン、ジエチ
ルエ−チル等のエーテル類を挙げることができる。また
強塩基性化合物としても、特に限定されるものではなく
、例えばn−ブチルリチウム等の低級アルキルリチウム ム等のアルカリ金属、水素化ナトリウム等の水素化アル
カリ金属、リチウムジイソプロピルアミド等の通常の強
塩基性化合物を例示できる。使用される化合物(5)及
び強塩基性化合物の量としては、それぞれ化合物(4)
に対して通常少なくとも3倍モル量程度、好ましくは3
〜4倍モル量程度とするのがよい。
The reaction between compound (4) and compound (5) is carried out in a suitable inert solvent in the presence of a strong basic compound at a temperature of about -80'C to room temperature for about 30 minutes to 4 hours. Ru. The inert solvent used is not particularly limited, and a wide variety of common solvents that do not adversely affect the reaction can be used, and examples include ethers such as tetrahydrofuran, dioxane, and diethyl ethyl. The strong basic compound is not particularly limited, and examples include alkali metals such as lower alkyl lithium such as n-butyllithium, alkali metal hydrides such as sodium hydride, and ordinary strong basic compounds such as lithium diisopropylamide. Examples include basic compounds. The amounts of compound (5) and strong basic compound used are as follows: Compound (4)
Usually at least 3 times the molar amount, preferably 3
It is preferable to set the amount to about 4 times the molar amount.

化合物(6)の酸化反応は、適当な不活性溶媒中、酸化
剤の存在下、O〜70’C程度、好ましくは室温の温度
条件下に1〜6時間程度で実施される。使用される不活
性溶媒としては、特に限定されるものではなく、反応に
悪影響を及ぼさない通常の溶媒を広く使用でき、例えば
テトラヒドロフラン、ジオキサン、ジエチルエーテル等
のエーテル類、ベンゼン等の芳香族炭化水素類等を挙げ
ることができる。酸化剤としては、低級アルカノイル基
を付加し得るものでおる限り従来公知の酸化剤を広く使
用でき、例えば四酢酸鉛等の四(低級アルカン酸)鉛、
三酢酸マンガン等の三(低級アルカン酸)マンガン等が
挙げられる。使用される酸化剤の量としては、化合物(
6)に対して通常少なくとも等モル量程度、好ましくは
等モル−2倍モル量程度とするのがよい。斯くして一般
式(2〉の本発明化合物が製造される。
The oxidation reaction of compound (6) is carried out in a suitable inert solvent in the presence of an oxidizing agent at a temperature of about 0 to 70'C, preferably room temperature, for about 1 to 6 hours. The inert solvent used is not particularly limited, and a wide variety of ordinary solvents that do not adversely affect the reaction can be used, such as ethers such as tetrahydrofuran, dioxane, and diethyl ether, and aromatic hydrocarbons such as benzene. There are many examples of this. As the oxidizing agent, a wide variety of conventionally known oxidizing agents can be used as long as it can add a lower alkanoyl group, such as lead tetra(lower alkanoate) such as lead tetraacetate,
Examples include manganese tri(lower alkanoate) such as manganese triacetate. The amount of oxidizing agent used may vary depending on the compound (
It is usually at least an equimolar amount, preferably an equimolar amount to about twice the molar amount of 6). In this way, the compound of the present invention having the general formula (2) is produced.

一般式(2)の化合物と一般式(7)の化合物との反応
は、適当な不活性溶媒中、O〜80℃程度、好ましくは
室温付近の温度条件下に5分〜12時間程度で実施され
る。使用される不活性溶媒としては、特に限定されるも
のではなく、反応に悪影響を及ぼさない通常の溶媒を広
く使用でき、例えばクロロホルム、塩化メチレン、1,
2−ジクロロエタン等のハロゲン化炭化水素類、テトラ
ヒドロフラン、ジオキサン、ジエチルエーテル等のエー
テル類、ベンゼン等の芳香族炭化水素類、酢酸エチル等
のエステル類等を挙げることができる。使用される化合
物(7)の量としては、化合物(2)に対して通常少な
くとも等モル量程度、好ましくは等モル−2倍モル旧程
度とするのがよい。斯くして一般式(3)の本発明化合
物が製造される。
The reaction between the compound of general formula (2) and the compound of general formula (7) is carried out in a suitable inert solvent at a temperature of about 0 to 80°C, preferably around room temperature, for about 5 minutes to 12 hours. be done. The inert solvent used is not particularly limited, and a wide variety of ordinary solvents that do not adversely affect the reaction can be used, such as chloroform, methylene chloride, 1,
Examples include halogenated hydrocarbons such as 2-dichloroethane, ethers such as tetrahydrofuran, dioxane and diethyl ether, aromatic hydrocarbons such as benzene, and esters such as ethyl acetate. The amount of compound (7) to be used is usually at least equimolar to compound (2), preferably equimolar to twice the molar amount. In this way, the compound of the present invention of general formula (3) is produced.

斯くして製造された一般式(3)の本発明化合物は、下
記反応行程式−2に示す方法により一般式(1)の化合
物に誘導され得る。
The thus-produced compound of the present invention of general formula (3) can be induced to a compound of general formula (1) by the method shown in reaction scheme-2 below.

反応行程式−2 〔式中R1及びR2は前記に同じ。Yは塩素原子、臭素
原子、沃素原子等のハロゲン原子又は水素原子を示す。
Reaction Scheme-2 [In the formula, R1 and R2 are the same as above. Y represents a halogen atom such as a chlorine atom, a bromine atom, an iodine atom, or a hydrogen atom.

〕 化合物(3)と公知の一般式(8)で表わされる化合物
との反応は、適当な不活性溶媒中、強塩基性化合物の存
在下、−80〜50’C程度、好ましくは空温付近の温
度条件下に10分〜6時間程度、好ましくは15〜30
分間程度で実施される。
] The reaction between compound (3) and the compound represented by the known general formula (8) is carried out in a suitable inert solvent in the presence of a strong basic compound at about -80 to 50'C, preferably at around air temperature. for about 10 minutes to 6 hours, preferably 15 to 30
It takes about a minute.

使用される不活性溶媒としては、特に限定されるもので
はなく、反応に悪影響を及ぼさない通常の溶媒を広く使
用でき、例えばテトラヒドロフラン、ジオキサン、ジエ
チルエーテル等のエーテル類、ヘキサン、シクロヘキサ
ン等の飽和炭化水素類、ベンゼン等の芳香族炭化水素類
等を挙げることができる。また強塩基性化合物としても
、特に限定されるものではなく、例えばn−ブチルリチ
ウム等の低級アルキルリチウム、リチウム、ナトリウム
、カリウム等のアルカリ金属、水素化ナトリウム、水素
化カリウム、水素化リチウム等の水素化アルカリ金属、
リチウムジイソプロピルアミド等の通常の強塩基性化合
物を例示できる。使用される化合物(8)の量としては
、化合物(3)に対して通常少なくとも等モル量程度、
好ましくは等モル−1,5倍モル量程度とするのがよく
、また強塩基性化合物の量としては、化合物(3)に対
して通常少なくとも等モル量程度、好ましくは1〜2倍
モル量程度とするのがよい。
The inert solvent used is not particularly limited, and a wide range of ordinary solvents that do not adversely affect the reaction can be used, such as ethers such as tetrahydrofuran, dioxane, and diethyl ether, and saturated carbonized solvents such as hexane and cyclohexane. Hydrogens, aromatic hydrocarbons such as benzene, etc. can be mentioned. Strong basic compounds are not particularly limited, and include, for example, lower alkyl lithium such as n-butyl lithium, alkali metals such as lithium, sodium, and potassium, sodium hydride, potassium hydride, lithium hydride, etc. alkali metal hydride,
Examples include common strong basic compounds such as lithium diisopropylamide. The amount of compound (8) used is usually at least about equimolar amount to compound (3),
Preferably, the amount is about equimolar to 1.5 times the molar amount, and the amount of the strong basic compound is usually at least about the same molar amount, preferably 1 to 2 times the molar amount of compound (3). It is better to set it as a degree.

上記反応行程式−1及び−2に示す方法により、化合物
(4)から本発明化合物(2)及び(3)を経て化合物
(1)を簡便な操作により好収率で工業的に有利に製造
し得る。
By the methods shown in the above reaction schemes -1 and -2, compound (1) is industrially advantageously produced in good yield by simple operations from compound (4) through compounds (2) and (3) of the present invention. It is possible.

更にダウノマイシン及びアドリアマイシンの合成中間体
として下記一般式(9)の化合物が知られている〔ジャ
ーナル オブ ザ アメリカンケミカル ソサイエテイ
ー、98.1967(1976)、ジャーナル オブ 
ザ ケミカルソサイエテイー パーキン トランザクシ
ョンI、1981.689参照〕。
Furthermore, the compound represented by the following general formula (9) is known as a synthetic intermediate for daunomycin and adriamycin [Journal of the American Chemical Society, 98.1967 (1976), Journal of
See The Chemical Society Perkin Transactions I, 1981.689].

〔式中R+/ は低級アルコキシ基を示す。〕しかしな
がら、上記文献に記載の方法では、一般式(9)の化合
物を収率よく製造し得ず、工業的に満足できるものでは
ない、。
[In the formula, R+/ represents a lower alkoxy group. However, the method described in the above-mentioned document cannot produce the compound of general formula (9) in good yield, and is not industrially satisfactory.

本発明者らは、下記一般式(10)で表わされる新規化
合物を経由する場合に上記一般式(9)で表わされる化
合物を好収率で製造し得ることをも見い出した。
The present inventors have also discovered that the compound represented by the above general formula (9) can be produced in good yield when using a novel compound represented by the following general formula (10).

〔式中R1/ は前記に同じ。R6は低級アルキル基を
示す。〕 上記一般式(10)の化合物は、例えば反応行程式−3
に示す方法により、一般式(1a)の化合物(R’が低
級アルコキシ基である一般式(1)の化合物〕から工業
的規模で好収率にて製造し得る。
[In the formula, R1/ is the same as above. R6 represents a lower alkyl group. ] The compound of the above general formula (10) is, for example, reaction scheme-3
It can be produced on an industrial scale in good yield from the compound of general formula (1a) (the compound of general formula (1) in which R' is a lower alkoxy group) by the method shown in .

反応行程式−3 (la)            αη〔式中R1′、
R2及びR6は前記に同じ。〕一般式(1a)の化合物
の加水分解は、例えば適当な溶媒中酸の存在下に行なわ
れる。用いられる溶媒としては、通常の溶媒を広く使用
でき、例えば水、メタノール、エタノール、イソプロパ
ツール等のアルコール類、ジオキサン、テトラヒドロフ
ラン等のエーテル類やこれらの混合溶媒等を挙げること
ができる。また酸としては、特に制限されず、従来公知
の酸を広く使用でき、例えば塩酸、5fft酸、臭化水
素酸等の鉱酸、トリフルオロ酢酸、p−トルエンスルホ
ン酸等の有機酸等が挙げられる。斯かる酸の使用量とし
ては、通常化合物(1a〉に対して大過剰量とするのが
よい。上記反応は、通常空温〜100’C程度、好まし
くは空温〜80℃程度にて行なわれ、一般に1〜10時
間程度で該反応は完結する。
Reaction scheme-3 (la) αη [in the formula, R1',
R2 and R6 are the same as above. ] Hydrolysis of the compound of general formula (1a) is carried out, for example, in the presence of an acid in a suitable solvent. As the solvent used, a wide variety of common solvents can be used, and examples include water, alcohols such as methanol, ethanol, and isopropanol, ethers such as dioxane and tetrahydrofuran, and mixed solvents thereof. The acid is not particularly limited, and a wide variety of conventionally known acids can be used, such as mineral acids such as hydrochloric acid, 5fft acid, and hydrobromic acid, and organic acids such as trifluoroacetic acid and p-toluenesulfonic acid. It will be done. The amount of such acid used is usually in large excess relative to the compound (1a).The above reaction is usually carried out at air temperature to about 100'C, preferably at air temperature to about 80'C. The reaction is generally completed in about 1 to 10 hours.

斯くして得られる化合物(11)と化合物(12)との
反応は、適当な不活性溶媒中、−80’C−空温程度、
好ましくは−80〜−50°Cの温度条件下に1〜6時
間程度で実施される。
The reaction between compound (11) and compound (12) obtained in this way is carried out in an appropriate inert solvent at about -80'C-air temperature,
Preferably, it is carried out at a temperature of -80 to -50°C for about 1 to 6 hours.

使用される不活性溶媒としては、特に限定されるもので
はなく、反応に悪影響を及ぼさない通常の溶媒を広く使
用でき、例えばテトラヒドロフラン、ジオキサン等のエ
ーテル類、ベンゼン等の芳香族炭化水素類等を挙げるこ
とができる。使用される化合物(12)の量としては、
化合物(11)に対して通常少なくとも等モル量程度、
好ましくは5〜20倍モル量程度とするのがよい。
The inert solvent used is not particularly limited, and a wide range of ordinary solvents that do not adversely affect the reaction can be used, such as ethers such as tetrahydrofuran and dioxane, aromatic hydrocarbons such as benzene, etc. can be mentioned. The amount of compound (12) used is:
Usually at least about an equimolar amount relative to compound (11),
Preferably, it is about 5 to 20 times the molar amount.

化合物(10)の加水分解反応及び/又は脱シリレーシ
ョン反応は、適当な不活性溶媒中、触媒及び酸の存在下
に行なわれる。溶媒としては、通常の溶媒を広く使用で
き、例えばテトラヒドロフラン、ジオキサン、ジエチル
エーテル、ジメトキシエチレングリコール等のエーテル
類、ヘキサン、シクロヘキサン等の飽和炭化水素類、ベ
ンゼン等の芳香族炭化水素類等を挙げることができる。
The hydrolysis reaction and/or desilylation reaction of compound (10) is carried out in a suitable inert solvent in the presence of a catalyst and an acid. As the solvent, a wide range of common solvents can be used, including ethers such as tetrahydrofuran, dioxane, diethyl ether, and dimethoxyethylene glycol, saturated hydrocarbons such as hexane and cyclohexane, and aromatic hydrocarbons such as benzene. I can do it.

また触媒としては、この種の反応に通常使用されている
公知の触媒を広く使用でき、例えば酸化水銀(HQO)
等が挙げられる。酸としては、特に制限がなく、従来公
知の酸を広く使用でき、例えば硫酸、塩酸等を挙げるこ
とができる。斯かる酸の濃度としては、20%前後が好
ましく、酸の使用量は、化合物(10)に対して大過剰
量とするのがよい。また使用される触媒の量としては、
化合物(10)に対して通常少なくとも等モル量程度、
好ましくは1〜5倍モル程度とするのがよい。上記反応
は、通常O〜100℃程度、好ましくは50〜70’C
程度にて行なわれ、一般朝1〜2時間程度で該反応は終
了する。
Further, as a catalyst, a wide range of known catalysts commonly used in this type of reaction can be used, such as mercury oxide (HQO).
etc. The acid is not particularly limited, and a wide variety of conventionally known acids can be used, including sulfuric acid, hydrochloric acid, and the like. The concentration of such acid is preferably around 20%, and the amount of acid used is preferably in large excess relative to compound (10). The amount of catalyst used is
Usually at least about an equimolar amount relative to compound (10),
Preferably, the amount is about 1 to 5 times the mole. The above reaction is usually carried out at about 0 to 100'C, preferably from 50 to 70'C.
The reaction is generally completed in about 1 to 2 hours in the morning.

上記各々の行程で得られる目的化合物は、通常の分離手
段により反応混合物から容易に単離、精製される。斯か
る分離手段としては、例えば溶媒抽出法、溶媒希釈法、
再結晶法、カラムクロマトグラフィー、プレバラテイブ
薄層クロマトグラフィー等を挙げることができる。
The target compounds obtained in each of the above steps are easily isolated and purified from the reaction mixture by conventional separation means. Such separation means include, for example, solvent extraction method, solvent dilution method,
Examples include a recrystallization method, column chromatography, prevariative thin layer chromatography, and the like.

発明の効果 本発明の化合物は、化合物(1)を合成するための中間
体として有用な化合物である。本発明の化合物を経由す
れば、工業的に規模で化合物(1)を収率よく、しかも
高純度で製造し得る。
Effects of the Invention The compound of the present invention is a compound useful as an intermediate for synthesizing compound (1). By using the compound of the present invention, compound (1) can be produced on an industrial scale in good yield and with high purity.

実施例 以下に実施例及び参考例を掲げるが、本発明はこれらに
限定されるものではない。
Examples Examples and reference examples are listed below, but the present invention is not limited thereto.

実施例1 ホモフタル1180mgのテトラヒドロフラン(THF
>8mQ溶液に一78℃で30分間リチウムジイソプロ
ピルアミド342m(]を反応させた。
Example 1 1180 mg of homophthalate in tetrahydrofuran (THF)
>8mQ solution was reacted with 342m() of lithium diisopropylamide at -78°C for 30 minutes.

次いでこの溶液にトリメチルシリルクロライド0.75
鵬を一78℃で1.5時間、室温で30分間反応させた
。次にこの溶液に四酢酸鉛(90%>550mc+の屹
燥ベンゼン4rrIQ溶液を室温で2時間反応させ、定
量的に2′−アセトキシホモフタル酸を得た。
Then add 0.75% of trimethylsilyl chloride to this solution.
Peng was reacted at -78° C. for 1.5 hours and at room temperature for 30 minutes. Next, this solution was reacted with lead tetraacetate (90%>550 mc+ solution of dried benzene 4rrIQ) at room temperature for 2 hours to quantitatively obtain 2'-acetoxyhomophthalic acid.

収量:232mg(収率100%) ” H−NMR(アセトン−d6):δ2.12 (3
H,s、OCOCH3)6.8 (2H,brs、C0
0Hx2>7.18 (IH,s、CH) 7.2〜7.8 (3H,m、ArH>7.9〜8.1
5 (1H,m、ArH>I R(KCQ ) cm−
’ : 3070.3020,2920,2850゜2630,
1755.1720,1675.1600.1580 実施例2 6−メドキシホモフタル酸210mgから実施例1と同
様にして2′−アセトキシ−6−メドキシホモフタル酸
を定量的に得た。
Yield: 232 mg (yield 100%) ” H-NMR (acetone-d6): δ2.12 (3
H, s, OCOCH3) 6.8 (2H, brs, C0
0Hx2>7.18 (IH, s, CH) 7.2~7.8 (3H, m, ArH>7.9~8.1
5 (1H, m, ArH>IR(KCQ) cm-
': 3070.3020,2920,2850°2630,
1755.1720, 1675.1600.1580 Example 2 2'-acetoxy-6-medoxyhomophthalic acid was quantitatively obtained from 210 mg of 6-medoxyhomophthalic acid in the same manner as in Example 1.

収量:261m(J(収率97%) + H−NMR(アセトン−d6):δ2.09 (3
H,5SOCOCH3)3.87 (3HSS、OCH
3) 6.21 (1H,5SCH> 6.30 (2H,brs、C00HX2>6.95〜
7.55 (3H,m、ArH)IR(CHCQ3 )
cm−’ : 3300〜2800.1760〜1710実施例3 2′−7セトキシホモフタル180mc+及びトリメチ
ルシリルエトキシアセチレン65mc+を塩化メチレン
1.5ml中にて空温で4時間反応させて、定量的に4
−アセトキシホモフタル酸無水物を得た。
Yield: 261 m (J (yield 97%) + H-NMR (acetone-d6): δ2.09 (3
H,5SOCOCH3)3.87 (3HSS,OCH
3) 6.21 (1H, 5SCH> 6.30 (2H, brs, C00HX2>6.95~
7.55 (3H,m,ArH)IR(CHCQ3)
cm-': 3300-2800.1760-1710 Example 3 180mc+ of 2'-7 setoxyhomophthal and 65mc+ of trimethylsilylethoxyacetylene were reacted in 1.5ml of methylene chloride at air temperature for 4 hours to quantitatively give 4.
-Acetoxyhomophthalic anhydride was obtained.

収量ニア4mg(収率100%) ’ H−NMR(CDCIQ3 ):δ2.31 (3
H,S、0COCH3)6.53 (1H,s、CH) 7.3〜7.9 <3H,m1Art−1>8.05〜
8.3 (1H,m、ArH>IR(CHCQ3)cm
−’ : 1805.1765.1600 実施例4 2′−アセトキシ−6−メドキシホモフタル酸80mg
から実施例3と同様にして4−アセトキシ−8−メトキ
シホモフタル酸無水物を得た。
Yield near 4 mg (yield 100%) 'H-NMR (CDCIQ3): δ2.31 (3
H, S, 0COCH3) 6.53 (1H, s, CH) 7.3~7.9 <3H, m1Art-1>8.05~
8.3 (1H, m, ArH>IR(CHCQ3)cm
-': 1805.1765.1600 Example 4 2'-acetoxy-6-medoxyhomophthalic acid 80 mg
4-acetoxy-8-methoxyhomophthalic anhydride was obtained in the same manner as in Example 3.

収量ニア4mg(収率99%) ’ HNMR(CDCQ3 >:δ 2.32 (3H,S、OCOCH3)4.00 (3
HS S、OCH3) 6.51  (1H,s、CH) 6.9〜7.2 (2H,m、ArH>7.70 (I
H,t、ArH> I R(CHCQ 3  ) cm−’ :1815.
1765.1600 参考例1 4−アセトキシ−8−メトキシホモフタル酸無水物86
mgを15分間至至温てTHF4n12中水素化ナトリ
ウム17mqで処理した後、約20時間空温にて2−ク
ロロ−6,6−ニチレンジオキシー5.6,7.8−テ
トラヒドロ−1,4−ナフトキノン87mgと反応させ
、塩化メチレン−エタノールより再結晶して11−アセ
トキシ−2,2−エチレンジオキシ−6−ヒドロキシ−
7−メトキシ−1,2,3,4−テトラヒドロ−5,1
2−ナフタセンキノン90mc+を得た。
Yield near 4 mg (yield 99%) 'HNMR (CDCQ3 >: δ 2.32 (3H,S, OCOCH3) 4.00 (3
HS S, OCH3) 6.51 (1H,s, CH) 6.9~7.2 (2H,m, ArH>7.70 (I
H, t, ArH>IR(CHCQ3) cm-': 1815.
1765.1600 Reference Example 1 4-acetoxy-8-methoxyhomophthalic anhydride 86
2-chloro-6,6-nithylenedioxy-5.6,7.8-tetrahydro-1,4 was treated with 17 mq of sodium hydride in THF4N12 for 15 minutes at room temperature and then at air temperature for about 20 hours. 11-acetoxy-2,2-ethylenedioxy-6-hydroxy-
7-methoxy-1,2,3,4-tetrahydro-5,1
90mc+ of 2-naphthacenequinone was obtained.

収率62%、融点248〜253°C 参考例2 11−アセトキシ−2,2−エチレンジオキシ−6−ヒ
ドロキシ−7−メトキシ−1,2,3゜4−テトラヒド
ロ−5,12−ナフタセンキノン40m(lのトリフル
オロ酢酸4mf2溶液に水2mQを滴下し、50℃で3
時間加熱した。冷却後、溶媒を減圧留去し、得られた残
漬をシリカゲルカラムクロマトグラフィー(溶出液;ベ
ンゼン:エチルエーテル=10:1)で精製した。酢酸
で再結晶し、5.12−ジヒドロキシ−2−オキソ−7
−メドキシー1.2,3.4−テトラヒドロ−6,11
−ナフタセンキノン28mgを得た。
Yield 62%, melting point 248-253°C Reference example 2 11-acetoxy-2,2-ethylenedioxy-6-hydroxy-7-methoxy-1,2,3°4-tetrahydro-5,12-naphthacenequinone 40m (2 mQ of water was added dropwise to 4 mf2 solution of trifluoroacetic acid, and
heated for an hour. After cooling, the solvent was distilled off under reduced pressure, and the resulting residue was purified by silica gel column chromatography (eluent; benzene:ethyl ether = 10:1). Recrystallized from acetic acid to give 5,12-dihydroxy-2-oxo-7
-Medoxy 1.2,3.4-tetrahydro-6,11
-28 mg of naphthacenequinone was obtained.

収率88%、融点252〜256°C 参考例3 2−トリメチルシリルエチニルリチウム101mg及び
塩化第一セリウム370mg8THF 5mQ中−ツー
78で3時間反応させてトリメヂルシリルエチニルセリ
ウムクロライドを予め合成しておいた。
Yield 88%, melting point 252-256°C Reference Example 3 101 mg of 2-trimethylsilylethynyl lithium and 370 mg of cerous chloride were reacted for 3 hours at -78 in 5 mQ of THF to synthesize trimedylsilylethynyl cerium chloride in advance. .

5,12−ジピドロキシー2−オキソ−7−メドキシー
1.2,3.4−テトラヒドロ−6゜11−ナフタセン
キノン22111gをトリメチルシリルエチニルセリウ
ムクロライドで処理し、クロロホルムで再結晶して4−
メトキシ−6,9,11−トリヒドロキシ−9−トリメ
チルシリルエチニル−7,8,9,10−テトラヒドロ
−5,12−ナフタセンキノン’19.5m!;lを得
た。
22,111 g of 5,12-dipidroxy-2-oxo-7-medoxy 1,2,3,4-tetrahydro-6゜11-naphthacenequinone was treated with trimethylsilylethynylcerium chloride and recrystallized from chloroform to give 4-
Methoxy-6,9,11-trihydroxy-9-trimethylsilylethynyl-7,8,9,10-tetrahydro-5,12-naphthacenequinone'19.5m! ;1 was obtained.

収率69%、融点262〜264.5°C’ HNMR
(CDCQ3):δ 0.16 (9H,s、(CH3) 33 ! )2.
13(2H,brt、C8CH2)3.02 (2H,
brt、Cy −CH2)3.15 (2H,brs、
C+ o  CH2>4.10 (3H,S、OCH3
) 7.38 (1H,dd、C3H) 7.76 (1H,t、C2H) 8.04 (1H,dd、C+  −H)13.48 
 (IH,s、0H) 13.85 (1H,s、OH> IR(CHC9t3 )cm−’ : 1605.1580 参考例4 4−メトキシ−6,9,11−トリヒドロキシ−9−ト
リメチルシリルエチニル−7,8,9゜10−テトラヒ
ドロ−5,12−ナフタセンキノン8.8m(11をT
HF11+1Q中、1.5時間70℃にて、触媒として
酸化水銀13m0を用い、20%硫酸0.3111Qに
より加水分解し、酢酸エチル−THEより再結晶して(
±)−7−ジオキシダウノマイシン6.6mgを得た。
Yield 69%, melting point 262-264.5°C' HNMR
(CDCQ3): δ 0.16 (9H,s, (CH3) 33!)2.
13 (2H, brt, C8CH2) 3.02 (2H,
brt, Cy-CH2) 3.15 (2H, brs,
C+ o CH2>4.10 (3H,S,OCH3
) 7.38 (1H, dd, C3H) 7.76 (1H, t, C2H) 8.04 (1H, dd, C+ -H) 13.48
(IH, s, 0H) 13.85 (1H, s, OH> IR (CHC9t3) cm-': 1605.1580 Reference example 4 4-methoxy-6,9,11-trihydroxy-9-trimethylsilylethynyl-7 ,8,9゜10-tetrahydro-5,12-naphthacenequinone 8.8m (11 is T
It was hydrolyzed in HF11+1Q at 70°C for 1.5 hours using 13m0 of mercury oxide as a catalyst and 0.3111Q of 20% sulfuric acid, and recrystallized from ethyl acetate-THE.
6.6 mg of ±)-7-dioxydaunomycin was obtained.

収率86%、融点229〜233.5℃(以 上)Yield 86%, melting point 229-233.5°C (above)

Claims (1)

【特許請求の範囲】[Claims] (1)一般式 ▲数式、化学式、表等があります▼ 〔式中R^1は水素原子又は低級アルコキシ基を、R^
2は低級アルカノイル基を示す。〕 で表わされるホモフタル酸誘導体又はその酸無水物。
(1) General formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ [In the formula, R^1 is a hydrogen atom or a lower alkoxy group, R^
2 represents a lower alkanoyl group. ] A homophthalic acid derivative or its acid anhydride represented by:
JP23981985A 1985-10-25 1985-10-25 Homophthalic acid derivative and its acid anhydride Expired - Lifetime JPH0692346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23981985A JPH0692346B2 (en) 1985-10-25 1985-10-25 Homophthalic acid derivative and its acid anhydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23981985A JPH0692346B2 (en) 1985-10-25 1985-10-25 Homophthalic acid derivative and its acid anhydride

Publications (2)

Publication Number Publication Date
JPS6299343A true JPS6299343A (en) 1987-05-08
JPH0692346B2 JPH0692346B2 (en) 1994-11-16

Family

ID=17050316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23981985A Expired - Lifetime JPH0692346B2 (en) 1985-10-25 1985-10-25 Homophthalic acid derivative and its acid anhydride

Country Status (1)

Country Link
JP (1) JPH0692346B2 (en)

Also Published As

Publication number Publication date
JPH0692346B2 (en) 1994-11-16

Similar Documents

Publication Publication Date Title
Guindon et al. Regiocontrolled opening of cyclic ethers using dimethylboron bromide
CN115894554A (en) Preparation method of phosphonic acid compound
JPS6299343A (en) Homophthalic acid derivative and acid anhydride thereof
JPH0129792B2 (en)
JPH06100487A (en) Production of ether compound
JP3002750B2 (en) Indole derivatives
CA1131622A (en) Intermediates for the synthesis of (.sup. )-4- demethoxydaunorubicin
JP3857353B2 (en) Pyrroloquinoline derivatives
SU690021A1 (en) Carboranylmethylalkoxysilanes as intermediate products for synthesis of thermally stable polymers
US6103914A (en) Method of producing optically active material of tricyclic compound
JP3249847B2 (en) Method for producing Z-cyclohexylideneacetic acid derivative
JP3473053B2 (en) Method for producing acetylene alcohols
JPH0834769A (en) Vitamin d derivative containing substituent group at second position
JP2893473B2 (en) Process for producing (+)-equilenin and intermediate
JPH0761979A (en) Bisphenol derivative and its production
JPH0257552B2 (en)
JP3495774B2 (en) Method for producing 1-hydroxyindoles
CN113651845A (en) Preparation method of ossifying diol intermediate A ring
JPH0517469A (en) Synthetic intermediate for macrolide
JPH0257551B2 (en)
JPH0558977A (en) Novel intermediate compound for producing indolealkaloid derivative
JPH07233164A (en) Preparation of pilocarpine derivative
JPS60130586A (en) Production of naphthacenequinone derivative
JPH051774B2 (en)
JPH06220052A (en) Production of imide derivative