JPS6298573A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS6298573A
JPS6298573A JP60237485A JP23748585A JPS6298573A JP S6298573 A JPS6298573 A JP S6298573A JP 60237485 A JP60237485 A JP 60237485A JP 23748585 A JP23748585 A JP 23748585A JP S6298573 A JPS6298573 A JP S6298573A
Authority
JP
Japan
Prior art keywords
cell
outlet
inlet
fuel gas
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60237485A
Other languages
Japanese (ja)
Inventor
Makoto Nakajima
良 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60237485A priority Critical patent/JPS6298573A/en
Publication of JPS6298573A publication Critical patent/JPS6298573A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To increase pressure loss in the inlet and the outlet of a cell, reduce hydrostatic pressure effect caused by gas density difference, and make flow rate distribution uniform by arranging a resistance which produces flow resistance in the front of cell stack on fuel gas inlet side and/or the surface of cell stack on its outlet side. CONSTITUTION:A flow resistance 8 is arranged in the front of fuel gas inlet in a cell stack 1. The flow resistance 8 produces resistance to fuel gas supplied, and any resistance such as porous plate which produces large pressure loss compared with hydrostatic pressure effect can be used for the flow resistance 8. In pressure distribution in the inside of manifold of the inlet and outlet of fuel cell, since pressure difference between the inlet and the outlet is increased by the flow rate resistance plate, the upper part pressure difference DELTAPtop and the lower part pressure difference DELTAPbottom are increased, and the ratio of pressure difference in the upper part and the lower part (DELTAPtop/DELTAPbottom) becomes nearly 1. Therefore, the flow rate distribution in a cell height direction is made uniform.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、燃料電池発電装置の本体構造に関する0 〔発明の技術的背景とその問題点〕 近年、クリーンでかつ高効率の特徴を有する燃料電池に
よる発電システムを、都市近郊における中規模分散型発
電所として用いる事に関心が高まつている。この燃料電
池の電池本体の構造は、例えば第5図に示す如く構成さ
れている。すなわち複数個の単電池を積層することによ
って組み立てられたセルスタック1を電池押さえ2を用
いて上下部で固定し、燃料ガス入口座4および整流板5
を備えた燃料ガス入口マニホールド3を電池の1側面に
配し、対向する1側面には燃料ガス出口座7を備えた燃
料ガス出口マニホールド6を配して電池本体は構成され
る。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to the main body structure of a fuel cell power generation device. There is growing interest in the use of power generation systems based on power generation systems as medium-sized distributed power plants in the suburbs of cities. The structure of the cell main body of this fuel cell is, for example, as shown in FIG. That is, a cell stack 1 assembled by stacking a plurality of single cells is fixed at the top and bottom using battery holders 2, and a fuel gas inlet port 4 and a rectifying plate 5 are fixed.
The battery main body is constructed by disposing a fuel gas inlet manifold 3 with a fuel gas inlet manifold 3 on one side of the battery, and disposing a fuel gas outlet manifold 6 with a fuel gas outlet port 7 on the opposite side.

この様な構成から成る燃料電池においては、電池本体の
セルスタックが、何段のセルから構成されているか、言
いかえれば、何個の単゛4池から構成されているかが′
N要となってくる。何故ならば、燃料電池の発電出力の
大小は、単電池の数によって決定されるからである。近
年の単電池積層技術の進展に伴なって、1つの電池の積
層高さは2mを超えるものも実現でさる様になってきた
が、この様に1つのセルスタックの高さを増すことによ
って1セルスタツクあたりの発′亀出力を高められる様
になってきている。一般に、都市近郊における発電用に
燃料電池を用いるシステムは、その需要に応じて複数個
のセルスタックを組みあわせて構成される。セルスタッ
クの電池高さを、積層技術上可能な限り高くすることが
できれば、システム中のセルスタックの数を減らすこと
ができ、配管系統が簡単になり、制御系統も簡素にでき
、ひいては発電システム全体の構成が簡潔となってコン
パクトかつ安価で信頼性の高い燃料電池発電所を提供で
きるという有理な面がある。
In a fuel cell with such a configuration, it is important to know how many stages of cells the cell stack of the battery itself consists of, or in other words, how many AAA cells it consists of.
N becomes necessary. This is because the magnitude of the power generation output of a fuel cell is determined by the number of single cells. With the recent progress in cell stacking technology, it has become possible to achieve stacking heights of more than 2 meters for a single battery, but by increasing the height of a single cell stack, It has become possible to increase the firing output per cell stack. Generally, a system using fuel cells for power generation in the suburbs of a city is constructed by combining a plurality of cell stacks according to the demand. If the height of the cells in the cell stack can be made as high as possible based on stacking technology, the number of cell stacks in the system can be reduced, the piping system can be simplified, the control system can also be simplified, and the power generation system can be improved. The rational aspect is that the overall configuration is simple, and a compact, inexpensive, and highly reliable fuel cell power plant can be provided.

ところが、セルスタックの積層高さを高くすることによ
って、新たな技術的昧題が生じてくる。
However, increasing the stacking height of the cell stack creates new technical problems.

それは重力下において使用される燃料電池に固有に生じ
る問題である。
It is a problem inherent in fuel cells used under gravity.

燃料電池では、マニホールド入口と出口の燃料ガスの組
成が違うために、マニホールド入口と出口の燃料ガスの
密度は異なっている。この密度の違いは発電負荷によっ
ても変化し、負荷が高い程siの差が大きくなる。それ
は次の理由による。
In a fuel cell, the composition of the fuel gas at the manifold inlet and outlet is different, so the density of the fuel gas at the manifold inlet and outlet is different. This difference in density also changes depending on the power generation load, and the higher the load, the larger the difference in si becomes. This is due to the following reason.

電池の発電負荷を示す指標に、水素利用率というものが
ある。これは燃料ガス中の水素ガス成分が、電池の中を
通過する際に発電によってどれだけ利用されたかを示す
ものであり、水素利用率が高ければ発電負荷も高くなる
。例えば、水素利用率80係という状態は、電池入口マ
ニホールド内の燃料ガス中に水素ガスが100 (mo
l/Hour )含まれていたとすれば、電池内部でこ
の80%、すなわち80(mol /)(o u r 
)が酸素との化学反応に利用されて発電を行ない、出口
マニホールドの燃料ガス中には残すの20 (mol/
Hou r )の水素ガスが未利用のまま排出される運
転を指し示す。燃料ガス中で、水素以外のガス成分は炭
酸ガス、メタン等、水素に比べて比重の大きいガスばか
シなので、燃料ガス中に占める水素の割合が減れば、燃
料ガスの密度は大きくなっていく。従って、入口マニホ
ールドの燃料ガスが同じ場合、発電負荷が大きいほど、
すなわち水素利用率が高いほど出口マニホールドの燃料
ガスの密度は大きくなっていく。
Hydrogen utilization rate is an indicator of the power generation load of batteries. This indicates how much of the hydrogen gas component in the fuel gas is used for power generation when passing through the battery, and the higher the hydrogen utilization rate, the higher the power generation load. For example, when the hydrogen utilization rate is 80, hydrogen gas in the fuel gas in the battery inlet manifold is 100 (mo
l/Hour), 80% of this is contained inside the battery, that is, 80 (mol/) (o u r
) is used in a chemical reaction with oxygen to generate electricity, leaving 20 (mol/
Hour ) refers to an operation in which hydrogen gas is discharged unused. Gas components other than hydrogen in fuel gas are gases with higher specific gravity than hydrogen, such as carbon dioxide and methane, so if the proportion of hydrogen in fuel gas decreases, the density of fuel gas increases. . Therefore, when the fuel gas in the inlet manifold is the same, the larger the power generation load, the more
In other words, the higher the hydrogen utilization rate, the greater the density of the fuel gas in the outlet manifold.

ところで、この様に入口と出口のマニホールド間の密度
が違うということが、各単電池への燃料ガスの供給不均
一を生じさせるという問題を引き起こす。これを第6図
を用いて説明する。第6図は入口マニホールドと出口マ
ニホールドの圧力分布金′屯池高さ方向に示したもので
ある。燃料ガスの静水圧力すなわち(ガス密度ρ)×(
重力加速、’fg)X(高ah)の効果のため分布は直
線的で、′μ電池下部ど圧力が高くなる。しかし、入口
と出口の密度の違いから、ガス密度の大きい出口マニホ
ールド側の方が、直線の傾きが大きくなっており、マニ
ホールド出入口間の圧力差△Pは、電池上部(ΔP上)
が大きく、電池下部(ΔP下)が小さくなってし甘う。
By the way, this difference in density between the inlet and outlet manifolds causes a problem in that fuel gas is not uniformly supplied to each unit cell. This will be explained using FIG. FIG. 6 shows the pressure distribution of the inlet manifold and the outlet manifold in the height direction of the pond. Hydrostatic pressure of fuel gas, i.e. (gas density ρ) × (
Due to the effect of gravitational acceleration, 'fg)X (high ah), the distribution is linear, and the pressure at the bottom of the 'μ battery becomes high. However, due to the difference in density between the inlet and the outlet, the slope of the straight line is larger on the outlet manifold side where the gas density is higher, and the pressure difference △P between the manifold inlet and outlet is greater than that at the top of the battery (above ΔP).
is large, and the bottom of the battery (below ΔP) is small.

電池セル溝内の流れは、流速が低いために層流であるか
ら、流量と入口、出口の圧力差はほぼ比例する。(但し
、流れていく途中で水素が利用されるため物性値が刻々
と変化していくので、完全な比例関係ではない。)そこ
で、電池高さ方向の流量分布は第7図に示す様に、電池
上方に多くの燃料ガスが流れ、下方には平均流■以下の
ガスしか流れないという不均一が生じる。
Since the flow in the battery cell groove is laminar due to the low flow velocity, the flow rate and the pressure difference between the inlet and the outlet are approximately proportional. (However, as hydrogen is used during the flow, the physical properties change every moment, so the relationship is not completely proportional.) Therefore, the flow rate distribution in the battery height direction is as shown in Figure 7. , a large amount of fuel gas flows above the cell, and only less than the average flow of gas flows below, resulting in non-uniformity.

この15tf量分布は、セルスタックの高さが高いほど
、また発電負荷が高くて水素利用率が大きいほど不均一
が激しくなる。この様に、電池下部への燃料ガスが供給
不足になると、十分に発′シを行なうことができなくな
ってしまう。これは燃料ガス中の水素ガスが利用されつ
くしてしまう、いわばガス欠状態が生じるからである。
This 15 tf amount distribution becomes more non-uniform as the height of the cell stack becomes higher, the power generation load becomes higher, and the hydrogen utilization rate increases. As described above, if the supply of fuel gas to the lower part of the cell becomes insufficient, sufficient ignition cannot be performed. This is because the hydrogen gas in the fuel gas is used up, so to speak, a gas starvation situation occurs.

このことを、図を用いて詳細に説明する。まず、第8図
は電池内のガス反応の様子を模式的に示したものである
This will be explained in detail using figures. First, FIG. 8 schematically shows the gas reaction inside the battery.

水素利用率80幅で、流量が100係、すなわち平均流
量がセル内を通過した場合、水素は80%消費されるの
で、入口マニホールドで1006つた水素は出口で20
になって排出される。一方、セルスタック高さ方向に流
量分布の不均一が生じて、あるセルには平均流量の14
0チが流れた場合を考える。
If the hydrogen utilization rate is 80% and the flow rate is 100%, that is, the average flow rate passes through the cell, 80% of the hydrogen will be consumed, so 1006 hydrogen at the inlet manifold will be 200% at the outlet.
and is discharged. On the other hand, uneven flow distribution occurs in the cell stack height direction, and some cells have an average flow rate of 14
Let's consider the case where 0chi flows.

入口での水素量は平均流量時を100とすると140に
なる。燃料電池内の化学反応は触媒を介して行なわれる
不均一反応であるため、燃料ガス中に占める水素ガスの
一濃度の大小によって反応度が変化することはない。そ
こで、流量が変化しても反応にあずかる水素量は常に8
0であるから、流量が140係でも、出口では60の水
素が排出され、このセルだけに着目してみると、水素利
用率は一凹一×100#57%となっている。すなわち
、燃料電池の負荷の指標として用いられる水素利用率と
は、入口、出口マニホールド内の平均的水素ガス量から
定Mされるため、局部的にみた場合は、各単電池の水素
利用率は流量分布の不均一によって変化している可能性
がある。ここで問題となるのは、燃料・成池内の反応形
態がこの様に不均一反応であるために、セルへ流れるガ
ス量が不足した場合に水素ガスをすべて消費しつくして
しまう、いわば水素ガス欠現象が生じることである。こ
れは、同じく第8図中の流量60%の線によって表わさ
れている。流i 60%では、電池内部途中で水素ガス
成分を消費しつくしている。単電池でガス欠状態が生じ
ると、その電池は定格の電圧を発生不可能となる。電池
は直列に接続して構成されているから、単電池1つでも
発電が不十分だと、燃料電池全体の8屯能力が不足して
しまう。第9図は電池高さ方向の流量分布と出口の水素
量を示したものであるが、電池下部で水素ガス欠の生じ
る可能性がある。第10図は水素利用率による燃料ガス
流量と出口マニホールドの水素濃度の関係を示したもの
である。発電負荷を高めていって水素利用率を上げてい
くと、それにつれてガス欠の生じる流量下限界が上昇し
ていくため、突然発電電圧が急激に低下する現象が生じ
る恐れがある。
The amount of hydrogen at the inlet is 140 when the average flow rate is 100. Since the chemical reaction within the fuel cell is a heterogeneous reaction carried out via a catalyst, the degree of reactivity does not change depending on the concentration of hydrogen gas in the fuel gas. Therefore, even if the flow rate changes, the amount of hydrogen participating in the reaction is always 8
0, even if the flow rate is 140%, 60% hydrogen is discharged at the outlet, and if we focus only on this cell, the hydrogen utilization rate is 1×100#57%. In other words, the hydrogen utilization rate used as an index of the fuel cell load is determined from the average amount of hydrogen gas in the inlet and outlet manifolds, so when viewed locally, the hydrogen utilization rate of each cell is This may be due to non-uniform flow distribution. The problem here is that because the reaction form inside the fuel/cell is a heterogeneous reaction, if the amount of gas flowing into the cell is insufficient, all the hydrogen gas will be consumed. This is the occurrence of a deficiency phenomenon. This is also represented by the 60% flow rate line in FIG. At a flow i of 60%, the hydrogen gas component is completely consumed in the middle of the battery. When a single battery runs out of gas, the battery will no longer be able to generate the rated voltage. Since the batteries are connected in series, if even one single cell does not generate enough power, the entire fuel cell's 8 ton capacity will be insufficient. FIG. 9 shows the flow rate distribution in the height direction of the battery and the amount of hydrogen at the outlet, but there is a possibility that hydrogen gas may run out at the bottom of the battery. FIG. 10 shows the relationship between the fuel gas flow rate and the hydrogen concentration in the outlet manifold depending on the hydrogen utilization rate. As the power generation load is increased and the hydrogen utilization rate is increased, the lower limit of flow rate at which gas starvation occurs increases accordingly, which may cause a phenomenon in which the power generation voltage suddenly drops sharply.

以上述べた様に、セルスタックを高層化してゆくことに
よって、燃料ガスの電池高さ方向の流量分布不均一が大
きくなシ、水素ガスが欠乏して発電が不安定になるとい
う不具合が生じてしまう。
As mentioned above, increasing the height of the cell stack increases the unevenness of the flow rate distribution of fuel gas in the cell height direction and causes problems such as hydrogen gas shortage and unstable power generation. Put it away.

このために現状の燃料電池は、セルスタックを高層化し
て、システム構成上有利な燃料電池を作れる積層技術が
あるにもかかわらず、セルスタックの段数を低くして、
流量の不均一があまり生じない様な構成をとられている
事が多い。これは前述した様に電池の個数が増えるため
に、システム構成が複雑となり、コスト、建家面積、信
頼性のいずれの点からも好ましくない。
For this reason, current fuel cells are made with a lower number of cell stacks, despite the fact that there is stacking technology that can create fuel cells that are advantageous in terms of system configuration.
In many cases, the configuration is such that non-uniformity of flow rate does not occur much. As described above, this increases the number of batteries, which complicates the system configuration, which is unfavorable from the viewpoints of cost, building area, and reliability.

〔発明の目的〕[Purpose of the invention]

本発明は、上記従来技術のもつ問題点を除去するだめに
行なったもので、燃料電池のセルスタックが高層化され
ても、各単電池へ流れる燃料ガスの分布を均一にして水
素ガスの供給が十分性なわれる様にし、高負荷時におい
ても安定に発電する事ができ、システム構成上も有利な
燃料電池を提供することを目的とする。
The present invention has been made to eliminate the problems of the prior art described above, and even if the cell stack of a fuel cell becomes high-rise, it can uniformly distribute the fuel gas flowing to each unit cell and supply hydrogen gas. The purpose of the present invention is to provide a fuel cell that is capable of stably generating electricity even under high loads, and is advantageous in terms of system configuration.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために、本発明はセルスタックの積
層高さを変えることなく、燃料ガス入口側のセルスタッ
ク前面、または出口側のセルスタック面、またはその両
方の面に流動抵抗を生じせしめる抵抗体を設置すること
により電池入口と出口の圧力損失を増加させ、ガス密度
差による静水圧力対果を低減し、流量分布の均一化を計
った燃料電池を提供する。
In order to achieve the above object, the present invention creates flow resistance on the front surface of the cell stack on the fuel gas inlet side, the cell stack surface on the outlet side, or both surfaces without changing the stacking height of the cell stack. To provide a fuel cell in which the pressure loss between the cell inlet and outlet is increased by installing a resistor, the hydrostatic pressure effect due to the difference in gas density is reduced, and the flow distribution is made uniform.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細を図示した実施例によって説明する
Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

構成 第1図に、本発明の一実施例の燃料電池構成図を示す。composition FIG. 1 shows a configuration diagram of a fuel cell according to an embodiment of the present invention.

この実施例が第5図で示した従来構成と異なるのは矢の
点である。すなわち、セルスタック1の燃料ガス入口側
前面に流動抵抗体8が設置されている。この流動抵抗体
8は、流入してくる燃料ガスの抵抗となるものであり、
多孔板、または多孔質の板等、静水圧力対果に比べて大
きな圧力損失を生じる抵抗体ならばどのようなものでも
適用可能である。
This embodiment differs from the conventional configuration shown in FIG. 5 in the point indicated by the arrow. That is, the flow resistor 8 is installed on the front surface of the cell stack 1 on the fuel gas inlet side. This flow resistor 8 acts as a resistance to the inflowing fuel gas,
Any resistor, such as a porous plate or a porous plate, can be used as long as it produces a large pressure loss compared to the hydrostatic pressure effect.

作用 この様な構成からなる燃料電池の入口と出口のマニホー
ルド内圧力分布は第2図の様に示される。
Operation: The pressure distribution within the manifold at the inlet and outlet of the fuel cell constructed as described above is shown in FIG.

すなわち、流動抵抗板によって入口出口間の圧力差が増
加したため、従来構成からなる燃料電池のマニホールド
内圧力分布第6図と比較すると′電池上部の圧力差ΔP
上も電池下部の圧力差ΔP下も増加している。この結果
、電池上部と下部の圧力差の比(ΔP上/ΔP下)を比
べると、従来構成の燃料電池よりも本発明の燃料電池の
方が(ΔP上/ΔP下)の値は1に近づく。従って、電
池高さ方向の流量分布は均一に近くなる。第3図は本発
明の実施例による燃料電池の電池高さ方向の燃料ガス流
量分布を示したものである。従来構造の流量分布を示し
た第7図と比較するまでもなく、各単電池に供給される
燃料ガスの流源が均一化されることがわかる。
In other words, since the pressure difference between the inlet and outlet has increased due to the flow resistance plate, when compared with the pressure distribution in the manifold of a fuel cell with a conventional configuration (Fig. 6), the pressure difference ΔP at the top of the cell has increased.
The pressure difference ΔP between the top and bottom of the battery is also increasing. As a result, when comparing the ratio of the pressure difference between the upper and lower parts of the cell (ΔP upper/ΔP lower), the value of (ΔP upper/ΔP lower) is 1 in the fuel cell of the present invention than in the conventionally configured fuel cell. Get closer. Therefore, the flow rate distribution in the battery height direction becomes nearly uniform. FIG. 3 shows the fuel gas flow rate distribution in the cell height direction of the fuel cell according to the embodiment of the present invention. There is no need to compare this with FIG. 7, which shows the flow rate distribution of the conventional structure, to see that the flow source of the fuel gas supplied to each unit cell is made uniform.

効果 本実施例によれば、第3図に示される如く流量分布が均
一化されるために、出口マニホールドの水素量分布も第
4図に示す如く、各単電池のどの部分をとっても水素ガ
ス欠乏が生じる事はなく、安定な発電をする事が可能と
なる。
Effects According to this embodiment, since the flow rate distribution is made uniform as shown in FIG. 3, the hydrogen amount distribution in the outlet manifold is also as shown in FIG. This will not occur and stable power generation will be possible.

他の実施例 本実施例では、セルスタック入口側に流動抵抗体を設置
したが、流動抵抗体の設置場所はセルスタック出口側で
もよく、また入口側と出口側の両者に設置しても同様の
効果を得ることができる。
Other Examples In this example, the flow resistor was installed on the cell stack inlet side, but the flow resistor may also be installed on the cell stack outlet side, or it can be installed on both the inlet and outlet sides. effect can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかな様に、本発明によればセルスタ
ックの高さを減じることなく、つまυセルスタックの数
量を増やすことなく、入口出口マニホールド間の燃料ガ
ス密度差から生じる流量分布の不均一を解消する事がで
き、水素高利用率運転時にも安定に発電する事が可能な
燃料電池を提供する事ができる。また、電池本体の数量
が最低減に押さえられるため、システムの簡素化がはか
れ、信頼性、コストの面からも有利な燃料電池発電所を
提供する事が可能となる。
As is clear from the above description, according to the present invention, there is no need to reduce the height of the cell stack or increase the number of cell stacks. It is possible to solve the problem of uniformity and provide a fuel cell that can stably generate power even during high hydrogen utilization rate operation. Furthermore, since the number of battery bodies can be kept to a minimum, the system can be simplified, making it possible to provide a fuel cell power plant that is advantageous in terms of reliability and cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示す燃料電池の構成図、
第2図は、本発明の一実施例の構成をもつ燃料電池の入
口、出口マニホールド内の圧力分布図、第3図は、同じ
く電池内の流量分布図、第4図は、同じく出口マニホー
ルドの水素量分布図、第5図は、従来の燃料電池の構成
図、第6図は、従来の燃料電池の入口、出口マニホール
ド内の圧力分布図、第7図は、同じく電池内の流量分布
図、第8図は、電池内部での水素ガスの反応の過程を示
した模式図、第9図は、従来の燃料電池の出口マニホー
ルドの水素量分布図、第10図は、水素利用率をパラメ
ータとして燃料ガス流量と出口マニホールドの水素量の
関係を示した模式図である。 1 セルスタック 3 ・燃料ガス入口マニホールド 6 燃料ガス出口マニホールド 8 流動抵抗体 代理人 弁理士  則 近 憲 佑 同      三  俣  弘  大 水大量□ 大量−一一一 第9図 −文−゛料η゛久点号 第10図 ・倒栄(Aぐg ト 鳴にzs4qE ト
FIG. 1 is a configuration diagram of a fuel cell showing an embodiment of the present invention;
FIG. 2 is a pressure distribution diagram in the inlet and outlet manifolds of a fuel cell having the configuration of an embodiment of the present invention, FIG. 3 is a flow rate distribution diagram in the same cell, and FIG. 4 is a diagram of the outlet manifold. Hydrogen amount distribution diagram, Figure 5 is a configuration diagram of a conventional fuel cell, Figure 6 is a pressure distribution diagram in the inlet and outlet manifolds of a conventional fuel cell, and Figure 7 is a flow rate distribution diagram in the same cell. , Fig. 8 is a schematic diagram showing the reaction process of hydrogen gas inside the cell, Fig. 9 is a hydrogen amount distribution diagram of the outlet manifold of a conventional fuel cell, and Fig. 10 is a diagram showing the hydrogen utilization rate as a parameter. FIG. 3 is a schematic diagram showing the relationship between the fuel gas flow rate and the amount of hydrogen in the outlet manifold. 1 Cell stack 3 ・Fuel gas inlet manifold 6 Fuel gas outlet manifold 8 Flow resistor agent Patent attorney Norihiro Chika Ken Yudo Hiroshi Mimata Large amount of water □ Large amount - 111 Figure 9 - Text - Material η゛ku Dot number 10 - Overthrowing

Claims (1)

【特許請求の範囲】[Claims] 複数個の単電池を積層することによって組みたてられた
セルスタックの一側面に燃料ガス入口マニホールドを配
し、一方の側面に燃料ガス出口マニホールドを配した燃
料電池において、燃料ガス入口側のセルスタック前面に
、または出口側のセルスタック面に、もしくは入口、出
口側のセルスタック両面に、ガス流に流動抵抗を生じせ
しめる抵抗体を設置した事を特徴とする燃料電池。
In a fuel cell in which a fuel gas inlet manifold is arranged on one side of a cell stack assembled by stacking multiple unit cells and a fuel gas outlet manifold is arranged on one side, the cell on the fuel gas inlet side A fuel cell characterized in that a resistor is installed on the front surface of the stack, on the surface of the cell stack on the outlet side, or on both sides of the cell stack on the inlet and outlet sides to create flow resistance to gas flow.
JP60237485A 1985-10-25 1985-10-25 Fuel cell Pending JPS6298573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60237485A JPS6298573A (en) 1985-10-25 1985-10-25 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60237485A JPS6298573A (en) 1985-10-25 1985-10-25 Fuel cell

Publications (1)

Publication Number Publication Date
JPS6298573A true JPS6298573A (en) 1987-05-08

Family

ID=17016022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60237485A Pending JPS6298573A (en) 1985-10-25 1985-10-25 Fuel cell

Country Status (1)

Country Link
JP (1) JPS6298573A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009037860A (en) * 2007-08-01 2009-02-19 Hitachi Ltd Fuel cell and separator used for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009037860A (en) * 2007-08-01 2009-02-19 Hitachi Ltd Fuel cell and separator used for the same

Similar Documents

Publication Publication Date Title
KR100831463B1 (en) Flow Field Plate for Use in Fuel Cells
TWI225718B (en) Solid polymer cell assembly
JP2899709B2 (en) Molten carbonate fuel cell power generator
US7820333B2 (en) Fuel cell operating method with improved hydrogen and oxygen utilization
US7553569B2 (en) Dynamic cathode gas control for a fuel cell system
JP3871251B2 (en) Fuel cell humidification system
US7781119B2 (en) Flow shifting in each individual cell of a fuel cell stack
US7087333B2 (en) Hydrogen recirculation without a pump
US7169491B2 (en) Flexible system for hydrogen recirculation
US6852442B2 (en) Internal fuel staging for improved fuel cell performance
WO2005091407A1 (en) Fuel cell hybrid pump-ejector fuel recycle system
CN204720508U (en) Baffler and the fuel cell pack containing this baffler
KR100579308B1 (en) System for stabilizing flow distribution for fuel cell
JPS6298573A (en) Fuel cell
JPH07183039A (en) Stopping method for power generation at fuel cell plant
JPS63119166A (en) Fuel battery
CN1909276A (en) Management method for battery anode liquid of proton exchange film fuel battery
JPS6266580A (en) Manifold structure of fuel cell
JPH01298653A (en) Fuel cell
JPH117970A (en) Middle/large-capacity fuel-cell power generator
JPS63310573A (en) Fuel line control system of fuel cell power generating facilities
JPH05190195A (en) Fuel cell
JPS622461A (en) Recirculation device for fuel line of fuel cell power generation system
JPH03214568A (en) Reaction gas supply device of fuel cell
JPH0638344B2 (en) Fuel cell