JPH03214568A - Reaction gas supply device of fuel cell - Google Patents

Reaction gas supply device of fuel cell

Info

Publication number
JPH03214568A
JPH03214568A JP2008865A JP886590A JPH03214568A JP H03214568 A JPH03214568 A JP H03214568A JP 2008865 A JP2008865 A JP 2008865A JP 886590 A JP886590 A JP 886590A JP H03214568 A JPH03214568 A JP H03214568A
Authority
JP
Japan
Prior art keywords
fuel
manifold
increases
air
air supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008865A
Other languages
Japanese (ja)
Inventor
Heishiro Goto
後藤 平四郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2008865A priority Critical patent/JPH03214568A/en
Publication of JPH03214568A publication Critical patent/JPH03214568A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To improve poorly performed even distribution in reaction gas supply owing to the gravitation by inserting a fluid resistance, the value of which increases with rising level, into the inlet to a fuel supply manifold, and inserting a fluid resistance, the value of which increases with sinking level, into the inlet to an air supply manifold. CONSTITUTION:Fuel gas is supplied to unitary cells in stack, block by clock, from a fuel supply piping 2 through a fuel supply manifold 3. A fixed orifice 14 as a fluid resistance to adjust the rate of flow of the fuel gas flowing to the manifold 3 is installed in each divergent pipe 10 for connecting this piping 2 with each manifold 3, wherein the bore of orifice is reducing as going upward. A similar orifice 15 is provided in each divergent pipe 12 which connects an air supply piping 6 with an air supply manifold, and the bore of orifice is decreasing as going down. This improves poorly performed even distribution of reaction gas in the height direction of a cell stack.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、反応ガス(燃料ガスと空気)を供給して電
気化学反応により発電させる燃料電池において、電池ス
タックに反応ガスを供給する装置に関する。
The present invention relates to an apparatus for supplying reactive gases to a cell stack in a fuel cell that supplies reactive gases (fuel gas and air) to generate electricity through an electrochemical reaction.

【従来の技術】[Conventional technology]

第4図〜第6図は従来の燃料電池における反応ガスの供
給構成を示す概略図で、第4図は平面図、第5図はその
■−■線に沿う断面図、第6図は同じ< VI一VI線
に沿う断面図である。 図において、1は電池スタックで、電解液を含んだマト
リックスの両側に水素電極と空気電極とが配置された方
形の単電池が多数積層されて構成されている。2は電池
スタック1の側面に沿って立ち上げられた燃料供給配管
で、水素を主成分とする燃料ガスるよ燃料供給配管2か
ら矢印のように、燃料供給マニホルド3を介して電池ス
タック1を構成する単電池に供給され、反対側の面の燃
料排出マニホルド4で矢印のように集められて、燃料排
出配管5から次の系統に排出される。同様に、燃料ガス
と反応する酸素を含んだ空気は、燃料供給配管2が配管
された側面と直交する電池スタックlの側面に沿って垂
直に立ち上げられた空気供給配管6から、空気供給マユ
ホルド7を介して供給され、反対側の面の空気排出マニ
ホルド8で集められて空気排出配管9から排出される。 このような反応ガスの供給においては、例えば2〜3m
の高さに多数積層された単電池にそれぞれ均等に反応ガ
スを配分することが必要である。 そのために、第5図及び第6図に示すように、電池スタ
ック1を例えば60〜80セルごとのいくつかのブロッ
ク1−1〜1−Nに分けて、それぞれのブロックに燃料
ガス及び空気の供給、排出マニホルド3.4及び7,8
を設け、反応ガスの供給の均等化を図っている。なお、
マニホルド3及び4と燃料ガス配管2及び5とはそれぞ
れ分岐管10及び11で接続され、またマニホルド7及
び8と空気配管6及び9とはそれぞれ分岐管12及び1
3で接続されている。
Figures 4 to 6 are schematic diagrams showing the reactant gas supply structure in a conventional fuel cell. Figure 4 is a plan view, Figure 5 is a cross-sectional view along the line ■-■, and Figure 6 is the same. < It is a cross-sectional view along the VI-VI line. In the figure, reference numeral 1 denotes a battery stack, which is composed of a large number of stacked rectangular cells in which a hydrogen electrode and an air electrode are arranged on both sides of a matrix containing an electrolyte. Reference numeral 2 denotes a fuel supply pipe that runs along the side of the battery stack 1, and a fuel gas containing hydrogen as a main component is supplied from the fuel supply pipe 2 to the battery stack 1 via a fuel supply manifold 3 as shown by the arrow. The fuel is supplied to the constituent unit cells, collected at the fuel discharge manifold 4 on the opposite side as shown by the arrow, and discharged from the fuel discharge pipe 5 to the next system. Similarly, air containing oxygen that reacts with the fuel gas is passed from the air supply pipe 6 vertically up along the side of the battery stack l, which is orthogonal to the side where the fuel supply pipe 2 is installed, to the air supply eyebrow holder. 7, collected by an air exhaust manifold 8 on the opposite side and discharged from an air exhaust line 9. In supplying such a reaction gas, for example, a distance of 2 to 3 m
It is necessary to evenly distribute the reactant gas to each of the multiple cells stacked at a height of . For this purpose, as shown in FIGS. 5 and 6, the battery stack 1 is divided into several blocks 1-1 to 1-N each containing, for example, 60 to 80 cells, and each block is supplied with fuel gas and air. Supply and discharge manifolds 3.4 and 7,8
is installed to equalize the supply of reaction gas. In addition,
Manifolds 3 and 4 and fuel gas pipes 2 and 5 are connected by branch pipes 10 and 11, respectively, and manifolds 7 and 8 and air pipes 6 and 9 are connected by branch pipes 12 and 1, respectively.
Connected by 3.

【発明が解決しようとする課題】[Problem to be solved by the invention]

ところで、燃料ガスは水素が70〜80%で他は炭酸ガ
スが主体の混合ガスであるが、水素は炭酸ガスに比べて
軽いため、垂直な配管を流れる間に燃料ガスの濃度分布
に差が生じ、水素濃度は配管上部ほど高く下部では低く
なる。このことは、電池スタック1の上部に積層された
単電池に燃料ガスを供給する燃料供給マニホルド3には
多くの水素が配分され、下部では少なくなる等配不良を
生じさせる原因となる。 一方、空気については燃料ガスほど成分ガスの分子量に
差がなく大きな等配不良は生じないが、それでも空気中
の酸素は主成分である窒素より重く、上部の空気供給マ
ニホルド7には配分が少なく、下部では多くなるる等配
不良が生じる。 このように配管2.6を通過する途中で反応ガスには濃
度差が生じるが、積層された単電池には全体として同一
の電流が流れるという発電原理から各車電池での水素及
び酸素の消費量は同一なので、燃料ガス及び空気の排出
マニホルド4及び8内の水素及び酸素の濃度(出口濃度
)を測定することによりこれらの供給不足を分析するこ
とが可能である。第7図はこのような分析結果を表した
もので、電池スタック1の高さ方向について、水素及び
酸素の出口濃度が適正値100%に対して変化する様子
を示し、水素は高い位置ほど濃度が高く、酸素は低い位
置ほど濃度が高くなっていることが分かる。 その結果、従来は発電プラントとしては適正流量の反応
ガスを燃料電池本体に供給しても正常な発電が得にくい
という問題があった。 この発明はこのような状況に対応するためになされたも
ので、重力に基づ《反応ガス供給の等配不良を是正して
発電性能の向上を図った燃料電池の反応ガス供給装置を
提供することを目的とするものである。
By the way, fuel gas is a mixture of 70-80% hydrogen and the rest mainly carbon dioxide, but since hydrogen is lighter than carbon dioxide, there is a difference in the concentration distribution of fuel gas as it flows through vertical pipes. The hydrogen concentration is higher at the top of the pipe and lower at the bottom. This causes poor uniform distribution, in which a large amount of hydrogen is distributed to the fuel supply manifold 3 that supplies fuel gas to the unit cells stacked at the top of the cell stack 1, while less hydrogen is distributed at the bottom. On the other hand, with regard to air, the molecular weights of the component gases are not as different as in fuel gas, and large imbalances do not occur. However, oxygen in the air is still heavier than nitrogen, which is the main component, and is poorly distributed in the upper air supply manifold 7. , the number of equal distribution defects increases in the lower part. Although there is a concentration difference in the reaction gas as it passes through pipe 2.6, the consumption of hydrogen and oxygen in each car battery is based on the power generation principle that the same current flows through the stacked single cells as a whole. Since the quantities are the same, it is possible to analyze their supply shortfalls by measuring the concentrations of hydrogen and oxygen in the fuel gas and air exhaust manifolds 4 and 8 (outlet concentrations). Figure 7 shows the results of such an analysis, and shows how the outlet concentrations of hydrogen and oxygen change with respect to the appropriate value of 100% in the height direction of the battery stack 1. It can be seen that the lower the position, the higher the concentration of oxygen. As a result, conventional power generation plants have had a problem in that it is difficult to obtain normal power generation even if a proper flow rate of reactant gas is supplied to the fuel cell main body. This invention was made in response to such a situation, and provides a reactant gas supply device for a fuel cell that improves power generation performance by correcting the imbalance of reactant gas supply based on gravity. The purpose is to

【課題を解決するための手段】[Means to solve the problem]

上記目的を達成するために、この発明は、単電池を多数
積層して構成した電池スタックを高さ方向にいくつかの
ブロックに分け、これらのブロックごとに設けた燃料供
給マニホルド及び空気供給マニホルドを介して垂直に立
ち上げた燃料供給配管及び空気供給配管からそれぞれ燃
料ガス及び空気を前記単電池に供給するようした燃料電
池において、燃料供給マニホルドの入口に高さ位置が高
くなるほど抵抗を大きくした流体抵抗を挿入し、また空
気供給マニホルドの入口に高さ位置が低くなるほど抵抗
を大きくした流体抵抗を挿入するものである.
In order to achieve the above object, the present invention divides a battery stack formed by stacking a large number of single cells into several blocks in the height direction, and installs a fuel supply manifold and an air supply manifold for each of these blocks. In a fuel cell in which fuel gas and air are supplied to the unit cell from fuel supply piping and air supply piping vertically raised through the fuel supply manifold, a fluid whose resistance increases as the height increases at the entrance of the fuel supply manifold. A resistor is inserted, and a fluid resistor is inserted at the inlet of the air supply manifold, with the resistance increasing as the height decreases.

【作 用】[For use]

燃料ガスは垂直な燃料供給配管を上昇して各燃料供給マ
ニホルドに配分される間に、発電に必要な主成分である
水素は軽いことから配管の上部に行《ほど水素濃度が高
くなるが、この燃料ガスを配管からマニホルドに導く分
岐管は内径がすべて同じであるため、マニホルドの位置
が高いほど多くの水素が供給されることになる。そこで
、各マニホルドの入口に燃料ガスの流れを抑制する流体
抵抗を挿入し、その抵抗を高さ位置が高くなるほど大き
くする。これにより、水素濃度の高い燃料ガスほどマユ
ホルドへの流量を小さくして、水素の供給量を上下でバ
ランスさせることができる。 同様に、空気供給配管内では重い酸素の濃度は下部に行
くほど高くなるが、空気供給マニホルドの入口に高さ位
置が低《なるほど抵抗を大キ<シた流体抵抗を挿入する
ことにより、酸素の供給量を上下でバランスさせること
ができる。
While the fuel gas ascends up the vertical fuel supply pipe and is distributed to each fuel supply manifold, hydrogen, the main component required for power generation, is carried to the upper part of the pipe because it is light. Since the branch pipes that guide this fuel gas from the piping to the manifold all have the same inner diameter, the higher the position of the manifold, the more hydrogen will be supplied. Therefore, a fluid resistance is inserted into the inlet of each manifold to suppress the flow of fuel gas, and the resistance increases as the height increases. As a result, the higher the hydrogen concentration of the fuel gas, the smaller the flow rate to the Mayufold, and the upper and lower hydrogen supply amounts can be balanced. Similarly, in the air supply piping, the concentration of heavy oxygen increases as it goes lower, but by inserting a fluid resistance at the inlet of the air supply manifold, the resistance of which increases as the height position decreases. It is possible to balance the supply amount up and down.

【実施例】【Example】

第1図及び第2図はこの発明の実施例を示すもので、第
1図は燃料ガスの供給構成を示す第5図に相当する断面
図、また第2図は空気の供給構成を示す第6図に相当す
る断面図である。なお、従来例と同一部分には同一の符
号を付けて説明を省略する。 まず、第1図において、電池スタック1はいくつかのブ
ロック1−1〜1−Nに分けられ、積層された単電池に
は垂直に立ち上げられた燃料供給配管2から各ブロック
ごとに燃料供給マニホルド3を介して燃料ガスが供給さ
れている。そして、配管2と各マニホルド3とを接続す
る各分岐管10には、マニホルド3への燃料ガスの流量
を調整する流体抵抗としてのオリフィス14が設けられ
ている。このオリフィス14は固定オリフィスでその内
径は下から上に行くほど順次小さく、したかってその抵
抗は高さ位置が大きくなるほど大きくなっている。これ
により、水素濃度の高い配管上部の燃料ガスほど流量が
抑制され、各マニホルド3への水素供給量の等配が図ら
れている.また、第2図において、空気供給配管6と空
気供給マニホルド7とを接続する各分岐管12にも同様
のオリフィス15が設けられ、その内径は上から下に行
くに従って順次小さくなっている。これにより、酸素濃
度の高い配管下部の空気ほど流量が抑制され、各マニホ
ルド7への酸素供給量の等配が図られている。 上記各オリフィス14.15の内径は、定格電流時に基
準流量の反応ガスが流れるように設定されるが、第3図
はこのようなオリフィス14,15が設けられた燃料電
池における水素と酸素の出口濃度を従来例と同様に測定
した結果を示すものである。水素の基準濃度を100%
としたとき、従来例での実測では上部では110%と高
濃度であったものが(第7図)、実施例では102%と
なって8%も改善され、その分、下部では92%から9
8%に高くなっている。 また、酸素濃度についても、下部の濃度が106%から
102%に低くなり、その分、上部では94%から98
%に高くなっている。
1 and 2 show an embodiment of the present invention, FIG. 1 is a sectional view corresponding to FIG. 5 showing the fuel gas supply structure, and FIG. 2 is a sectional view showing the air supply structure. 6 is a sectional view corresponding to FIG. 6. FIG. Note that the same parts as in the conventional example are given the same reference numerals, and the description thereof will be omitted. First, in FIG. 1, a battery stack 1 is divided into several blocks 1-1 to 1-N, and fuel is supplied to each block from a vertically rising fuel supply pipe 2 to the stacked unit cells. Fuel gas is supplied via the manifold 3. Each branch pipe 10 connecting the pipe 2 and each manifold 3 is provided with an orifice 14 as a fluid resistance for adjusting the flow rate of fuel gas to the manifold 3. This orifice 14 is a fixed orifice whose inner diameter gradually decreases from bottom to top, and therefore its resistance increases as the height position increases. As a result, the flow rate of the fuel gas in the upper part of the pipe where the hydrogen concentration is higher is suppressed, and the amount of hydrogen supplied to each manifold 3 is distributed equally. Further, in FIG. 2, a similar orifice 15 is provided in each branch pipe 12 connecting the air supply pipe 6 and the air supply manifold 7, and the inner diameter of the orifice 15 becomes smaller sequentially from the top to the bottom. As a result, the flow rate of air in the lower part of the pipe where the oxygen concentration is higher is suppressed, and the amount of oxygen supplied to each manifold 7 is distributed equally. The inner diameter of each of the orifices 14 and 15 is set so that a standard flow rate of the reactant gas flows at the rated current, and FIG. This figure shows the results of measuring the concentration in the same manner as in the conventional example. Standard concentration of hydrogen is 100%
According to the actual measurement in the conventional example, the concentration was as high as 110% in the upper part (Fig. 7), but in the example, it was 102%, an improvement of 8%, and by that amount, the concentration in the lower part was 92%. 9
It has risen to 8%. Also, regarding the oxygen concentration, the concentration in the lower part decreases from 106% to 102%, and the concentration in the upper part decreases from 94% to 98%.
%.

【発明の効果】【Effect of the invention】

この発明によれば、燃料ガス中の水素、及び空気中の酸
素と他の成分ガスとの重量差に起因して生じる電池スタ
ックの高さ方向の反応ガスの等配不良を簡単な構成で改
善でき、その結果として発電性能を向上させ、電池寿命
を延長させることができる。
According to this invention, with a simple configuration, the problem of uneven distribution of reactant gases in the height direction of a battery stack, which is caused by the weight difference between hydrogen in fuel gas, oxygen in air, and other component gases, is improved. As a result, power generation performance can be improved and battery life can be extended.

【図面の簡単な説明】 第1図はこの発明の実施例の燃料ガス供給構成を示す縦
断面図、第2図は同じく空気供給構成を示す縦断面図、
第3図は実施例における電池スタックの高さによる反応
ガスの出口濃度の変化を示す線図、第4図は従来例の平
面図、第5図は第4図のV一■線に沿う断面図、第6図
は同じ<VI−■線に沿う断面図、第7図は従来例にお
ける電池スタックの高さによる反応ガスの出口濃度の変
化を示す線図である。 1・・・電池スタック、2・・・燃料供給配管、3・・
・燃料供給マニホルド、4・・・燃料搬出マニホルド、
5・・・燃料搬出配管、6・・・空気供給配管、7・・
・空気供給マニホルド、8・・・空気排出マニホルド、
9・・・空気排出配管、14.15・・・オリフィス。 l ■T+惜給紅! 慎 1 図 一■ 一■ 筑 4 図 箪 5 図 頑 吠
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a vertical cross-sectional view showing a fuel gas supply configuration according to an embodiment of the present invention, FIG. 2 is a vertical cross-sectional view showing an air supply configuration,
Fig. 3 is a diagram showing the change in outlet concentration of reactant gas depending on the height of the battery stack in the example, Fig. 4 is a plan view of the conventional example, and Fig. 5 is a cross section along the line V1 in Fig. 4. 6 and 6 are cross-sectional views taken along the same <VI-■ line, and FIG. 7 is a diagram showing the change in outlet concentration of reactant gas depending on the height of the battery stack in the conventional example. 1...Battery stack, 2...Fuel supply piping, 3...
・Fuel supply manifold, 4...Fuel discharge manifold,
5...Fuel delivery pipe, 6...Air supply pipe, 7...
・Air supply manifold, 8... air discharge manifold,
9... Air discharge piping, 14.15... Orifice. l ■T+Golden red! Shin 1 Figure 1 ■ 1 ■ Chiku 4 Figure 5 Figure Gunbo

Claims (1)

【特許請求の範囲】[Claims] 1)単電池を多数積層して構成した電池スタックを高さ
方向にいくつかのブロックに分け、これらのブロックご
とに設けた燃料供給マニホルド及び空気供給マニホルド
を介して垂直に立ち上げた燃料供給配管及び空気供給配
管からそれぞれ燃料ガス及び空気を前記単電池に供給す
るようした燃料電池において、燃料供給マニホルドの入
口に高さ位置が高くなるほど抵抗を大きくした流体抵抗
を挿入し、また空気供給マニホルドの入口に高さ位置が
低くなるほど抵抗を大きくした流体抵抗を挿入したこと
を特徴とする燃料電池の反応ガス供給装置。
1) A battery stack consisting of a large number of stacked single cells is divided into several blocks in the height direction, and fuel supply piping is installed vertically through fuel supply manifolds and air supply manifolds provided for each block. In a fuel cell in which fuel gas and air are supplied to the single cell from a fuel supply pipe and an air supply pipe, respectively, a fluid resistance whose resistance increases as the height increases is inserted into the inlet of the fuel supply manifold, and a fluid resistance whose resistance becomes larger as the height position increases, A reactant gas supply device for a fuel cell, characterized in that a fluid resistance whose resistance increases as the height position becomes lower is inserted into the inlet.
JP2008865A 1990-01-18 1990-01-18 Reaction gas supply device of fuel cell Pending JPH03214568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008865A JPH03214568A (en) 1990-01-18 1990-01-18 Reaction gas supply device of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008865A JPH03214568A (en) 1990-01-18 1990-01-18 Reaction gas supply device of fuel cell

Publications (1)

Publication Number Publication Date
JPH03214568A true JPH03214568A (en) 1991-09-19

Family

ID=11704591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008865A Pending JPH03214568A (en) 1990-01-18 1990-01-18 Reaction gas supply device of fuel cell

Country Status (1)

Country Link
JP (1) JPH03214568A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6248466B1 (en) * 1998-04-22 2001-06-19 Toyota Jidosha Kabushiki Kaisha Gas separator for a fuel cell, and fuel cell using the same gas separator for a fuel cell
WO2007046231A1 (en) * 2005-10-20 2007-04-26 Nec Corporation Fuel cell system and fuel cell
KR100732706B1 (en) * 2006-09-28 2007-06-27 (주)엔비텍이앤씨 Filling method using two liquids type foam
JP2008276977A (en) * 2007-04-25 2008-11-13 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63291364A (en) * 1987-05-25 1988-11-29 Toshiba Corp Control of fuel cell voltage distribution
JPH01298653A (en) * 1988-05-27 1989-12-01 Toshiba Corp Fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63291364A (en) * 1987-05-25 1988-11-29 Toshiba Corp Control of fuel cell voltage distribution
JPH01298653A (en) * 1988-05-27 1989-12-01 Toshiba Corp Fuel cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6248466B1 (en) * 1998-04-22 2001-06-19 Toyota Jidosha Kabushiki Kaisha Gas separator for a fuel cell, and fuel cell using the same gas separator for a fuel cell
WO2007046231A1 (en) * 2005-10-20 2007-04-26 Nec Corporation Fuel cell system and fuel cell
KR100732706B1 (en) * 2006-09-28 2007-06-27 (주)엔비텍이앤씨 Filling method using two liquids type foam
JP2008276977A (en) * 2007-04-25 2008-11-13 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell

Similar Documents

Publication Publication Date Title
US8129056B2 (en) System and method for controlling an anode side recirculation pump in a fuel cell system
JPH06203862A (en) Method and apparatus for discharge of water and inert gas in fuel-cell equipment
CN109638319A (en) A kind of fuel cell pile fluid distribution consistency detecting method and device
EP1555706A1 (en) Functional test and demonstration apparatus for fuel cell power system
CA2686684A1 (en) Fuel cell in-plane state estimating system and fuel cell in-plane state estimating method
CN100437101C (en) Detecting and function verifying machine set for water-cooled fuel cell system assembly
US20050153180A1 (en) Functional test and demonstration apparatus for fuel cell power system
CN111180755A (en) Fuel cell metal bipolar plate regional flow channel
JPH03214568A (en) Reaction gas supply device of fuel cell
CN110212221A (en) Fuel cell, its humidity control method
CN208608303U (en) A kind of battery pole plates
JPH03108269A (en) Fuel cell reaction gas replenishing system
CN100435397C (en) Fuel cells with multidirectional fuel flow
CN208889776U (en) A kind of humidity control apparatus of fuel cell system
CN106129445A (en) A kind of assignment of traffic uniformity Optimization Design in manifold flow field
CN109256570A (en) A kind of fuel cell back pressure regulator device with gas-liquid separating function
CN211123180U (en) High-temperature fuel cell test system
CN115377461A (en) Anode pulse tail row simulation system for fuel cell stack test
CN213903748U (en) Anti-antipole test system of membrane electrode
JP2010067531A (en) Fuel battery system
CN106887611A (en) The visualization device and method of a kind of fuel battery double plates flowfield fluid distribution
JPS6266580A (en) Manifold structure of fuel cell
JPS622461A (en) Recirculation device for fuel line of fuel cell power generation system
KR20210076414A (en) Separator for fuel cell
JP2000040518A (en) Fuel cell power generating device and its operating method