JPS6298211A - Displacement measuring method by laser displacement gage - Google Patents

Displacement measuring method by laser displacement gage

Info

Publication number
JPS6298211A
JPS6298211A JP23764785A JP23764785A JPS6298211A JP S6298211 A JPS6298211 A JP S6298211A JP 23764785 A JP23764785 A JP 23764785A JP 23764785 A JP23764785 A JP 23764785A JP S6298211 A JPS6298211 A JP S6298211A
Authority
JP
Japan
Prior art keywords
laser
distance
displacement
spot
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23764785A
Other languages
Japanese (ja)
Inventor
Masakazu Miyatsu
宮津 正和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP23764785A priority Critical patent/JPS6298211A/en
Publication of JPS6298211A publication Critical patent/JPS6298211A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To obtain optimum measuring accuracy by setting a diameter of a spot to 1.3-1.6mm. CONSTITUTION:Laser beam 5 emitted from a semiconductor laser 1 is condensed by a condenser lens 3 and the spot 7 is formed on a work 8 of a measuring distance L. At this time, the distance (l) between the laser 1 and the lens 3 is adjusted and the diameter of the spot 7 (beam diameter) is made 1.3-1.6mm at the measuring distance L. Further, the distance L, an angle alpha of reflection, the distance (m) between the laser 1 and a detector 2 and the focal distances of the condenser lenses 3 and 4 are set according to the design specifications. In other words, an optical axis 9 connecting the laser beam 1 with the center of the lens 3 and an optical axis 10 connecting the detector 2 with the lens 4 are crossed at an angle of alpha deg. at the distance L from a laser head. At that time, the diameter of the spot 7 can be selected to 1.3-1.6mm by selecting the distance (l) between the laser 1 and the lens 3 and the proper focal distance of the lens 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はタービンブレードのプロファイル計測等に適用
されるレーザ変位計による変位測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a displacement measuring method using a laser displacement meter, which is applied to measuring the profile of a turbine blade.

〔従来の技術〕[Conventional technology]

第2図は従来のレーザ変位計による変位測定方法を説明
するための図で、レーザ変位計は半導体レーザ1よシ出
たレーザ光は集光レンズ3によシ集光されワーク8上に
当シピーム径φAのスポットを作る。そして、レーザビ
ーム5とα0となる場所にデテクタ2がセットされ、こ
の角度の反射光6のみが集光レンズ4を通ってデテクタ
2上に結像し、変位を計測する。ところがワーク8上の
ビーム径φAはメーカーによシ、まちまちで材質、粗面
等に合わせて、その最適値を求めたものでない。
FIG. 2 is a diagram for explaining a method of measuring displacement using a conventional laser displacement meter. Create a spot with a beam diameter of φA. Then, the detector 2 is set at a location α0 with respect to the laser beam 5, and only the reflected light 6 at this angle passes through the condensing lens 4 and forms an image on the detector 2, thereby measuring the displacement. However, the beam diameter φA on the workpiece 8 varies depending on the manufacturer, and the optimum value has not been determined depending on the material, rough surface, etc.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の如〈従来のレーザ変位計のワーク8上のスポット
のビーム径φAはメーカーによシそれぞれ異なっておシ
、マたこれらのビーム径φAはワーク8の材質や粗面等
に対応する最適値に選定されたものではないので、例え
ば非金属(セラミックス)、金属(ステンレス、鋼等)
など全ての材料を同じビーム径(φA)で計測すると、
その精度が大きく違うことに々る。例えば半導体レーザ
(GaAs)にて、ビーム径を0.2φとして計測した
場合の精度はステンレス(表面粗度6 )にて±130
μm1セラミックスAI、O8(表面粗度6 )で±3
0μmとなっている。(第3図参照)。従ってこれらの
ステンレスおよびセラミックスは共に満足するビーム径
の決定をする必要がある。
As mentioned above, the beam diameter φA of the spot on the workpiece 8 of the conventional laser displacement meter differs depending on the manufacturer, and these beam diameters φA are optimal depending on the material of the workpiece 8, rough surface, etc. For example, non-metals (ceramics), metals (stainless steel, steel, etc.)
If all materials are measured with the same beam diameter (φA),
The accuracy varies greatly. For example, when measuring with a semiconductor laser (GaAs) with a beam diameter of 0.2φ, the accuracy is ±130 on stainless steel (surface roughness 6).
μm1 ceramic AI, O8 (surface roughness 6) ±3
It is 0 μm. (See Figure 3). Therefore, it is necessary to determine a beam diameter that satisfies both stainless steel and ceramics.

本発明は上記従来の問題点を解消し、平面の変位計測の
精度および幅計測の精度を最適値に選定できるレーザ変
位計による変位測定方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned conventional problems and to provide a method for measuring displacement using a laser displacement meter, which allows the precision of plane displacement measurement and the precision of width measurement to be selected to optimal values.

なお幅計測とは、レーザビームを横方向にスライドさせ
ることによシ、レーザビーム5を走査させ、レーザビー
ム5がワーク8表面の一端に当たシ始め乱反射光6がデ
テクタ2に検出され出してからやがて他の一端から外れ
る迄のレーザヘッドのスライド距離をリニアインダクト
シンで読み取ることであるが、一定の直径をもつレーザ
スポット7の一部が上記一端にさしか\シ、当たシ始め
た時及び外れる時の受光量とデテクタ2の検出精度が問
題となる。
Note that width measurement is performed by scanning the laser beam 5 by sliding the laser beam in the horizontal direction, and when the laser beam 5 hits one end of the surface of the workpiece 8, the diffusely reflected light 6 is detected by the detector 2. The purpose is to read the sliding distance of the laser head from one end to the time when it comes off from the other end using a linear inductor. The amount of received light and the detection accuracy of the detector 2 at the time of starting and coming off are issues.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明によるレーザ変位計による変位測定方法は、レー
ザ光源からの光線を集光レンズを通してワーク上に当て
\スポットを結び、その乱反射光を集光レンズで集光し
てデテクタに当て\°そのデテクタ上のスポットの変位
を検出するレーザ変位計による変位測定方法において、
上記ワーク上に当てる上記スポットの直径を1.31〜
1.6mmに設定して測定することを特徴とし、例えば
ステンレス(表面粗度6 )の平面の変位計測の精度を
50μmに保持できるものである。
The method of measuring displacement using a laser displacement meter according to the present invention is to apply a beam from a laser light source onto a workpiece through a condenser lens, connect the spots, and condense the diffusely reflected light with a condenser lens and apply it to a detector. In the displacement measurement method using a laser displacement meter that detects the displacement of the upper spot,
The diameter of the spot applied to the workpiece is 1.31~
It is characterized in that measurement is performed by setting the distance to 1.6 mm, and the accuracy of displacement measurement on a flat surface of stainless steel (surface roughness 6), for example, can be maintained at 50 μm.

〔作用〕[Effect]

一般にビーム径を大きくすると、平面の計測精度は良く
なるが、一方、それと反比例する様に幅計測を実施した
場合の精度は悪くなる。本発明によれば、例えばステン
レスの場合、その最適のビーム径は1.3−〜1.6m
mであυ、その時の精度は±50μmである。またセラ
ミックスの場合も±50μm以下の精度が保証される。
Generally, as the beam diameter increases, the accuracy of flat measurement improves, but on the other hand, the accuracy of width measurement decreases in inverse proportion to this. According to the present invention, for example, in the case of stainless steel, the optimum beam diameter is 1.3-1.6 m.
m and the accuracy at that time is ±50 μm. Also, in the case of ceramics, accuracy of ±50 μm or less is guaranteed.

〔実施例〕〔Example〕

第1図は本発明の説明用の図であシ、1は半導体(Ga
As )v−ザ、2はデテクタ、3゜4はそれぞれ集光
レンズ、5はレーザビーム、6は反射光、7はスポット
、8はワーク、9゜10はそれぞれ光軸を示す。
FIG. 1 is a diagram for explaining the present invention, and 1 is a diagram for explaining the present invention.
2 is a detector, 3° and 4 are condensing lenses, 5 is a laser beam, 6 is a reflected light, 7 is a spot, 8 is a workpiece, and 9° and 10 are optical axes, respectively.

半導体レーザ1を出たレーザビーム5は集光レンズ3に
て集光され、測定距離りのワーク8上にスポット7を結
ぶ。この時、半導体レーザ1と集光レンズ3との距離j
を山整し、測定距離りのところに、スポット7の径(ビ
ーム径)が1.3mm〜1.6uとなるようにする。
The laser beam 5 emitted from the semiconductor laser 1 is condensed by a condenser lens 3 to form a spot 7 on a workpiece 8 at a measurement distance. At this time, the distance j between the semiconductor laser 1 and the condensing lens 3
The diameter of the spot 7 (beam diameter) at the measurement distance is adjusted to be 1.3 mm to 1.6 u.

なお、測定距離L、反射角α、半導体レーザ1とデテク
タ2との間の距離m及び集光レンズ3.4の焦点距離は
設計仕様による。
Note that the measurement distance L, the reflection angle α, the distance m between the semiconductor laser 1 and the detector 2, and the focal length of the condenser lens 3.4 depend on the design specifications.

詳細を説明すると半導体レーザ1、集光レンズ3の中心
を結ぶ光軸9とデテクタ2、集光レンズ4を結ぶ光軸1
0はレーザヘッドより測定距離りのところでα0の角度
で交わる。
To explain the details, the optical axis 9 connects the centers of the semiconductor laser 1 and the condenser lens 3, and the optical axis 1 connects the detector 2 and the condenser lens 4.
0 intersect at an angle α0 at a measurement distance from the laser head.

その時、半導体レーザ1と集光レンズ3の距離!及び適
当な集光レンズ3の焦点距離を選ぶことによシ、スポッ
ト7の直径を1.3 u〜1.6だに選ぶことができる
At that time, the distance between the semiconductor laser 1 and the condenser lens 3! By selecting an appropriate focal length of the condenser lens 3, the diameter of the spot 7 can be selected from 1.3 u to 1.6 mm.

本発明によればワーク8上に当てるスポット7の直径を
1.3鶴〜1.6−に設定して測定を行なうことによシ
最逆な測定精度が得られる。
According to the present invention, the most accurate measurement accuracy can be obtained by setting the diameter of the spot 7 applied to the workpiece 8 to be 1.3 to 1.6 mm.

第3図は計測精度とレーザビーム径との関係を示す図で
あり、Aはステンレス(表面粗度65)の平面の変位計
測特性、Bはセラミックス(AAzOs 、表面粗度6
 )の平面の変位計測特性、Cはステンレスの幅計測特
性を示す。
Figure 3 is a diagram showing the relationship between measurement accuracy and laser beam diameter, where A is the flat displacement measurement characteristic of stainless steel (surface roughness 65), and B is the displacement measurement characteristic of ceramics (AAzOs, surface roughness 65).
) shows the plane displacement measurement characteristics, and C shows the width measurement characteristics of stainless steel.

なお平面の変位計測とはレーザヘッドを水平移動してレ
ーザ光をワーク上で走査させることによシ、ワーク表面
の各点迄の距離を測定することである。
Note that plane displacement measurement means measuring the distance to each point on the workpiece surface by moving the laser head horizontally and scanning the workpiece with laser light.

〔発明の効果〕〔Effect of the invention〕

非金属(セラミックス)、金属(ステンレス)共、平面
の変位計測の場合レーザビーム径が大きくなると精度は
良くなるが、一方、幅計測の場合には精度は悪くなる。
For both nonmetals (ceramics) and metals (stainless steel), when measuring plane displacement, the accuracy improves as the laser beam diameter increases, but when measuring width, the accuracy deteriorates.

本−糖明によればスポットの直径を1.3u〜1.6m
mに設定することによシ最適の測定精度が得られる。例
えばステンレスの場合には±50μmの精度を確保でき
る等の優れた効果が奏せられる。
According to Tomei, the diameter of the spot is 1.3u to 1.6m.
The optimum measurement accuracy can be obtained by setting the value to m. For example, in the case of stainless steel, excellent effects such as being able to ensure accuracy of ±50 μm can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を説明するだめの図、第2図
は従来例を示す図、第3図は計測精度とレーザビーム径
との関係を示す図である。 1・・・半゛導体レーザ、2・・・デテクタ、3,4・
・・集光レンズ、5・・・レーザビーム、6・・・反射
光、7・・・スポット、8・・・ワーク。 出願人復代理人弁理士  鈴  江  武  彦第1図 第2図 第3図
FIG. 1 is a diagram for explaining one embodiment of the present invention, FIG. 2 is a diagram showing a conventional example, and FIG. 3 is a diagram showing the relationship between measurement accuracy and laser beam diameter. 1... Semiconductor laser, 2... Detector, 3, 4...
...Condensing lens, 5...Laser beam, 6...Reflected light, 7...Spot, 8...Work. Applicant Sub-Agent Patent Attorney Takehiko Suzue Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] レーザ光源からの光線を集光レンズを通してワーク上に
当てゝスポットを結び、その乱反射光を集光レンズで集
光してデテクタに当てゝそのデテクタ上のスポットの変
位を検出するレーザ変位計による変位測定方法において
、上記ワーク上に当てる上記スポットの直径を1.3m
m〜1.6mmに設定して測定することを特徴とするレ
ーザ変位計による変位測定方法。
Displacement by a laser displacement meter that shines the light beam from a laser light source onto the workpiece through a condensing lens, connects the spots, condenses the diffusely reflected light with the condensing lens and hits a detector, and detects the displacement of the spot on the detector. In the measurement method, the diameter of the spot applied to the workpiece is 1.3 m.
A method for measuring displacement using a laser displacement meter, characterized in that measurement is performed by setting the distance between m and 1.6 mm.
JP23764785A 1985-10-25 1985-10-25 Displacement measuring method by laser displacement gage Pending JPS6298211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23764785A JPS6298211A (en) 1985-10-25 1985-10-25 Displacement measuring method by laser displacement gage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23764785A JPS6298211A (en) 1985-10-25 1985-10-25 Displacement measuring method by laser displacement gage

Publications (1)

Publication Number Publication Date
JPS6298211A true JPS6298211A (en) 1987-05-07

Family

ID=17018419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23764785A Pending JPS6298211A (en) 1985-10-25 1985-10-25 Displacement measuring method by laser displacement gage

Country Status (1)

Country Link
JP (1) JPS6298211A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02157615A (en) * 1988-12-09 1990-06-18 Nissan Motor Co Ltd Adjusting method for distance measuring instrument

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02157615A (en) * 1988-12-09 1990-06-18 Nissan Motor Co Ltd Adjusting method for distance measuring instrument

Similar Documents

Publication Publication Date Title
EP0047250B1 (en) Dimension measuring apparatus
US4897536A (en) Optical axis displacement sensor with cylindrical lens means
CA1076793A (en) Optical dimension measuring device employing an elongated focused beam
US4204772A (en) Optical measuring system
JPH063125A (en) Optical type displacement meter
WO1997044632A1 (en) Optical caliper with compensation for specimen deflection and method
JPS6298211A (en) Displacement measuring method by laser displacement gage
JPS5979104A (en) Optical device
JP2603317B2 (en) Laser distance meter and calibration method for thickness gauge using laser distance meter
JPS62115315A (en) Laser displacement gauge
Wang Long-range optical triangulation utilising collimated probe beam
JPS62144014A (en) Photoelectric position detector
JP2698446B2 (en) Interval measuring device
JPS60104206A (en) Optical measuring device
JPH09189545A (en) Distance measuring device
US3820902A (en) Measuring method and apparatus which compensate for abbe s error
JPH05332769A (en) Optical displacement gauge
JP2638356B2 (en) Focusing spot coaxiality measuring device
JPH03251708A (en) Shape measuring apparatus for parabolic antenna surface
JP3526724B2 (en) Error correction method in shape measuring device
JPH01232203A (en) Shape measuring instrument for tube body
JPH06281418A (en) Optical thickness measuring method of plate-shaped transparent body having ruggedness
Hussmann et al. High-precision triangulation sensor for residual shorts measurement of coiling materials
JPS60211304A (en) Measuring instrument for parallelism
JPS59211811A (en) Surface roughness measuring apparatus