JPS6298207A - Detecting method for pattern cross-sectional shape - Google Patents

Detecting method for pattern cross-sectional shape

Info

Publication number
JPS6298207A
JPS6298207A JP23721485A JP23721485A JPS6298207A JP S6298207 A JPS6298207 A JP S6298207A JP 23721485 A JP23721485 A JP 23721485A JP 23721485 A JP23721485 A JP 23721485A JP S6298207 A JPS6298207 A JP S6298207A
Authority
JP
Japan
Prior art keywords
stage
pattern
sectional shape
detected
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23721485A
Other languages
Japanese (ja)
Inventor
Yasuhiko Hara
靖彦 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23721485A priority Critical patent/JPS6298207A/en
Publication of JPS6298207A publication Critical patent/JPS6298207A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To accurately measure a cross-sectional shape of a pattern by irradiating laser beams on an object on stages and obtaining output of an optical detector having plural peak values and plotting the positions of the uppermost peak value. CONSTITUTION:The object 1 to be measured is placed on the DELTAZ stage 10 and the XY stage 11. Further, the positions of the stages 10 and 11 are detected by position detectors 21 and 22. A diameter of light from a laser 24 is magnified 23 and made incident on an objective 5 via a lens 3. The reflected light from the object 1 is detected by the detector 8. Then, the stage 11 is driven and stopped at a position. Then, the stage 10 is driven and the output of the detector 8 is A/D converter 14 and a peak of a signal is detected by a signal peak detector 16. When the peak value is detected, a value Zi(i=1.2) of the stage 10 is inputted to a counter 18. Afterwards, the stage 11 is again moved and the value Zi at the different position is calculated. The cross-sectional shape of the pattern can be calculated by plotting the point Zi calculated in this way.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はLSIウェハ上等に形成されている微細パター
ンの断面形状および寸法を正確に測定する方法および装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method and apparatus for accurately measuring the cross-sectional shape and dimensions of a fine pattern formed on an LSI wafer or the like.

〔発明の背景〕[Background of the invention]

LSI等微細なパターンの寸法を測定するために従来公
知の「精密機械44巻3号1978年3月発行P、 3
80〜385」に示す測定装置が市販されている。これ
らは第2図(a)に示すパターン10幅lを測定するも
のであるが、パターン断面第2図(′b)のどの位置(
例えば’l + ’t ) をパターンの幅として検出
しているのか明確でない。
To measure the dimensions of fine patterns such as LSI, there is a conventionally known method known as "Precision Machinery Vol. 44 No. 3 Published March 1978, P. 3.
80-385'' are commercially available. These are used to measure the width l of the pattern 10 shown in FIG. 2(a), but which position (
For example, it is not clear whether 'l + 't) is detected as the width of the pattern.

そこで、パターンの断面形状を測定する方法が特公昭5
9−19479号公報に示されている。しがしこの方法
は、透明なパターンに対しては適用が困難である。
Therefore, a method for measuring the cross-sectional shape of a pattern was developed in the
No. 9-19479. However, this method is difficult to apply to transparent patterns.

〔発明の目的〕[Purpose of the invention]

本発明はパターンの断面形状(すなわちパターンの幅)
を種々の性状のパターンに対しても測定できる方法およ
び装置を提供することにある。
The present invention is based on the cross-sectional shape of the pattern (i.e., the width of the pattern).
The object of the present invention is to provide a method and an apparatus that can measure patterns of various properties.

〔発明の概要〕[Summary of the invention]

従来の断面測定法を第3図に示す。レーザ光2tレンズ
3を通して対物レンズ5に入射させて、絞り込みレーザ
光6を得る。パターン1に′よる反射光はピンホール7
の上に結像し、光検出器8によって検出される。ここで
パターン1を乗せているX、△ZXステージ図示されて
いない)を第4図(a)に示すように△Z方向に変位さ
せると、同図(b)に示すようにあろΔZの位置Zで検
出器8の出力が極大値を示す。このときレーザ光6はパ
ターン10表面に焦点が合った状態となっている。従っ
てパターン1をX方向に移動し各Xの値に対してΔZを
微動させ、検出器出力がピークになる△Zの値を求めれ
ば、パターンの断面形状を求めることができる。
A conventional cross-sectional measurement method is shown in FIG. A laser beam 2t is made incident on an objective lens 5 through a lens 3 to obtain a focused laser beam 6. The reflected light from pattern 1 is pinhole 7.
is imaged on the photodetector 8 and detected by the photodetector 8. If the X, △ZX stage (not shown) on which pattern 1 is placed is displaced in the △Z direction as shown in Figure 4(a), the position of ΔZ will be as shown in Figure 4(b). At Z, the output of the detector 8 shows a maximum value. At this time, the laser beam 6 is focused on the surface of the pattern 10. Therefore, the cross-sectional shape of the pattern can be determined by moving the pattern 1 in the X direction, slightly moving ΔZ for each X value, and determining the value of ΔZ at which the detector output peaks.

しかしパターン1が(半)透明であるときは、パターン
10基材9による反射光が強いために、パターン1の表
面で検出器8の出力が極大とならず基材面9で極大にな
る場合がある。この場合、パターン10表面の断面形状
を求めることができない。
However, when the pattern 1 is (semi-)transparent, the output of the detector 8 does not reach its maximum on the surface of the pattern 1 but reaches its maximum on the substrate surface 9 because the light reflected by the pattern 10 and the base material 9 is strong. There is. In this case, the cross-sectional shape of the surface of the pattern 10 cannot be determined.

そこで本発明では、次のように行う。すなわち△Zを動
かすと、第5図に示すようにいくつかの極値2. 、2
t、 2.・・・を有する検出器8の出゛力が求まる。
Therefore, in the present invention, the following steps are taken. That is, when ΔZ is moved, several extreme values 2. ,2
t, 2. The output of the detector 8 having ... is determined.

従って上から第1番目にある検出器出力の位置2.を求
めれば、最上層のパターン1の断面形状を求めることが
できる。また第2、第3のピークを求めれば下層のパタ
ーン9゜10の断面形状を求めることができる。ただし
、下層のパターンはパターン1におおわれているので、
パターン1の屈折率N、があらかじめ分っていれば、N
、を断面測定値z2に乗することによって、真の断面形
状を測定することができる。
Therefore, the position of the first detector output from the top is 2. By determining , the cross-sectional shape of pattern 1 on the top layer can be determined. Further, by determining the second and third peaks, the cross-sectional shape of the underlying pattern 9°10 can be determined. However, since the lower layer pattern is covered by pattern 1,
If the refractive index N of pattern 1 is known in advance, N
By multiplying the cross-sectional measurement value z2 by , the true cross-sectional shape can be measured.

〔発明の実施例〕[Embodiments of the invention]

第1図に実施例を示す。測定対象物1は△ZXステージ
0およびXYXステージ1上に置かれている。ΔZ −
XYXステージモータMz9Mx9Myにより駆動され
る。モータへは駆動回路12.[により電気信号が供給
される。またステージは位置検出器21および22によ
って位置が検出される。レーザ24から出た光はビーム
拡大器23によって径を拡大され、レンズ3によって対
物レンズ5に入射する。測定対象物1からの反射光は検
出器8によって検出される。全体系はマイクロコンピュ
ータ15によって制御される。
An example is shown in FIG. A measurement object 1 is placed on a ΔZX stage 0 and an XYX stage 1. ΔZ −
It is driven by an XYX stage motor Mz9Mx9My. Drive circuit 12 to the motor. An electrical signal is supplied by [. Further, the position of the stage is detected by position detectors 21 and 22. The beam emitted from the laser 24 is enlarged in diameter by a beam expander 23, and then enters an objective lens 5 through a lens 3. The reflected light from the measurement object 1 is detected by the detector 8. The entire system is controlled by a microcomputer 15.

測定は次のように行う。Xステージを駆動し、ある位置
Xに停止する。パターン1の断面位置2、 、2. 、
・・・を求めるためにΔ2ステージを駆動し、検出器8
の出力をAD変換器14を介して、信号ピーク検出回路
16で信号のピークを検出する。ピーク値が検出される
と、Δ2ステージの値Zi(i−1,2+・・・)をカ
ウンタ徊に入力する。つぎに再びXステージを動かし、
別の位置XにおけるZi (i−1,2,3・・・)を
求める。このようにして求めたZiをプロツトすること
により1パターンの断面形状を求めることができる。
Measurement is carried out as follows. Drive the X stage and stop at a certain position X. Cross-sectional position 2 of pattern 1, , 2. ,
..., the Δ2 stage is driven, and the detector 8
The signal peak detection circuit 16 detects the peak of the signal via the AD converter 14. When the peak value is detected, the value Zi (i-1, 2+...) of the Δ2 stage is input to the counter. Next, move the X stage again,
Find Zi (i-1, 2, 3...) at another position X. By plotting the Zi thus obtained, the cross-sectional shape of one pattern can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明により、微細パターンの断面形状を正確に測定し
、従ってパターンの寸法を精度良く検出することができ
る。パターンの寸法測定精度が向上することによってL
SIをより歩留り高く製作することができる・ (図面の簡単な説明 第1図は本発明の一実施例の構成図、第2図は従来のパ
ターンの平面図および断面図、第3図は従来の測定装置
の構成図、第4図は第3図の一部の図および検出器出力
図、第5図はパターンの断面図である。
According to the present invention, the cross-sectional shape of a fine pattern can be accurately measured, and the dimensions of the pattern can therefore be detected with high precision. L by improving pattern dimension measurement accuracy
SI can be manufactured with higher yield. FIG. 4 is a partial diagram of FIG. 3 and a detector output diagram, and FIG. 5 is a cross-sectional view of a pattern.

2・・・レーザ光、     5・・・対物レンズ、8
・・・光検出器、10・・・△ZXステージ11・・・
XYXステージ15・・・マイクロコンピュータ。
2... Laser light, 5... Objective lens, 8
...Photodetector, 10...△ZX stage 11...
XYX Stage 15...Microcomputer.

、乙パ;・9、, Otsupa;・9,

Claims (1)

【特許請求の範囲】[Claims] 1 レーザ光を光学系により絞り込み、対象物から反射
した光を光検出器で検出する光学系において、光学系あ
るいは対象物をレンズの光軸方向に移動した際、レーザ
光点の光量が極大に絞り込まれる光学系あるいは対象物
の位置を検出することにより、対象物の光軸方向の位置
を検出し、かつ対象物あるいは光学系をレンズ光軸と垂
直方向に移動しつつ、上述過程をくり返すことによって
対象物の断面形状を測定することを特徴とするパターン
断面形状検出法。
1 In an optical system in which the laser beam is narrowed down by an optical system and the light reflected from the object is detected by a photodetector, when the optical system or the object is moved in the direction of the optical axis of the lens, the light intensity of the laser beam spot reaches its maximum. By detecting the position of the optical system or object to be narrowed down, the position of the object in the optical axis direction is detected, and the above process is repeated while moving the object or optical system in the direction perpendicular to the lens optical axis. A pattern cross-sectional shape detection method characterized by measuring the cross-sectional shape of an object.
JP23721485A 1985-10-25 1985-10-25 Detecting method for pattern cross-sectional shape Pending JPS6298207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23721485A JPS6298207A (en) 1985-10-25 1985-10-25 Detecting method for pattern cross-sectional shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23721485A JPS6298207A (en) 1985-10-25 1985-10-25 Detecting method for pattern cross-sectional shape

Publications (1)

Publication Number Publication Date
JPS6298207A true JPS6298207A (en) 1987-05-07

Family

ID=17012069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23721485A Pending JPS6298207A (en) 1985-10-25 1985-10-25 Detecting method for pattern cross-sectional shape

Country Status (1)

Country Link
JP (1) JPS6298207A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08160306A (en) * 1994-12-02 1996-06-21 Keyence Corp Optical microscope
KR100467307B1 (en) * 2001-12-13 2005-01-24 다이닛뽕스크린 세이조오 가부시키가이샤 Laser drawing apparatus and laser drawing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08160306A (en) * 1994-12-02 1996-06-21 Keyence Corp Optical microscope
KR100467307B1 (en) * 2001-12-13 2005-01-24 다이닛뽕스크린 세이조오 가부시키가이샤 Laser drawing apparatus and laser drawing method

Similar Documents

Publication Publication Date Title
US8279447B2 (en) Method for measuring thickness
US7283256B2 (en) Method and apparatus for measuring wafer thickness
US4730927A (en) Method and apparatus for measuring positions on the surface of a flat object
JPH0324409A (en) Method and equipment for determining position of surface
JPS6244203B2 (en)
JPS6298207A (en) Detecting method for pattern cross-sectional shape
JP2019518197A (en) Method and system for inspecting a substrate for microelectronics or optics by laser Doppler effect
JP2000097648A (en) Device and method for measuring difference in level
CN114778514B (en) Measuring device and method for nondestructive high aspect ratio structure based on Raman analysis
JP2906924B2 (en) Wafer surface roughness measurement method
US20030038951A1 (en) Apparatus for and method of measuring thickness of materials using the focal length of a lensed fiber
JPH10253892A (en) Phase interference microscope
US20050112853A1 (en) System and method for non-destructive implantation characterization of quiescent material
JPH0471161B2 (en)
JP2810121B2 (en) Optical disc stamper inspection device
JPH0815148B2 (en) Etching depth measuring method
KR20070035333A (en) Displacement measuring device by using the focus splitting and method thereof
JPH1123229A (en) Measuring method for film thickness
JPS6316232A (en) Measuring method for diameter of laser beam
JPH06317535A (en) Semiconductor inspection device and manufacture of semiconductor using same
JPS6199805A (en) Step measuring instrument
JPS60180118A (en) Positioning apparatus with diffraction grating
JPS60250640A (en) Temperature measuring device by fluorescent light
RU2155321C1 (en) Device for measuring object linear shift
JPH09120940A (en) Alignment and aligner