JPS6297646A - Catalyst for purifying exhaust gas and its preparation - Google Patents

Catalyst for purifying exhaust gas and its preparation

Info

Publication number
JPS6297646A
JPS6297646A JP60239835A JP23983585A JPS6297646A JP S6297646 A JPS6297646 A JP S6297646A JP 60239835 A JP60239835 A JP 60239835A JP 23983585 A JP23983585 A JP 23983585A JP S6297646 A JPS6297646 A JP S6297646A
Authority
JP
Japan
Prior art keywords
zirconium oxide
palladium
catalyst
exhaust gas
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60239835A
Other languages
Japanese (ja)
Inventor
Jun Yagi
順 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60239835A priority Critical patent/JPS6297646A/en
Publication of JPS6297646A publication Critical patent/JPS6297646A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a catalyst for purifying exhaust gas reducing CO and hydrocarbon and converting NO2 to NO, by simultaneously supporting palladium and zirconium oxide in a specific mixing ratio by a carrier by the use of a carrier solution having an org. acid added thereto. CONSTITUTION:An org. acid such as citric acid is added to an aqueous solution mixture of a palladium metal precursor such as dinitrodiamine palladium nitrate and a zirconium oxide precursor such as zirconium oxynitrate and a carrier such as a silica/alumina carrier is immersed in said solution mixture. The impregnated carrier is dried and subsequently baked to decompose the precursors to simultaneously support palladium and zirconium oxide. The mixing ratio of palladium and zirconium oxide is set to 1:2-1:50 on a wt. basis and the addition amount of the org. acid to zirconium oxide is set to 1:1-1:5 on a wt. basis. The obtained catalyst converts CO and hydrocarbon in the combustion exhaust gas within a usual oxygen excessive atmosphere to CO2 and H2O and converts NO2 strongest in toxicity in NOx to NO having lower toxicity.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、燃焼器や内燃機関から発生する排気ガス中
の有害な燃焼生成物である、−酸化炭素(以下、Coと
記す)を二酸化炭素(以下、Co2と記す)に、また二
酸化窒素(以下、NO2と記す)を−酸化窒素(以下、
NOと記す)に、酸素残存雰囲気中で変換すると共に不
完全燃焼成分である炭化水素(以下、HCと記す)をC
o2 と水(以下、H2Oと記す)に同時に変換するだ
めの排ガスの浄化用触媒およびその製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention is directed to converting carbon oxide (hereinafter referred to as Co), which is a harmful combustion product in exhaust gas generated from a combustor or internal combustion engine, into carbon dioxide (Co). (hereinafter referred to as Co2), and nitrogen dioxide (hereinafter referred to as NO2) to -nitrogen oxide (hereinafter referred to as
In an atmosphere with residual oxygen, hydrocarbons (hereinafter referred to as HC), which are incomplete combustion components, are converted into carbon (hereinafter referred to as HC).
The present invention relates to a catalyst for purifying waste gas that simultaneously converts O2 and water (hereinafter referred to as H2O), and a method for manufacturing the same.

従来の技術 燃焼機器、内燃機関から排出される排気ガス中には、燃
料の種類や機器の種類にもよるが、Co。
BACKGROUND OF THE INVENTION The exhaust gas emitted from combustion equipment and internal combustion engines contains Co, depending on the type of fuel and the type of equipment.

HC,N0x(全窒素酸化物)、さらにso工(全硫黄
酸化物)などが存在し、これらが多量に排出されると、
大気汚染や室内環境に悪影響を与え、人間のみならず動
植物などに、好ましくない影響を及ぼす。
There are HC, NOx (total nitrogen oxides), and even SO (total sulfur oxides), and when these are emitted in large quantities,
It pollutes the air and adversely affects the indoor environment, and has undesirable effects not only on humans but also on animals and plants.

これらの対策として、これまで種々の方法がとられてき
た。触媒を用いる方法もそのうちの一つである。
To date, various methods have been taken as countermeasures against these problems. One of them is a method using a catalyst.

酸化触媒を用いて、COやHCをCO2とN20に変換
したり、還元触媒や分解触媒を用いて、酸素の少ない雰
囲気で、NO工をN2に変換する方法と触媒が、これま
でにも数多く提案され、また実用化されてきた。
Many methods and catalysts have been used to convert CO and HC to CO2 and N20 using oxidation catalysts, and to convert NO to N2 in an oxygen-poor atmosphere using reduction catalysts and decomposition catalysts. It has been proposed and put into practical use.

ただ、特別に燃焼排ガス中の成分、なかでも残存酸素量
を制御する場合を除き、通常の燃焼機器の排ガス中の残
存酸素は、酸化性成分を酸化消費する以上に過剰に存在
しており、このような雰囲気では、COやHCをC02
とH2Oに変換することは可能でも、N08をN2に変
換することは、その反応相手となるCOやHCが、先の
酸素との反応に先行して消費されるため、不可能で、今
のところ、このような雰囲気で、coとHCとNO工を
同時に変換除去する方法も、そのための触媒も実用化さ
れていない。このため、固定発生源、特に発電プラント
や化学プラントからの窒素酸化物の還元反応としては、
アンモニア等の還元助剤を添加して、これと触媒存在下
で還元する選択接触反応の触媒とその方法が実用化して
いる。
However, unless the components in the combustion exhaust gas, especially the amount of residual oxygen, are specifically controlled, the residual oxygen in the exhaust gas from ordinary combustion equipment is present in excess of the amount that oxidizes and consumes the oxidizing components. In such an atmosphere, CO and HC are
Although it is possible to convert N08 to H2O, it is impossible to convert N08 to N2 because the reaction partners CO and HC are consumed before the reaction with oxygen. However, neither a method nor a catalyst for converting and removing CO, HC, and NO at the same time in such an atmosphere has been put to practical use. Therefore, the reduction reaction of nitrogen oxides from stationary sources, especially power plants and chemical plants, is
Catalysts and methods for selective catalytic reactions in which a reduction aid such as ammonia is added and reduced in the presence of a catalyst have been put into practical use.

発明が解決しようとする問題点 還元助剤として還元性成分であるcoやHCの濃度が十
分に濃いか、あるいは選択接触反応を行なわしめるため
のアンモニア等の反応物質を、系外から添加することの
出来る場合を除いては、通常の過剰酸素雰囲気より成る
燃焼排ガス中のNO工のN2までの還元は、全く不可能
なことである。
Problems to be solved by the invention: Is the concentration of reducing components such as co or HC as a reduction aid sufficiently high? Or is it necessary to add a reactive substance such as ammonia from outside the system to carry out a selective catalytic reaction? Unless possible, it is completely impossible to reduce NO to N2 in the combustion exhaust gas in a normal excess oxygen atmosphere.

このため、NOエ のうち、その毒性がもっとも強いN
o2を、よシ毒性の低いNoにまで変換し、NOx 中
のNo2 成分比を小さくすることが検討されてきた。
For this reason, among NO, the most toxic is N.
Studies have been conducted to convert O2 to less toxic No and to reduce the No2 component ratio in NOx.

この場合も過剰酸素雰囲気においては、不可能ではない
が、変換効率が低く、実用には困難であった。
In this case as well, in an excess oxygen atmosphere, although it is not impossible, the conversion efficiency is low and it is difficult to put it into practical use.

本発明は、通常の酸素過剰雰囲気中の燃焼排ガスにあっ
て、CoとHCをCo2とH2Oに変換すると共に、N
O2をNo  に変換し、No! 中のNo2 成分比
を大巾に低減するための触媒を提供しようとするもので
ある。
The present invention converts Co and HC into Co2 and H2O in combustion exhaust gas in a normal oxygen-rich atmosphere, and also converts N
Convert O2 to No, No! The purpose is to provide a catalyst for greatly reducing the No2 component ratio in the catalyst.

通常、燃焼器から発生する排ガス中においては、No2
とNOが共存するが、その共存比率は、燃焼器の種類や
燃焼条件によって変わり、一般的にNOの方がNo2よ
り2〜20倍多い。このため酸素過剰雰囲気中での非選
択接触反応においては、N。
Normally, in the exhaust gas generated from the combustor, No.
and NO coexist, but the coexistence ratio varies depending on the type of combustor and combustion conditions, and generally NO is 2 to 20 times more than No2. Therefore, in a non-selective catalytic reaction in an oxygen-rich atmosphere, N.

の酸化によるNO2への変換の方が、No2  の還元
によるNoへの変換より多く、オーバーオールではNO
2の増加という結果を招く。
The conversion of No2 to NO2 by oxidation is greater than the conversion of No2 to No2 by reduction;
This results in an increase of 2.

本発明者は、多くの触媒物質について、No酸化能とN
O2還元能の両面について試験し、前のNoとNo2の
共存比率の範囲内で、オーバーオールとしてNO□ の
還元が進行し、NoとNo2比率がNO増の方向に変換
する触媒を見出してきた。しかしながら、これらの多く
は、他の成分であるcoやHCの酸化能をも低減せしめ
るため、本発明の目的とするNo2低減と同時にCOと
HCの低減することにはならない。
The present inventor has determined that the No oxidation ability and the N
We have tested both aspects of O2 reduction ability, and have found a catalyst that, within the range of the previous coexistence ratio of No and No2, reduces NO□ as an overall process and changes the No and No2 ratio in the direction of increasing NO. However, since most of these also reduce the oxidizing ability of other components such as co and HC, they do not result in the reduction of CO and HC at the same time as the reduction of No2, which is the objective of the present invention.

問題点を解決するだめの手段 本発明者は、この問題を解決するために、C0やHCの
酸化触媒として、もっとも有効な白金系(白金や″ラジ
ウム)触媒を基にして、いくつかの酸化物の添加効果を
試験した結果、パラジウムに酸化ジルコニウムを添加し
たものがもっとも効果的であることを見出した。
Means to Solve the Problem In order to solve this problem, the present inventor developed several oxidation catalysts based on platinum-based (platinum and radium) catalysts, which are the most effective as oxidation catalysts for CO and HC. As a result of testing the effects of adding zirconium oxide to palladium, it was found that the most effective solution was the addition of zirconium oxide to palladium.

さらに、これらの混合比率が、パラジウム金属と酸化ジ
ルコニウムの重量比で、1:2〜1:50の範囲にあり
、さらに好ましくは、1:4〜1:20の範囲にあるこ
とが望ましい。
Furthermore, it is desirable that the mixing ratio of palladium metal and zirconium oxide is in the range of 1:2 to 1:50, more preferably in the range of 1:4 to 1:20.

また、これらパラジウム金属と酸化ジルコニウムは同時
に担体に担持されることが望ましり、′この方法として
、それぞれの前駆体の種類や、担持する際の助剤につい
て検討を重ねた結果、ジニトロジアミンパラジウム硝酸
液などのパラジウム金 、属の前駆体と、オキシ硝酸ジ
ルコニウムなどの酸化ジルコニウムの前駆体との混合水
溶液に、クエン酸などの有機酸を添加したものを、担持
溶液とし、これに担体を浸漬含浸して、乾燥後、分解焼
成して、パラジウムとジルコニア(酸化ジルコニウム)
を同時担持すると、もつともNo2変換率が高くなるこ
とを見出した。
In addition, it is desirable that these palladium metals and zirconium oxide be simultaneously supported on a carrier, and as a result of repeated studies on the types of precursors and auxiliary agents for supporting them, we found that dinitrodiamine palladium An organic acid such as citric acid is added to a mixed aqueous solution of a precursor of palladium gold, such as a nitric acid solution, and a precursor of zirconium oxide, such as zirconium oxynitrate, to form a support solution, and the support is immersed in this solution. Impregnated, dried, decomposed and fired to produce palladium and zirconia (zirconium oxide)
It has been found that the No2 conversion rate becomes higher when both are supported at the same time.

またこのときの有機酸の添加量としては、パラジウム金
属の前駆体の量とは関係が少なく、主に酸化ジルコニウ
ムの前駆体の量との間に関係がみられ、酸化ジルコニウ
ムに換算したときの前駆体と、有機酸の重量比で、1:
0.5〜1:10の範囲にあり、さらに好ましくは1:
1〜1:5の範囲にあることが望ましい。また前駆体の
種類の組合せとしては前に例示した、ジニトロジアミン
ノくラジウム硝酸液とオキシ硝酸ジルコニウム、そして
クエン酸をイオン交換水で溶解せしめたものを用いた場
合に、もっとも効果的であることも判ったO 作  用 本発明の触媒の組成が、酸素過剰雰囲気中における、C
o、HCとNo2の低減になぜもっとも効果的なのかに
ついての明快なる説明は出来ないが、いわゆる白金系触
媒としての、白金やロジウム、そしてパラジウム単独触
媒は、当然のこととして、Co−HCの低減に効果が高
いがNo2低減には、はとんど効果がない。それ以上に
白金ロジウムにあっては、NOのNo2 変換能が高く
、No2を増加する。パラジウムのみが、他の白金系触
媒にくらべて、NoのNO□ 変換能が低いことは、パ
ラジウムが白金より酸化能が低いからだとする以上に、
担持された表面状態によるものと考えられる。これは、
本発明の組成である酸化ジルコニウムを添加することに
よって、NOのN02 酸化能がさらに抑制され、一方
No2のNo変換が増進されているとみなせるが、この
効果も、触媒調製を、パラジウム並びに添加物である酸
化ジルコニウムの前駆体同志で調合することによって顕
著となっているところから、酸化ジルコニウムという質
的な面と、パラジウムの同時担持により生じた効果的な
表面形成により、新しい活性点の発現、もしくはNOの
No2酸化活性点の減少によるものと考えられる。
In addition, the amount of organic acid added at this time has little relationship with the amount of palladium metal precursor, but mainly with the amount of zirconium oxide precursor, and the amount of organic acid added in terms of zirconium oxide. The weight ratio of precursor to organic acid is 1:
It is in the range of 0.5 to 1:10, more preferably 1:
It is desirable that the ratio is in the range of 1 to 1:5. In addition, as for the combination of precursor types, the most effective is to use dinitrodiaminol, radium nitric acid solution, zirconium oxynitrate, and citric acid dissolved in ion-exchanged water, as exemplified above. It was also found that the composition of the catalyst of the present invention has an O effect in an oxygen-rich atmosphere.
Although it is not possible to give a clear explanation as to why they are the most effective in reducing Co-HC and No2, platinum-based catalysts such as platinum, rhodium, and palladium alone are naturally effective at reducing Co-HC. Although it is highly effective in reducing No.2, it is hardly effective in reducing No.2. Even more than that, platinum-rhodium has a high ability to convert NO into No2 and increases No2. The reason why only palladium has a lower ability to convert No to NO□ than other platinum-based catalysts is because palladium has a lower oxidation ability than platinum.
This is thought to be due to the supported surface condition. this is,
By adding zirconium oxide, which is the composition of the present invention, it can be considered that the ability of NO to oxidize NO2 is further suppressed, while the conversion of No2 to No2 is promoted. This has become remarkable by blending zirconium oxide precursors, which is a zirconium oxide precursor.The qualitative aspect of zirconium oxide and the effective surface formation caused by the simultaneous support of palladium result in the expression of new active sites. Alternatively, this may be due to a decrease in the No2 oxidation active sites of NO.

実施例 以下に実施例を示す。Example Examples are shown below.

(実施例1) 高純度シリカファイバの紡糸を織布としだシリカクロス
を、あらかじめ準備した、ベーマイトアルミナゲル10
0部とシリカゾル10部を、イオン交換水1000部で
均一に分散させた混合液中に、十分に浸漬したのち、余
分な液を取り除き、通常の方法で乾燥し、大気雰囲気中
5oo℃〜8oO℃で焼成して、シリカ・アルミナ担体
をウォッシュコートした。このウォッシュコートは重量
比で基材のシリカクロスに対し、16〜45wt係とな
るように調整した。
(Example 1) Boehmite alumina gel 10 prepared in advance using woven fabric and silica cloth spun from high-purity silica fibers.
0 parts and 10 parts of silica sol are uniformly dispersed in 1000 parts of ion-exchanged water. After thoroughly immersing the mixture, remove the excess liquid, dry by a normal method, and heat in an air atmosphere at 50°C to 800°C. The silica-alumina support was wash coated by firing at ℃. This wash coat was adjusted to have a weight ratio of 16 to 45 wt relative to the silica cloth used as the base material.

一方、ジニトロジアミンパラジウム硝酸液と、オキシ硝
酸ジルコニウムをいくつかの割合でイオン交換水に溶解
せしめたのち、クエン酸水溶液を徐々に添加し、溶液が
白濁化すると直ちに攪拌し、さらに添加して、攪拌を続
け、再び澄黄色とならず、溶液全体が白濁色を呈したと
ころでクエン酸の添加を止め、さらに十分に攪拌をして
、白色ゾル物質が沈降しない状態で、前のウォッシュコ
ート済みのクロス担体を浸漬し、100℃から150℃
で1〜2時間乾燥したのちに、400℃〜7o。
On the other hand, after dinitrodiamine palladium nitrate solution and zirconium oxynitrate were dissolved in ion-exchanged water in several proportions, citric acid aqueous solution was gradually added, and as soon as the solution became cloudy, it was stirred and further added. Continue stirring, and when the solution does not become clear yellow again and the entire solution becomes cloudy, stop adding citric acid, and stir thoroughly until the white sol substance settles. Immerse the cloth carrier at 100℃ to 150℃
After drying for 1 to 2 hours at 400°C to 7o.

℃の電気炉に入れ、雰囲気を新鮮空気で強制交換して、
分解発生するガスを排気し終ってのち、2〜6時間焼成
して、パラジウムと酸化ジルコニウムの混合物を担持し
た。このとき添加したクエン酸の景は、オキシ−硝酸ジ
ルコニウムの酸化ジルコニウム換算重量に対し、1:0
,5でわずかに白濁し、1:1では、白濁程度は十分に
濃い状態となり、これ以上ではあまり変化はなかったが
、1:10を超えると、一部沈澱がみられるようになる
。ここでは、クエン酸の添加量は、酸化ジルコニウム換
算重量に対し1:1に調整した0この完成触媒は第1表
のA、Fとした。
℃ in an electric furnace, the atmosphere was forcibly exchanged with fresh air,
After exhausting the gas generated by decomposition, the mixture was fired for 2 to 6 hours to support a mixture of palladium and zirconium oxide. The ratio of citric acid added at this time was 1:0 relative to the weight of zirconium oxy-nitrate in terms of zirconium oxide.
, 5, it became slightly cloudy, and at 1:1, the degree of white turbidity became sufficiently thick, and when it was more than that, there was not much change, but when it exceeded 1:10, some precipitation started to be seen. Here, the amount of citric acid added was adjusted to 1:1 relative to the equivalent weight of zirconium oxide.The completed catalysts were designated as A and F in Table 1.

(実施例2) 実施例1と全く同じ方法で、シリカクロスにノくラジウ
ムと酸化ジルコニウムを担持したが、シリカクロス担体
を浸漬するパラジウム・酸化ジルコニウム前駆体水溶液
中に添加するクエン酸の量を、酸化ジルコニウムに対し
、重量比で1:0.5〜1:10の範囲とした0この完
成触媒は第2表の1、Nとした。
(Example 2) Radium and zirconium oxide were supported on silica cloth in exactly the same manner as in Example 1, but the amount of citric acid added to the palladium/zirconium oxide precursor aqueous solution in which the silica cloth support was immersed was changed. , to zirconium oxide in a weight ratio ranging from 1:0.5 to 1:10.This finished catalyst was designated as 1,N in Table 2.

(実施例3) 実施例1と同じ方法で、シリカクロスにノ(ラジウムと
酸化ジルコニウムを担持したが、)(ラジウムの前駆体
として硝酸パラジウム、酸化ジルコニウムの前駆体とし
て硝酸ジルコニウム、また有機酸として酪酸を用いた。
(Example 3) In the same manner as in Example 1, silica cloth was loaded with radium and zirconium oxide (palladium nitrate as a precursor of radium, zirconium nitrate as a precursor of zirconium oxide, and as an organic acid). Butyric acid was used.

(実施例4) 実施例1と同じ方法で、シリカクロスに、パラジウムと
酸化ジルコニウムを担持したが、パラジウムの前駆体と
して塩化パラジウム、酸化ジルコニウムの前、駆体とし
て塩化ジルコニウム、まだ有機酸としてコハク酸を用い
た。
(Example 4) Palladium and zirconium oxide were supported on silica cloth in the same manner as in Example 1, but palladium chloride was used as a precursor of palladium, zirconium oxide was used as a precursor, zirconium chloride was used as a precursor, and succinic acid was used as an organic acid. Acid was used.

(実施例6) 実施例1と同じ方法で、シリカクロスに、パラジウムと
酸化ジルコニウムを担持したが、パラジウムの前駆体と
してジニトロジアンミンパラジウム、酸化ジルコニウム
の前、駆体として硝酸ジルコニウム、また有機酸として
酪酸を用いた。
(Example 6) Palladium and zirconium oxide were supported on silica cloth in the same manner as in Example 1, but dinitrodiammine palladium was used as a palladium precursor, zirconium nitrate was used as a precursor, and zirconium nitrate was used as an organic acid. Butyric acid was used.

(実施例6) コープイライト系ハニカム構造体を、あらかじめ準備し
た、ベーマイトアルミナゲル1oo部をイオン交換水1
o00部に均一に分散した液中に十分浸漬し、余分な液
を取り除いたのち、通常の方法で乾燥し、500〜70
0℃で焼成して、アルミナ担体をウォッシュコートした
。このウォッシュコートは重量比で20〜30wt% 
となるように調製した。この担体に実施例1と同じ方法
により、パラジウムと酸化ジルコニウムを担持して触媒
を調製した。完成触媒の組成は第1表に触媒G〜工と示
す。
(Example 6) A copierite honeycomb structure was prepared by adding 10 parts of boehmite alumina gel to 1 part of ion-exchanged water.
After thoroughly immersing in a solution uniformly dispersed in 000 parts, removing the excess solution, drying in the usual manner,
The alumina support was wash coated by firing at 0°C. This wash coat is 20-30wt% by weight.
It was prepared as follows. A catalyst was prepared by supporting palladium and zirconium oxide on this carrier in the same manner as in Example 1. The composition of the finished catalyst is shown in Table 1 as Catalyst G.

本発明の効果を確認するために、石油燃焼器の燃焼筒に
触媒A−Nを取りつけ、排ガスの全量が触媒を通過する
ようにしだ。N02の転化率は、触媒を取付けないとき
のNO3濃度に対する百分率で求めた。一方、各サンプ
ル触媒の活性を調べるために、モデルガスによる流通型
反応試験器での反応活性を測定した。このとき、反応ガ
スとしては、NO2−・−・−6ppm 、NO−…1
00ppm。
In order to confirm the effects of the present invention, a catalyst AN was attached to the combustion tube of an oil combustor so that the entire amount of exhaust gas passed through the catalyst. The conversion rate of N02 was determined as a percentage of the NO3 concentration when no catalyst was attached. On the other hand, in order to examine the activity of each sample catalyst, the reaction activity was measured using a flow-type reaction tester using a model gas. At this time, the reaction gases were NO2-...-6ppm, NO-...1
00ppm.

0 ・・・・・・10チでN2バランスのモデルガスを
用い、触媒体積に対する空間速度を8×1oh となる
よってした。転化率の測定は、ガス温度が600℃のと
きに行なった。
Using a model gas with N2 balance at 0...10, the space velocity relative to the catalyst volume was set to 8 x 1oh. The conversion rate was measured at a gas temperature of 600°C.

また、従来例の触媒として、実施例1と同一のウォッシ
ュコートした、クロス担体に、パラジウム0.5wt%
担持したパラジウム触媒を用いて、転化率を比較した。
In addition, as a conventional catalyst, 0.5 wt% palladium was added to the same wash-coated cross carrier as in Example 1.
Conversion rates were compared using supported palladium catalysts.

これら実機排ガスとモデルガスについての結果を第1表
、第2表に示す。さらに石油燃焼器での測定には、定常
時のCQと、消火時のHCについても、濃度測定を行な
い、サンプル触媒取り付けによるそれぞれの成分ガスに
対する転化率を、やはり触媒を取りつけないときの濃度
とから百分率で算出した。
Tables 1 and 2 show the results for the actual exhaust gas and model gas. Furthermore, when measuring in an oil combustor, the concentrations of CQ during steady state and HC during extinguishing are also measured, and the conversion rates for each component gas with a sample catalyst installed are compared to the concentrations when no catalyst is installed. Calculated as a percentage.

これらの測定は、CQは赤外線非分散型測定器を、HC
は水素炎検出器による全炭化水素測定器を、またNoは
化学発光型窒素酸化物測定器を用いて、濃度測定をした
。さらにN02 は、No測定と同時にNo工測測定行
ない、このNo工値からNo値を差し引いた値をNO2
値とした。
These measurements were carried out using an infrared non-dispersive measuring instrument for CQ and an infrared non-dispersive measuring instrument for HC.
The concentration was measured using a total hydrocarbon measuring device using a hydrogen flame detector, and the concentration was measured using a chemiluminescent nitrogen oxide measuring device for No. Furthermore, for NO2, perform the No. engineering measurement at the same time as the No. measurement, and calculate the value obtained by subtracting the No. value from this No. engineering value.
value.

ここで、測定に用いた石油燃焼器に取りつけた触媒の表
面温度は、定常燃焼時で600〜700’Cの範囲に分
布していた。
Here, the surface temperature of the catalyst attached to the oil combustor used for measurement was distributed in the range of 600 to 700'C during steady combustion.

第1表、第2表より明らかなように、本発明実施例によ
る触媒は、窒素酸化物中のN02をNoへ変換する効果
が極めて高い。このNo2 からNOへの変換はモデル
ガスにより800℃以上での高温域か、もしくは反応ガ
ス中の02濃度が1%以下と低い場合には、従来例の触
媒でも、容易に起こることが判ったが、通常の石油燃焼
器の排ガス中には残存酸素は少なくとも6〜10%あり
、また、触媒の耐熱性からも、触媒の取付は位置として
は、触媒表面温度がSOO〜850℃以下であることが
望ましく、これらの観点からして、実用的に本発明実施
例の触媒は、No2低減に極めて効果的であることが判
った。また同時に、CoとHCの浄化も、従来例の触媒
にくらべて、浄化率で、同等か、悪くとも1Qチ以内で
あり、特に本発明実施例の触媒を用いることによって、
それらの浄化に効果が低くなったという程度には至らな
いことも判った。
As is clear from Tables 1 and 2, the catalysts according to the examples of the present invention are extremely effective in converting N02 in nitrogen oxides to No. It was found that this conversion of No2 to NO occurs easily even with conventional catalysts when the model gas is in the high temperature range of 800°C or higher, or when the 02 concentration in the reaction gas is as low as 1% or less. However, there is at least 6 to 10% residual oxygen in the exhaust gas of a normal oil combustor, and due to the heat resistance of the catalyst, the catalyst should be installed at a location where the catalyst surface temperature is SOO~850℃ or less. From these points of view, it has been found that the catalysts of the examples of the present invention are extremely effective in reducing No2. At the same time, the purification rate of Co and HC is the same as that of the conventional catalyst, or at least within 1Q. Particularly, by using the catalyst of the present invention,
It was also found that the effectiveness of purification was not reduced to such an extent.

Noエ としての窒素酸化物の排出総濃度は、結果とし
て、はとんど変化していないことも判ったが、No2が
Noに変換されたことによって、その分は明らかに、排
ガスの毒性が低下している。
As a result, it was found that the total concentration of nitrogen oxides in the form of NO2 has not changed at all, but the conversion of NO2 to NO has clearly reduced the toxicity of the exhaust gas. It is declining.

尚、ここでは実施例1,2と6の結果について説明した
が、実施例3,4.6の結果は、実施例1.2.6の結
果にくらべて、CoとHC浄化率は、はとんど変わるこ
となく、CQで91〜93チ、HCで70〜72%であ
ったが、No2 変換率は、実機排ガス、モデルガス共
に、や\低く出た。すなわち、実機排ガスでは48〜5
6%、モデルガスでは48〜52%であった。ただこれ
らの場合も、従来例よりくらべれば、共に高変換率を示
している。
Although the results of Examples 1, 2 and 6 have been explained here, the results of Examples 3 and 4.6 show that the Co and HC purification rates are higher than those of Examples 1.2.6. There was no change at all, at 91-93% for CQ and 70-72% for HC, but the No2 conversion rate was slightly lower for both actual exhaust gas and model gas. In other words, the actual exhaust gas is 48 to 5.
6%, and 48-52% for the model gas. However, both of these cases show higher conversion rates than the conventional example.

なお、本発明において、担体の材質や形状、すなわち、
シリカクロス以外の無機質繊維の織布や、抄紙状セラミ
ックの構造体、まだ通常の粒状体であってもよく、また
、本実施例では担体へ担持する場合について述べたが、
本発明の触媒組成そのものを、担体や基材の一要素とし
て混合使用することも出来る〇 また触媒材料である前駆体についても、ここで述べたも
のの他の塩や有機酸であっても、また互に異なる塩の組
合せであっても本発明の効果を妨げるものではない。
In addition, in the present invention, the material and shape of the carrier, that is,
A woven fabric of inorganic fibers other than silica cloth, a paper-like ceramic structure, or a normal granular body may be used.Also, in this example, the case where it is supported on a carrier is described.
The catalyst composition of the present invention itself can be mixed and used as an element of the carrier or base material. Also, the precursor of the catalyst material may be other salts or organic acids than those mentioned here. Even a combination of mutually different salts does not impede the effects of the present invention.

発明の効果 以上のように本発明によれば、N02低減に極めて効果
的であシ、排ガスの毒性を低下することができる。
Effects of the Invention As described above, the present invention is extremely effective in reducing N02 and can reduce the toxicity of exhaust gas.

Claims (4)

【特許請求の範囲】[Claims] (1)パラジウム金属と酸化ジルコニウムを担体表面に
担持した排ガス浄化用触媒。
(1) A catalyst for exhaust gas purification that supports palladium metal and zirconium oxide on the surface of a carrier.
(2)パラジウム金属と酸化ジルコニウムの混合比率が
重量比率で1:4〜1:20の範囲とした特許請求の範
囲第1項記載の排ガス浄化用触媒。
(2) The catalyst for exhaust gas purification according to claim 1, wherein the mixing ratio of palladium metal and zirconium oxide is in the range of 1:4 to 1:20 by weight.
(3)パラジウム金属と酸化ジルコニウムを同時に担体
表面に担持するとき、これらの前駆体から成る溶液中に
、有機酸を添加することを特徴とする排ガス浄化用触媒
の製造方法。
(3) A method for producing an exhaust gas purifying catalyst, which comprises adding an organic acid to a solution consisting of these precursors when palladium metal and zirconium oxide are simultaneously supported on the surface of a carrier.
(4)有機酸の添加量を、酸化ジルコニウム換算重量に
対し、重量比で1:1〜1:5の範囲とした特許請求の
範囲第3項記載の排ガス浄化用触媒の製造方法。
(4) The method for producing an exhaust gas purifying catalyst according to claim 3, wherein the amount of the organic acid added is in the range of 1:1 to 1:5 in weight ratio to the equivalent weight of zirconium oxide.
JP60239835A 1985-10-25 1985-10-25 Catalyst for purifying exhaust gas and its preparation Pending JPS6297646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60239835A JPS6297646A (en) 1985-10-25 1985-10-25 Catalyst for purifying exhaust gas and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60239835A JPS6297646A (en) 1985-10-25 1985-10-25 Catalyst for purifying exhaust gas and its preparation

Publications (1)

Publication Number Publication Date
JPS6297646A true JPS6297646A (en) 1987-05-07

Family

ID=17050564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60239835A Pending JPS6297646A (en) 1985-10-25 1985-10-25 Catalyst for purifying exhaust gas and its preparation

Country Status (1)

Country Link
JP (1) JPS6297646A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4916109A (en) * 1987-07-14 1990-04-10 Lonza Ltd. Catalyst for the oxidation of carbon compounds
JPH11319559A (en) * 1998-03-09 1999-11-24 Osaka Gas Co Ltd Catalyst and method for purifying exhaust gas containing methane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4916109A (en) * 1987-07-14 1990-04-10 Lonza Ltd. Catalyst for the oxidation of carbon compounds
JPH11319559A (en) * 1998-03-09 1999-11-24 Osaka Gas Co Ltd Catalyst and method for purifying exhaust gas containing methane

Similar Documents

Publication Publication Date Title
US6066587A (en) Catalyst for purifying exhaust gas
JPS63100919A (en) Purifying method for exhaust gas and catalyst
JP2010519039A (en) Bifunctional catalysts for selective ammonia oxidation
US4171289A (en) Selective automotive exhaust catalysts and a process for their preparation
JP2005177570A (en) Scr catalyst excellent in characteristic at high temperature
JPH01135541A (en) Catalyst for purifying exhaust gas
JPS63116744A (en) Catalyst for purifying exhaust gas and its preparation
JPS6297646A (en) Catalyst for purifying exhaust gas and its preparation
JPS62241554A (en) Catalyst for purifying exhaust gas and preparation thereof
JPH06126177A (en) Catalyst for removing nitrous oxide in exhaust gas
JPS5820307B2 (en) Catalyst for vehicle exhaust gas purification
JPS62136244A (en) Catalyst for purifying exhaust gas and production thereof
JPS6380853A (en) Catalyst for purifying exhaust gas and its preparation
JPS62136243A (en) Catalyst for purifying exhaust gas and production thereof
JP3944597B2 (en) Nitrogen oxide removing catalyst and nitrogen oxide removing method
JP3395525B2 (en) Internal combustion engine exhaust gas purification catalyst and purification method
JP2587000B2 (en) Exhaust gas purifying material and exhaust gas purifying method
JP3527759B2 (en) Method for purifying exhaust gas containing nitrogen oxides
JPH06178937A (en) Catalyst for removing nitrogen oxides and method of removing the same
KR100408503B1 (en) Catalyst for purifying exhaus gas of vehicle
JPH04267951A (en) Catalyst for purifying exhaust gas
JPH0557196A (en) Production of catalyst for purifying exhaust gas
JPH0554383B2 (en)
JP3435992B2 (en) Purification method of exhaust gas containing nitrogen oxides
JP2932106B2 (en) Exhaust gas purification catalyst