JPS6297356A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS6297356A
JPS6297356A JP2006586A JP2006586A JPS6297356A JP S6297356 A JPS6297356 A JP S6297356A JP 2006586 A JP2006586 A JP 2006586A JP 2006586 A JP2006586 A JP 2006586A JP S6297356 A JPS6297356 A JP S6297356A
Authority
JP
Japan
Prior art keywords
thickness
welded
copper
cold
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006586A
Other languages
Japanese (ja)
Other versions
JP2549623B2 (en
Inventor
Masatoshi Kanetani
金谷 昌壽
Toshio Ogawa
敏夫 小川
Yukio Igarashi
五十嵐 行雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of JPS6297356A publication Critical patent/JPS6297356A/en
Application granted granted Critical
Publication of JP2549623B2 publication Critical patent/JP2549623B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container

Abstract

PURPOSE:To make sealing performance excellent, by providing the thickness of a cold welded part of two copper plates to be welded within a specified range, forming an Ni plated layer having a specified thickness on the welded surface, and specifying the expression of relation so that a welding deformation rate, thickness of Ni plated layer and thickness of copper plates satisfy the expression. CONSTITUTION:The thickness tCu of each of copper plates of upper and lower metal plates to be welded 3 and 4 is 400mum. An Ni plated layer 13 is formed on the respective welded surfaces so that a plating thickness TNi is 13mum. Then upper and lower assemblies 22 and 23 undergo heat treatment in a hydrogen atmosphere. A mutually diffused layer 14 is formed at the interface between the copper plates and the Ni plated layer. Thereafter, a semiconductor pellet and the like are enclosed between the upper and lower assemblies 22 and 23. The parts from the outer edges to the inner ring parts of two metal plates to be welded undergo cold weld. At this time, a deformation rate R of the metal plate to be welded is 10-85%. Pressure is applied at R=65% so as to satisfy R>=115+2.25tNi-0.21tCu. Thus the device having sealing property can be sealed by cold pressure welding, and working efficiency is improved.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、冷間圧接(コールドウェルド)により封止さ
れる半導体装置とその製造方法に関するもので、特に冷
間圧接部分の母材が銅板である平型電力用半導体装置と
その製造方法に使用される。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a semiconductor device sealed by cold welding and a method for manufacturing the same. It is used in a certain flat power semiconductor device and its manufacturing method.

[発明の技術的背Ill 半導体装置は信頼性の面から通常N2ガス等の不活性ガ
スを装置内部に封入し、外気と遮断する必要があり、そ
のため外囲器は密閉構造となっている。 従来半導体装
置、特に平型電力用半導体装置の気密封止技術として一
般に11g溶接(アーク溶接)が用いられている。 し
かし近年これを冷間圧接技術により封止する傾向があり
、既に平型電力用半導体装置の一部製品には実際に適用
さ′ れはじめている。 冷間圧接法は被圧接部材間に
大きな加圧力を加え、外部から熱を加えることなしに常
温で接合する方法である。
[Technical Background of the Invention] From the standpoint of reliability, semiconductor devices usually require an inert gas such as N2 gas to be sealed inside the device to isolate it from the outside air, and therefore the envelope has a sealed structure. Conventionally, 11g welding (arc welding) is generally used as a hermetic sealing technique for semiconductor devices, particularly flat power semiconductor devices. However, in recent years there has been a trend toward sealing this by cold pressure welding technology, and this has already begun to be actually applied to some products of flat power semiconductor devices. The cold pressure welding method is a method in which a large pressure is applied between the members to be welded to join them at room temperature without applying heat from the outside.

冷間圧接法により封止される平型電力用半導体装置の従
来例について図面に基づいて説明する。
A conventional example of a flat power semiconductor device sealed by cold pressure welding will be described based on the drawings.

第3図はこの装置の側面図であり、被圧接金属板の外周
部近傍のみΔ−A線断面(第4図参照)を示している。
FIG. 3 is a side view of this device, showing only the Δ-A line cross section (see FIG. 4) near the outer periphery of the metal plate to be welded under pressure.

 第4図は第3図の平面図である。FIG. 4 is a plan view of FIG. 3.

1及び5は平型半導体装置21(例えばダイオード)の
電極である。 2はセラミック等の絶縁物の外囲器部分
で、電極1と電極5とを絶縁すると共に内部に半導体チ
ップ(図示なし)を収納する。
1 and 5 are electrodes of a flat semiconductor device 21 (for example, a diode). Reference numeral 2 denotes an envelope portion made of an insulating material such as ceramic, which insulates the electrodes 1 and 5 and houses a semiconductor chip (not shown) inside.

3は上部被圧接金属板、4は下部被圧接金属板で一般に
銅板が使用される。 上部被圧接金属板3は絶縁物外囲
器部分2に固着され、下部被圧接金属板4は電極5に固
着されている。 前記2つの被圧接金属板3及び4は互
いに重ね合わされ、その外周縁から所定の距離lを隔て
た内側の環状部分6を冷間圧接して気密封止される。 
第5図はこの封止工程を説明するための部分断面図を含
む側面図である。 前記2つの被圧接金属板3及び4は
上部圧接ダイス7及び下部圧接ダイス8とに挾まれ、プ
レス等の圧力印加装置により室温で加圧して接合封止さ
れる。 第6図及び第7図は上部圧接ダイス7の主要部
を示すIII要図で、第6図はB−B線断面図(第7図
参照)、第7図はその平面図である。 下部圧接ダイス
8の主要部は通常上部圧接ダイス7と同形である。 9
は圧接ダイス7の圧入部であり、圧入部9の形状は通常
断面台形の環状形である。 10.11及び12は圧入
部9のそれぞれ先端加圧面、外側加圧面及び内側加圧面
である。
Reference numeral 3 denotes an upper pressure-welded metal plate, and 4 denotes a lower pressure-welded metal plate, which is generally a copper plate. The upper pressure-welded metal plate 3 is fixed to the insulating envelope portion 2, and the lower pressure-welded metal plate 4 is fixed to the electrode 5. The two press-welded metal plates 3 and 4 are stacked one on top of the other, and the inner annular portion 6 spaced a predetermined distance l from the outer periphery is cold-welded and hermetically sealed.
FIG. 5 is a side view including a partial sectional view for explaining this sealing step. The two pressure-welded metal plates 3 and 4 are sandwiched between an upper pressure-welding die 7 and a lower pressure-welding die 8, and are pressed and sealed together at room temperature by a pressure applying device such as a press. 6 and 7 are III main views showing the main parts of the upper pressure welding die 7. FIG. 6 is a sectional view taken along the line B-B (see FIG. 7), and FIG. 7 is a plan view thereof. The main part of the lower pressure welding die 8 is generally the same shape as the upper pressure welding die 7. 9
is a press-fitting part of the press-welding die 7, and the shape of the press-fitting part 9 is usually an annular shape with a trapezoidal cross section. Reference numerals 10, 11 and 12 are the tip pressing surface, the outer pressing surface, and the inner pressing surface of the press-fitting part 9, respectively.

冷間圧接により被圧接金属板3.4の環状部分6は加圧
され塑性変形を受ける。 冷間圧接技術における被圧接
金属板間の接合は、塑性変形の過程で両金属板のそれぞ
れの金属原子が相互に部分的に金属結合するためと考え
られている。 平型電力用半導体装置の封止に冷間圧接
技術を用いるのは最近のことであり、現在被圧接金属板
には主として銅板が使用されている。 また一部におい
てはこの銅板にNiメッキを施して使用される例もある
がいずれの場合においても熱処理は行なわれていない。
By cold welding, the annular portion 6 of the metal plate 3.4 to be welded is pressurized and undergoes plastic deformation. It is thought that the joining between the metal plates to be welded in the cold pressure welding technique is due to the metal atoms of the two metal plates forming a partial metal bond with each other during the process of plastic deformation. The use of cold pressure welding technology for sealing flat power semiconductor devices is recent, and currently copper plates are mainly used as the metal plates to be pressure welded. In some cases, this copper plate is used after being plated with Ni, but in any case, no heat treatment is performed.

[背m技術の問題点] 平型電力用半導体装置の封正においては、圧接封止部分
は円環状の広い領域にわたっている。
[Problems with back m technology] In sealing a flat power semiconductor device, the press-fit sealing portion covers a wide annular area.

従来の冷間圧接技術ではこの全領域にわたって完全な金
属結合を得ることが困難で、円環状の圧接部分の一部或
いは全面に微小孔が生じる場合が多い。 圧接部分の密
封性の良否は外囲器内部にへリウムガスを注入し、圧接
部分から外部に漏れるヘリウムガスのリークII (a
tOl−cc/sec )で計測される。 11g溶接
の場合、基準リーク量は、例えば10”’ atom 
−cc/ sea以下とされている。
With conventional cold welding techniques, it is difficult to obtain a perfect metal bond over this entire area, and micropores often occur in part or the entire surface of the annular pressure welding part. The sealing performance of the pressure welded parts is determined by injecting helium gas into the inside of the envelope, and checking for leakage of helium gas leaking from the pressure welded parts to the outside.
It is measured in tOl-cc/sec). In the case of 11g welding, the standard leakage amount is, for example, 10''' atom
-cc/sea or less.

冷間圧接による場合は従来の11g溶接の場合に比し密
封性が著しく低く、この基準リーク量以内の半導体装置
を得ることが難しい。 このため被圧接金属が銅の場合
、銅板表面に薄<Niメッキ或いはOrメッキした後に
冷間圧接をすることが一部でおこなわれているが効果は
不充分である。
In the case of cold pressure welding, the sealing performance is significantly lower than in the case of conventional 11g welding, and it is difficult to obtain a semiconductor device with a leakage amount within this standard leakage amount. For this reason, when the metal to be pressure welded is copper, cold pressure welding is sometimes carried out after the surface of the copper plate is plated with thin Ni or Or plating, but the effect is insufficient.

圧接部分の全面を完全な金属結合に至らしめ、基準リー
ク量以内の密封度とする冷間圧接技術は未知である。
There is no known cold welding technology that achieves a complete metal bond over the entire surface of the welded part and achieves a degree of sealing within the standard leakage amount.

[発明の目的] 本発明の目的は、冷間圧接により封止する半導体装置と
その製造方法において、Niメッキされた銅の被圧接金
属板が完全な金属結合をするための条件を求め、これに
より11g溶接と同等の高い密封性を有する半導体装置
とその製造方法を提供することである。
[Object of the Invention] The object of the present invention is to find the conditions for complete metal bonding of Ni-plated copper press-welded metal plates in a semiconductor device sealed by cold pressure welding and its manufacturing method, and to An object of the present invention is to provide a semiconductor device having high sealing performance equivalent to that of 11g welding, and a method for manufacturing the same.

[発明の概要] 本発明は、N1メッキされた銅の被圧接金属板を冷間圧
接して封止する場合、密封性の良否を決定する主たる要
因は被圧接金属板の板厚tcu、N1メッキの厚さjN
L及び圧接部分の変形率Rであるという知見に基づき、
試行を重ね、そのデータを重回帰分析の手法等を用いて
処理検証してなされたちのである。 また他の本発明は
、N1メッキされた銅の被圧接金属板を熱処理してNi
メッキ層と銅板との界面にCIJとN1との相互拡散層
を形成して後、冷間圧接を行うと、より安定した気密封
止が得られる場合が多いという知見に基づいておこなわ
れた。
[Summary of the Invention] The present invention provides that when pressure welding metal plates of N1-plated copper are sealed by cold welding, the main factors that determine the quality of the sealing performance are the plate thickness tcu of the pressure weld metal plates, N1 Plating thickness jN
Based on the knowledge that L and the deformation rate R of the pressure welded part,
This was achieved through repeated trials and processing and verification of the data using techniques such as multiple regression analysis. In another aspect of the present invention, a pressure-welded metal plate made of N1-plated copper is heat treated to
This was done based on the knowledge that more stable hermetic sealing can often be obtained by forming a mutual diffusion layer of CIJ and N1 at the interface between the plating layer and the copper plate and then performing cold pressure welding.

叩ら本発明は、2つの被圧接金属板を互いに重ね合わせ
、該金属板の外周縁から所定の距離を隔てた内側の環状
部分を冷間圧接して気密封止される半導体装置において
、(1)前記2つの被圧接金属板の前記冷間圧接部分の
銅板の厚さ tcuがいずれも200μmないし800
μmであり、(2)前記冷間圧接部分の2つの銅板の被
圧接面にはいずれもNiメッキがなされ、そのメッキ厚
さ jNLは0.5μmないし30μmであり、(3)
前記冷間圧接部分の変形率Rは10%ないし85%であ
り、且つ(4)Rを%、tcu及びjNLをμmで表し
たときのRljcu、  jNLのそれぞれの数値がR
≧ 115+ 2,25tN、−0,21tcu・・・
(1)の関係式を満たすことを冷間圧接する半導体装置
である。
The present invention provides a semiconductor device that is hermetically sealed by stacking two pressure-welded metal plates on top of each other and cold-pressing an inner annular portion spaced a predetermined distance from the outer periphery of the metal plates. 1) The thickness tcu of the copper plate at the cold pressure welded portion of the two pressure welded metal plates is 200 μm to 800 μm.
(2) Ni plating is applied to the contact surfaces of the two copper plates of the cold welding portion, and the plating thickness jNL is 0.5 μm to 30 μm; (3)
The deformation rate R of the cold welded part is 10% to 85%, and (4) R is expressed as % and tcu and jNL are expressed as μm, and the respective numerical values of Rljcu and jNL are R
≧ 115+ 2,25tN, -0,21tcu...
This is a semiconductor device that is subjected to cold pressure welding to satisfy the relational expression (1).

なお、本発明における変形率Rは、冷間圧接部分の銅板
の圧接前の厚さをjclJs圧接後の厚さをjcu′ 
とすると次式で表される。
In addition, the deformation rate R in the present invention is defined as: jclJs, the thickness of the copper plate before welding in the cold welded part; jcu', the thickness after welding.
Then, it is expressed by the following formula.

R= (tau  tCu’ )/ jCuX  1o
o(%)また他の本発明は、前記半導体装置の製造方法
において、厚さ200μmないし800μmの銅板から
なる2つの被圧接金属板のそれぞれの被圧接面に厚さ0
.5μmないし30μmのNiメッキを施し、次に前記
被圧接金属板を熱処理して銅板とNiメッキ層との界面
に銅とNi との相互拡散層を形成した侵、冷間圧接部
分の百分率で表した変形率Rが前記〈1)式の関係を満
足するように冷間圧接することを冷間圧接する製造方法
である。
R= (tau tCu')/jCuX 1o
o (%) In another aspect of the present invention, in the method for manufacturing a semiconductor device, a pressure contact surface of two pressure contact metal plates each made of a copper plate having a thickness of 200 μm to 800 μm has a thickness of 0.
.. Ni plating of 5 μm to 30 μm is applied, and then the metal plate to be pressure welded is heat treated to form a mutual diffusion layer of copper and Ni at the interface between the copper plate and the Ni plating layer. This is a manufacturing method in which cold pressure welding is performed such that the deformation rate R satisfies the relationship of equation (1) above.

この発明により冷間圧接技術においても従来のTig溶
接と同等の密封性が得られ且つ前記銅板の厚さ等の選択
範囲が拡大された。
According to the present invention, the same sealing performance as conventional TIG welding can be obtained even in cold pressure welding technology, and the range of selection of the thickness of the copper plate etc. is expanded.

なお、優先権の主張の基礎とされる特願昭60−120
682号の明細書の特許請求の範囲第1項記載の半導体
装置は本明細書の特許請求の範囲第3項記載の半導体装
置であり、前記特願昭60−120682号の明細書の
特許請求の範囲第2項記載の半導体装置は本明細書の特
許請求の範囲第6項記載の半導体装置のうちの1つの半
導体装置と同じである。
Furthermore, the patent application filed in 1986-120 is the basis of the priority claim.
The semiconductor device according to claim 1 of the specification of No. 682 is the semiconductor device according to claim 3 of the present specification, and the semiconductor device according to claim 1 of the specification of Japanese Patent Application No. 60-120682 is a semiconductor device according to claim 3 of the present specification. The semiconductor device recited in claim 2 is the same as one of the semiconductor devices recited in claim 6 of this specification.

[発明の実施例] 一対のN1メッキされた銅の被圧接金属板の冷間圧接の
試行を繰り返し行ない、均一な金属結合が得られる銅板
の厚さ tau、メッキ厚さ tNL及び変形率Rの限
界条件を調べた。 なおこの試行においては、第6図及
び第7図に示すような円筒状で、圧入部9の断面が台形
状の上下一対の圧接ダイス7.8を用い、第5図に示す
ように冷間圧接を行なった。 圧接後の密封性は半導体
装置内部にヘリウムガスを封入し、そのヘリウムガスが
圧接部分を通して外部に漏れる量を測定する方法で行な
った。
[Embodiment of the invention] Trials of cold pressure welding of a pair of N1-plated copper metal plates to be pressure-welded were repeatedly performed, and the thickness tau, plating thickness tNL, and deformation rate R of the copper plates were determined to obtain uniform metal bonding. The limit conditions were investigated. In this trial, a pair of upper and lower pressure welding dies 7.8, each having a cylindrical shape and a press-fitting part 9 having a trapezoidal cross section, as shown in FIGS. Pressure welding was performed. The sealing performance after pressure bonding was determined by filling helium gas inside the semiconductor device and measuring the amount of helium gas leaking to the outside through the pressure bonded portion.

銅板のある厚さ tcuに対しNiメッキの厚さtNL
が厚すぎると基準リーク量以内の良い密封性の金属結合
が得られないばかりか或いは全く結合できない。 この
状態でjNLのみを減少し、ある限界値jNLmaxよ
り薄くすると完全な金属結合が得られる。 またjCu
とjNLの値を一定にして、加圧力を変化させた場合、
変形率がある限界値Rえ、を越えた時(変形を大きくし
たとき)はじめて金。
Thickness tNL of Ni plating relative to thickness tcu of copper plate
If it is too thick, not only will it be impossible to achieve a good sealing metal bond within the standard leakage amount, but the bond will not be able to be bonded at all. In this state, if only jNL is decreased to make it thinner than a certain limit value jNLmax, a perfect metallic bond can be obtained. Also jCu
When the values of and jNL are kept constant and the pressing force is changed,
Gold only occurs when the deformation rate exceeds a certain limit (when the deformation is increased).

属結合が得られる。 この理由について第1図を参照し
て説明する。 第1図は圧接部分6の拡大断面図であり
、3.4は被圧接金属板、13はNiメッキ層である。
Generic binding is obtained. The reason for this will be explained with reference to FIG. FIG. 1 is an enlarged sectional view of the pressure-welded portion 6, in which 3.4 is a metal plate to be pressure-welded, and 13 is a Ni plating layer.

 上下の圧接ダイス(第5図参照)によって圧力を加え
られた被圧接金属板3.4の銅は比較的やわらかい金属
であり、圧接ダイスの内、外側加圧面から力を受は横方
向即ち金属板面と平行方向に伸びる。 このとき銅母材
は十分な塑性流れを生じて変形している。 一方Niは
銅より伸びが小さいので、接合面側のNiメーツキ層1
3は圧接ダイスの圧入部の中央近傍で切断される。 さ
らに荷重を加えると銅母材は伸びが進むため切断された
Niメッキ層は両側へ引張られる。 切断されたN1メ
ッキ層の両端間からは塑性流れの進んだ銅母材が現れて
くる。 この銅母材は酸化物その伯の汚染のない清浄な
新生、  面であり、2枚の銅板のそれぞれの新生面が
互いに接触し、加圧されるとき、この2枚の銅板は完全
な金屑結合にいたる。 Niメッキ層は、清浄に処理さ
れた鋼母材の表面を覆い、冷間圧接工程にいたるまでの
間、大気等にょる銅母材表面の汚染を防止し、冷間圧接
時の新生面形成を容易にするものと考えられる。 以上
がNiメッキされた銅母材が完全な金属結合をするメカ
ニズムで、冷間圧接技術において極めて本質的な発見で
ある。
The copper of the press-welded metal plate 3.4 to which pressure is applied by the upper and lower press-welding dies (see Figure 5) is a relatively soft metal, and the force received from the outer pressurizing surface of the press-welding dies is lateral, that is, metal Extends parallel to the plate surface. At this time, the copper base metal is deformed due to sufficient plastic flow. On the other hand, since Ni has a smaller elongation than copper, the Ni plated layer 1 on the bonding surface side
3 is cut near the center of the press-fitting part of the pressure welding die. When a further load is applied, the copper base material expands and the cut Ni plating layer is pulled to both sides. A copper base metal with advanced plastic flow appears between both ends of the cut N1 plating layer. This copper base material is a clean new surface without any oxide or other contamination, and when the new surfaces of the two copper plates are brought into contact with each other and pressurized, the two copper plates become complete gold scraps. leading to a union. The Ni plating layer covers the surface of the cleanly treated steel base metal, prevents the surface of the copper base metal from being contaminated by air, etc., and prevents the formation of new surfaces during cold welding. It is thought that it will make it easier. The above is the mechanism by which the Ni-plated copper base material forms a perfect metal bond, and is an extremely essential discovery in cold pressure welding technology.

このメカニズムにより試行結果を矛盾なく説明できる。This mechanism provides a consistent explanation of trial results.

 例えばNiメッキ層の厚さjNLがある厚さtNLf
flt1以上に厚い場合には、冷間圧接過程で銅母材が
伸びてもNiメッキ層が破断せず、従って銅の新生面を
露出させることができなくなり、望ましい金属結合は得
られない。 また変形率Rがある限界l1IRfflI
nより小さい場合においても銅の伸びが不十分となり、
Niメッキ層を破断させることができなくなり、金属結
合は得られない。
For example, the Ni plating layer has a thickness jNL and a certain thickness tNLf
If it is thicker than flt1, the Ni plating layer will not break even if the copper base material stretches during the cold welding process, and therefore the new surface of copper cannot be exposed, making it impossible to obtain a desired metal bond. Also, there is a limit l1IRfflI with a deformation rate R
Even when it is smaller than n, the elongation of copper becomes insufficient,
It becomes impossible to break the Ni plating layer, and no metallic bond can be obtained.

一方Niメッキ居をある限界値jNLm以上に厚くし、
銅母材の厚さもこれに伴って厚くし、且つ銅の伸びる絶
対量を増してやれば、Niメッキ層を破断させることが
でき、金属結合を得ることができる。 しかしこの場合
、圧接部分の変形値も大きくなり、加工の途中で圧接部
分の銅が硬化し、硬度が著しく高くなり、銅の伸びが急
激に小さくなって、Niメッキ層を破断することができ
ず金属結合が得られない場合がある。
On the other hand, the Ni plating layer is made thicker than a certain limit value jNLm,
By increasing the thickness of the copper base material and increasing the absolute amount by which the copper stretches, the Ni plating layer can be broken and a metallic bond can be obtained. However, in this case, the deformation value of the pressure welded part also increases, the copper in the pressure welded part hardens during processing, the hardness increases significantly, and the elongation of the copper decreases rapidly, making it impossible to break the Ni plating layer. In some cases, a metallic bond cannot be obtained.

上述のようにtCu+  jNL及びRの3変数は、N
iメッキされた銅の被圧接金属板の冷間圧接の良否を左
、右する極めて重要なパラメータである。
As mentioned above, the three variables tCu+jNL and R are N
It is an extremely important parameter that determines the quality of cold pressure welding of I-plated copper metal plates to be pressure welded.

次に tcLl、  tNL及びRをパラメータとして
行なった密封性の実験結果の一例を第1表ないし第3表
に示す。 この実験では2つの被圧接金属板のtCu及
びtNLは互いに等しく、 R= (2jcu  2jcu’ ) / 2jcuX
  100 (%)とする。
Next, Tables 1 to 3 show examples of the results of experiments on sealability conducted using tcLl, tNL, and R as parameters. In this experiment, tCu and tNL of the two pressure-welded metal plates are equal to each other, and R= (2jcu 2jcu') / 2jcuX
Set as 100 (%).

第1表       第2表 第1表はtcu=400μm、R=60%としてtNL
を変化させて、ヘリウムガスのリークレートを測定した
結果である。  jNLが1μmないし15μmの範囲
で良好な密封性を有する金属結合が得られる。
Table 1 Table 2 Table 1 shows tNL with tcu=400μm and R=60%.
These are the results of measuring the leak rate of helium gas while changing . A metallic bond with good sealing properties can be obtained when jNL is in the range of 1 μm to 15 μm.

第2表は tcu”’ 400μm、  tNL=10
μmとしてRを変化させたときのリークレートを示す。
Table 2 shows tcu"' 400μm, tNL=10
The leak rate is shown when R is changed in μm.

 Rが30%以下では金属結合が得られないが、60%
以上では極めて密封性の良い金属結合が得られる。
Metallic bonding cannot be obtained when R is less than 30%, but when R is 60%
With the above, a metal bond with extremely good sealing performance can be obtained.

第3表 第3表はtNL=ioμm、R=60%として、jCu
を変化させたときのリークレートを示す。  tcUが
200μm以下では密封性が良くない。  300μm
程度からかなり密封性が良くなる。  400μm以上
では極めて密封性の良い金属結合が得られる。
Table 3 Table 3 shows jCu with tNL=ioμm and R=60%.
Shows the leak rate when changing. If tcU is less than 200 μm, the sealing performance is not good. 300μm
The sealing performance is considerably improved. When the thickness is 400 μm or more, a metal bond with extremely good sealing performance can be obtained.

次に第1表ないし第3表と同様の実験を【。0゜jNL
及びRの種々の数値の組合せについて行なって1nられ
た実験結果の一例を第2図に示す。 第2図は極めて良
好な密封性を有する半導体装置を得るためのtCII+
  tNL及びRの限界値を示す図表である。 横軸は
Niメッキの厚さくμm)、縦軸は変形率R(%)であ
る。 例えばパラメータ〔。0を400μmとしたとき
の直線Bは、2つの変数tNLとRとの限界値を示す。
Next, conduct experiments similar to those in Tables 1 to 3 [. 0゜jNL
FIG. 2 shows an example of experimental results conducted for various combinations of values of and R. Figure 2 shows tCII+ for obtaining a semiconductor device with extremely good sealing performance.
It is a chart showing limit values of tNL and R. The horizontal axis is the thickness of Ni plating (μm), and the vertical axis is the deformation rate R (%). For example, the parameter [. A straight line B when 0 is 400 μm indicates the limit values of the two variables tNL and R.

  tN、=5μmならば変形率Rは40%以上あれば
良好な結果が得られる。 またt+yL = 15μm
のときはRは60%以上であればよい。 従って (。
If tN = 5 μm, good results can be obtained if the deformation rate R is 40% or more. Also, t+yL = 15μm
In this case, R may be 60% or more. Therefore (.

、=400μmの場合においてはRは各Niメッキ厚さ
 (Nuに対し直線8以上(第2図の斜線で示す許容領
域〉の値をとればよい。 またR=40%にするとjN
Lは5μm以下にする必要があり、R=60%とすれば
tNLは15μm以下であればよい。 従ってtNLは
各Rの値に対し直線Bから縦軸までの値(前記許容領域
)以下とすればよい。 他の直線A、Cについても同様
の見方をする。
, = 400 μm, R should take the value of each Ni plating thickness (Nu, line 8 or more (tolerance area indicated by diagonal lines in Figure 2)). Also, when R = 40%, jN
L needs to be 5 μm or less, and if R=60%, tNL should be 15 μm or less. Therefore, tNL may be set to be less than or equal to the value from straight line B to the vertical axis (the above-mentioned allowable range) for each value of R. The same view applies to the other straight lines A and C.

第1表ないし第3表若しくは第2図に例示したものとパ
ラメータの数値を変えた多くの実験データを統計的に処
理し、重回帰分析の手法を用いて、3変数jCu、  
jNL及びRの間に存在する限界値を決定する(1)式
を求めた。 この式は、2変数が決まった場合、残りの
変数の限界値を決定するものである。 −例として、j
Cu=400μmの場合tN、=sμmならば(1)式
よりRは42.3%以上あればよい。 またtNL= 
5μm、 R=42.3%であるなら(1)式より計算
し tauは400μm以上必要なことがわかる。 同
様に し。。=400μm、R= 42.3%と決まっ
た場合には(1)式より jNLは5μm以下とすれば
よい。
We statistically processed a large amount of experimental data with different parameter values from those illustrated in Tables 1 to 3 or Figure 2, and used multiple regression analysis to calculate the three variables jCu,
Equation (1) for determining the limit value existing between jNL and R was determined. This formula determines the limit values of the remaining variables when two variables are determined. -For example, j
If Cu = 400 μm, tN, = s μm, R should be 42.3% or more according to equation (1). Also, tNL=
5 μm and R=42.3%, it can be calculated from equation (1) that tau is required to be 400 μm or more. Similarly. . = 400 μm and R = 42.3%, jNL may be set to 5 μm or less from equation (1).

良い密封性を得るための(Cu+  tNL及びRの限
界値を決定する(1)式は、良い密封性の基準としてヘ
リウムガスのリークレートがIX 110−8ato・
QC/ SeC以内として求めたものである。 但し検
出装置のリークレートの限界感度は約1010−1Oa
to cc/ secであり、封入したHeは100%
1−1eの場合である。 然しなから実用上のtCIJ
+  tNt及びRの値は、密封性以外の機械的強度、
製造技術等の条件からも制約される。  tauについ
ては、200μm以下では機械的強度が不足する等の欠
点があり、800μm以上では組立、取扱い等に際し外
囲器に無理な力を与えるおそれがあるので、200μm
ないし800μmに制限される。  ENLについては
、0.5μm以下では銅母材面を均一にメッキすること
が困難となり、30μm以上では圧接部分の変形ωが大
きくなり銅の硬化等によりNiメッキ層の破断が困難と
なるので0.5μmないし30μmに制限する必要があ
る。 Rについては10%以下の変形ではN1メッキ層
の破断の確実性が得られず、85%以上では外囲器の膨
み現象等に対する機械的強度が不足し、10%ないし8
5%に制限される。
Equation (1), which determines the limit values of (Cu+ tNL and R) for obtaining good sealing performance, is based on the helium gas leak rate IX 110-8ato・
This was determined as being within QC/SeC. However, the leak rate limit sensitivity of the detection device is approximately 1010-1 Oa.
to cc/sec, and the encapsulated He is 100%
This is the case of 1-1e. However, practical tCIJ
+ The values of tNt and R are mechanical strength other than sealing property,
It is also constrained by conditions such as manufacturing technology. Regarding tau, if it is less than 200 μm, there are drawbacks such as insufficient mechanical strength, and if it is more than 800 μm, there is a risk of applying excessive force to the envelope during assembly, handling, etc.
to 800 μm. Regarding ENL, if it is less than 0.5 μm, it will be difficult to plate the copper base metal surface uniformly, and if it is more than 30 μm, the deformation ω of the pressure welded part will become large and it will be difficult to break the Ni plating layer due to hardening of the copper, etc. It is necessary to limit the thickness to .5 μm to 30 μm. Regarding R, if the deformation is less than 10%, the N1 plating layer cannot be guaranteed to break, and if it is more than 85%, the mechanical strength against the swelling phenomenon of the envelope will be insufficient.
Limited to 5%.

次に本発明の製造方法の実施例について第8図ないし第
10図を参照して説明する。 第8図は製造工程を示す
もので、同図(a )は半導体チップを収納していない
状態の上部組立体22と下部組立体23とを示す。 上
部組立体22は電極1、絶縁物外囲器2及び上部被圧接
金属板(銅板)3をロー付等により組み立てたものであ
り、下部組立体23は下部被圧接金属板(銅板)4及び
電極5をロー付等により組み立てたものである。 上部
及び下部被圧接金属板3及び4の銅板の厚さくCuはい
ずれも400μmとする。 次に被圧接金属板3及び4
のそれぞれの被圧接面にメッキ厚jNLが13μmとな
るよう公知の方法によりN:メッキ13を施す。 この
場合、被圧接金属板の表裏の露出面全滅にねたりN1メ
ッキをしても差し支えない。 第8図(b )は、この
状態を示すもので、同図(a )の破線で囲まれた被圧
接金属板3の一部分Pの拡大断面図である。 次に上部
及び下部組立体22及び23を例えば水素雰囲気中で約
500℃ないし800℃の温度で、数分ないし数十分間
の熱処理をおこない、被圧接金z板の銅板とNiメッキ
層との界面に銅とN1との相互拡散層14を形成する。
Next, an embodiment of the manufacturing method of the present invention will be described with reference to FIGS. 8 to 10. FIG. 8 shows the manufacturing process, and FIG. 8(a) shows the upper assembly 22 and lower assembly 23 in a state in which no semiconductor chip is housed. The upper assembly 22 is made by assembling the electrode 1, the insulating envelope 2, and the upper pressure-welded metal plate (copper plate) 3 by brazing or the like, and the lower assembly 23 consists of the lower pressure-welded metal plate (copper plate) 4 and The electrode 5 is assembled by brazing or the like. The thickness Cu of the copper plates of the upper and lower press-welded metal plates 3 and 4 is both 400 μm. Next, press-welded metal plates 3 and 4
N: plating 13 is applied to each pressurized surface by a known method so that the plating thickness jNL is 13 μm. In this case, there is no problem even if the exposed surfaces on the front and back of the pressure-welded metal plate are completely covered with N1 plating. FIG. 8(b) shows this state, and is an enlarged sectional view of a portion P of the press-welded metal plate 3 surrounded by the broken line in FIG. 8(a). Next, the upper and lower assemblies 22 and 23 are heat treated at a temperature of about 500°C to 800°C in a hydrogen atmosphere for several minutes to several tens of minutes, so that the copper plate of the pressure welded Z plate and the Ni plating layer are bonded together. A mutual diffusion layer 14 of copper and N1 is formed at the interface.

 相互拡散層14の厚さ【は3μmである。 第8図(
C)はこの状態を模式的に示すもので、同図(b)の破
線で囲まれた被圧接面の一部分Qの拡大断面図である。
The thickness of the mutual diffusion layer 14 is 3 μm. Figure 8 (
C) schematically shows this state, and is an enlarged sectional view of a portion Q of the pressurized surface surrounded by the broken line in FIG.

 その後、上部及び下部組立体22及び23内に半導体
ペレッ1−等を収納し、公知の方法により2つの被圧接
金属板の外周縁から内側の環状部分を冷間圧接して気密
封止し、半導体装置を得る。 冷間圧接したときの被圧
接金属板の変形率Rは10%ないし85%で且つ前記の 「R≧ 115+ 2,25tN、 −0,21tcu
−・−(1)Jを満足する必要がある。 この実施例で
は(1)式の右辺の値は、tN、 = 13μm、  
tou= 400μmであるから60.・25となる。
Thereafter, the semiconductor pellets 1- and the like are housed in the upper and lower assemblies 22 and 23, and the inner annular portions of the two pressure-welded metal plates are cold welded from the outer periphery to the inner annular portion by a known method to hermetically seal them. Obtain a semiconductor device. The deformation rate R of the metal plate to be welded during cold welding is 10% to 85%, and the above-mentioned "R≧115+2,25tN, -0,21tcu
−・−(1) J must be satisfied. In this example, the value on the right side of equation (1) is tN, = 13 μm,
Since tou=400μm, 60.・It becomes 25.

 従ってR=65%になるように加圧する。 この半導
体装置のヘリウムガスのリークレートを測定した結果、
lX10”(atOl−cc/sec ”)以下で、検
出装置の最高感度で測定しても検知不能で良好な気密封
止が得られた。 この半導体装置の圧入部6(第1図参
照)の圧接界面のXMA (X−ray  Micro
  AnalisiS)分析写真の結果では、圧接界面
にはNi元素の存在は全く観測されず完全な銅の新生面
間の接合であることが確認された。 又これと同じ銅母
材に同様のNiメッキと熱処理を施した試料のXMA線
分析結果を第9図に示す。 第9図の横軸は、試料断面
における銅板とN1メッキ層との界面に垂直方向(第8
図(C)におけるC+ −c2方向)の距離を示し、縦
軸は銅又はNiのそれぞれの位置における各特性X線量
を示す。 同図において鋼及びNiの特性X線が共に観
測される範囲は相互拡散層14であり、その左右(第9
図において)はそれぞれ実質的に銅のみからなる銅板部
分16及びNiのみからなるNi部分15である。
Therefore, pressure is applied so that R=65%. As a result of measuring the helium gas leak rate of this semiconductor device,
At 1×10"(atOl-cc/sec") or less, good airtight sealing was obtained, which was undetectable even when measured with the highest sensitivity of the detection device. XMA (X-ray Micro
Analisi S) analysis photograph results show that no Ni element was observed at the pressure weld interface, confirming that the bond was a perfect bond between new surfaces of copper. Furthermore, FIG. 9 shows the results of XMA ray analysis of a sample in which the same copper base material was subjected to the same Ni plating and heat treatment. The horizontal axis in Fig. 9 is the direction perpendicular to the interface between the copper plate and the N1 plating layer in the sample cross section
The distance in the C+-c2 direction in Figure (C) is shown, and the vertical axis shows each characteristic X-ray dose at each position of copper or Ni. In the figure, the range where the characteristic X-rays of steel and Ni are both observed is the interdiffusion layer 14, and its left and right (9th
In the figure) are a copper plate portion 16 made of substantially only copper and a Ni portion 15 made of only Ni.

次に銅板の厚さjcu N N jメッキ厚瞳及び変形
率Rは前記実施例と同一とし、Niメッキ後の熱処理条
件(処理温度又は処理時間)のみを変えて相互拡散層の
厚さtを10μmとした場合について前記実施例と同様
の測定を行なった。 この場合の半導体装置のヘリウム
ガスのリークレートは1 xlO−’ (atom−c
c/sea )であって、望ましい値ではない。 また
圧接界面のXMA分析写真の結果では、圧接界面にN1
元素の存在が部分的に観察され、完全な銅の新生面の接
合が得られていない。 第10図は第9図に対応するも
ので相互拡散層の厚さtは10μmである。
Next, the thickness of the copper plate j cu N N j The plating thickness pupil and deformation rate R are the same as in the previous example, and the thickness t of the interdiffusion layer is changed by changing only the heat treatment conditions (treatment temperature or treatment time) after Ni plating. The same measurements as in the above example were performed for the case where the thickness was 10 μm. In this case, the helium gas leak rate of the semiconductor device is 1 xlO-' (atom-c
c/sea), which is not a desirable value. In addition, the result of the XMA analysis photograph of the pressure weld interface shows that N1
The presence of elements was partially observed, and complete bonding of the new copper surfaces was not obtained. FIG. 10 corresponds to FIG. 9, and the thickness t of the mutual diffusion layer is 10 μm.

多数の試料について上記実施例と同様の実験を繰り返し
行ない熱処理をした場合の冷間圧接の諸条注を調べた。
Experiments similar to those in the above example were repeated on a large number of samples, and various notes on cold pressure welding when heat treated were investigated.

 その結果、熱処理をし相互拡散層を設けた場合におけ
る気密性が得られる冷間圧接の条件は、前記の銅板の厚
さ ’cu % N +メッキ厚1.及び変形率Rのそ
れぞれの範囲並びに【。116.8間の前記(1)式の
関係を満足する必要のあることが確認された。 またこ
の場合、より安定した気密性を得るためには、相互拡散
層の厚ざtは熱処理前のNiメッキ厚jNLに対しt≦
 1/2tNLであり且つt≦10μmとすることが望
ましい実施態様である。
As a result, the conditions for cold welding to obtain airtightness when heat-treated and providing an interdiffusion layer are the above-mentioned copper plate thickness 'cu % N + plating thickness 1. and the respective ranges of the deformation rate R and [. It was confirmed that it is necessary to satisfy the relationship of formula (1) between 116.8 and 116.8. In this case, in order to obtain more stable airtightness, the thickness t of the interdiffusion layer should be t≦ with respect to the Ni plating thickness jNL before heat treatment.
In this embodiment, it is desirable that 1/2tNL and t≦10 μm.

なお銅とNi との相互拡散層は、銅板とNiメッキ否
との界面において銅板中の銅原子がN1メッキ層へ、N
iメッキ層中のNi原子が銅板中に拡散して形成される
もので、多くの場合固体状態で生成されるが、一部溶融
凝固した銅とNiの合金楕が含まれても差し支えない。
Note that the interdiffusion layer between copper and Ni is such that copper atoms in the copper plate enter the N1 plating layer at the interface between the copper plate and the Ni plating layer.
It is formed by the diffusion of Ni atoms in the i-plated layer into the copper plate, and is often produced in a solid state, but it may also include some alloy ellipses of copper and Ni that have been melted and solidified.

本発明の製造方法によれば、冷間圧接において、より安
定な気密性が得られるが、それ以外に水素雰囲気中の高
温熱処理により外囲器等の内壁に(=j着するガス、塵
或いは酸化物等の異物の除去が行なわれ、半導体装置の
実稼動中の信頼性を高めることができる。
According to the manufacturing method of the present invention, more stable airtightness can be obtained in cold welding, but in addition, gas, dust, or Foreign substances such as oxides are removed, and the reliability of the semiconductor device during actual operation can be improved.

本発明の特許請求のW!卯第2項記載の半導体装置は本
発明の半導体装置のうち本発明の製造方法を用いて得ら
れる半導体装置である。 また特許請求の範囲第3項記
載の半導体装置は本発明の半導体装置のうち本発明の製
造方法を用いない場合の望ましい実IJI態様である。
W of the patent claim of the present invention! The semiconductor device described in item 2 is a semiconductor device obtained by using the manufacturing method of the present invention among the semiconductor devices of the present invention. Further, the semiconductor device according to claim 3 is a preferred actual IJI mode of the semiconductor device of the present invention when the manufacturing method of the present invention is not used.

また特許請求の範囲第4項記載の半導体装置は、本発明
の製造方法を用いても或いは用いなくても、いずれの場
合でもよく、!!1漬技術上或は生産管理上等から特に
望ましい実M態様である。
Further, the semiconductor device according to claim 4 may be manufactured using the manufacturing method of the present invention or not! ! The actual M mode is particularly desirable from the viewpoint of one-dipping technology or production control.

また特許請求の範囲第5項記載の半導体装置は、本発明
の製造方法を用いた半導体装置であって、特許請求の範
囲第2項又は第4項記載の半導体装置の望ましい実施態
様である。
Further, a semiconductor device according to claim 5 is a semiconductor device using the manufacturing method of the present invention, and is a desirable embodiment of the semiconductor device according to claim 2 or 4.

なお被圧接金属板の外周縁から環状の冷間圧接部分の距
離を0.2mm以上とすることは、本発明の効果を確実
にするために望ましい。
In order to ensure the effects of the present invention, it is desirable that the distance of the annular cold welded portion from the outer peripheral edge of the metal plate to be welded be 0.2 mm or more.

[f!、明の効果] 本発明の半導体装置及びその製造方法により、Tig溶
接月1Fと同等の密封性を有する半導体装置を冷間圧接
技術により供給できるようになった。
[f! , Bright Effects] According to the semiconductor device and the manufacturing method thereof of the present invention, it has become possible to supply a semiconductor device having a sealing performance equivalent to that of TIG welding 1F by cold pressure welding technology.

冷間圧接により封止できることは、TiQ溶接に比べて
作業能率が格段に向上する。 即ち簡単に、速く、安価
にできるという利点がある。
Being able to seal by cold pressure welding significantly improves work efficiency compared to TiQ welding. That is, it has the advantage of being simple, fast, and inexpensive.

また本発明により従来微少リークのあった半導体装置を
完全密封でき、その長時間にわたる信頼性を格段に向上
させた。
Furthermore, the present invention makes it possible to completely seal a semiconductor device, which conventionally had slight leakage, and significantly improves its reliability over a long period of time.

また本発明により jcuq  tNL及びRの選択範
囲が拡大され、3変数の新しい組合わせ使用が可能とな
り、設計の自由度を増すと共に、工程管理も容易になっ
た。
Furthermore, the present invention expands the selection range of jcuq tNL and R, making it possible to use new combinations of three variables, increasing the degree of freedom in design and facilitating process control.

また本発明の製造方法により、外囲器等の装置内壁の清
浄化が行なわれ、信頼性の高い製品が得られた。
Further, by the manufacturing method of the present invention, the inner walls of the device such as the envelope were cleaned, and a highly reliable product was obtained.

なお、本発明の技術的思想は、半導体装置の封接のみな
らず多くの分野の金属の接合を要する部門に適用される
Note that the technical idea of the present invention is applied not only to the sealing of semiconductor devices but also to many fields that require metal bonding.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による半導体装置の冷間圧接部分の拡大
断面図、第2図はt。u、tN、及びRの限界値を表す
図表、第3図は本発明の半導体装置の一部破断側面図、
第4図は第3図の半導体装置の平面図、第5図は半導体
装置を圧接ダイスに挾/Vで冷間圧接fる状態を示す一
部切欠き中間省略側面図、第6図及び第7図は圧接ダイ
スのそれぞれ断面図及び平面図、第8図(a )ないし
くC)は本発明の製造方法の工程を示すもので同図(a
 )は上部及び下部組立体の側面図、同図(b )はN
iメッキ侵の被圧接金属板の拡大断面図、同図(C)は
熱処理後の被圧接金属板の拡大断面図、第9図及び第1
0図は熱処理後の銅板とNiメッキ層との界面のXMA
線分析結果の例を示4図で・ある。 3.4・・・被圧接金属板(銅板)、 6・・・環状部
分(冷間圧接部分)、  13・・・Niメッキ層、1
4・・・相互拡散層、 15・・・実質的にニッケルか
らのみなるニッケル部分、 16・・・実質的に銅のみ
からなる銅板部分、 21・・・半導体装置、 l・・
・所定の距離、  jcu・・・被圧接金属板(銅板)
の圧接前の冷間圧接部分の厚さくμm)、  tcu′
・・・被圧接金属板(銅板)の圧接後の冷間圧接部分の
厚さくμm)、  tNL・・・N1メッキの厚さくμ
m)、 t・・・相互拡散層の厚さくμm)、 R・・
・冷間圧接部分の変形率(%)。 特許出願人 株式会社 東  芝 第1 図 第2図 第5図 第8図 第9図       第10図
FIG. 1 is an enlarged sectional view of a cold welded portion of a semiconductor device according to the present invention, and FIG. A chart showing the limit values of u, tN, and R; FIG. 3 is a partially cutaway side view of the semiconductor device of the present invention;
4 is a plan view of the semiconductor device shown in FIG. 3, FIG. 5 is a partially cutaway side view showing a state in which the semiconductor device is cold welded to a pressure welding die using a clamp/V, and FIGS. 7 is a cross-sectional view and a plan view of the pressure welding die, and FIGS. 8(a) to 8(c) show the steps of the manufacturing method of the present invention.
) is a side view of the upper and lower assemblies, and (b) is a side view of the upper and lower assemblies.
Figure 9 (C) is an enlarged cross-sectional view of the pressure-welded metal plate after heat treatment, Figures 9 and 1.
Figure 0 shows the XMA of the interface between the copper plate and the Ni plating layer after heat treatment.
Figure 4 shows an example of the line analysis results. 3.4... Pressure welded metal plate (copper plate), 6... Annular part (cold pressure welded part), 13... Ni plating layer, 1
4... Interdiffusion layer, 15... Nickel portion consisting essentially only of nickel, 16... Copper plate portion consisting essentially only of copper, 21... Semiconductor device, l...
・Predetermined distance, jcu...pressure welded metal plate (copper plate)
The thickness of the cold welded part before welding (μm), tcu'
...Thickness of the cold welded part after pressure welding of the metal plate (copper plate) to be pressure welded (μm), tNL...Thickness of N1 plating μm)
m), t... Thickness of interdiffusion layer μm), R...
・Deformation rate (%) of cold welded part. Patent applicant: Toshiba Corporation Figure 1 Figure 2 Figure 5 Figure 8 Figure 9 Figure 10

Claims (1)

【特許請求の範囲】 1 2つの被圧接金属板を互いに重ね合わせ、該金属板
の外周縁から所定の距離を隔てた内側の環状部分を冷間
圧接して気密封止される半導体装置において、 前記2つの被圧接金属板の前記冷間圧接部分の母材がい
ずれも厚さ200μmないし800μmの銅板であり、
前記冷間圧接部分の2つの銅板の被圧接面にはいずれも
厚さ0.5μmないし30μmのニッケルメッキがなさ
れ、且つ前記冷間圧接部分の百分率で表した変形率の数
値が10ないし85であると共に、この変形率の数値が
μmで表した前記ニッケルメッキ厚さに2.25を乗じ
た数値と115との和からμmで表した前記銅板の厚さ
に0.21を乗じた数値を減じた数値より小さくないこ
とを特徴とする半導体装置。 2 銅板とニッケルメッキ層との界面に銅とニッケルの
相互拡散層を設けて冷間圧接し、そのとき前記相互拡散
層の厚さが0.25μmないし10μmであり、実質的
に銅のみからなる銅板部分の厚さが199.75μmな
いし790μmであり、実質的にニッケルのみからなる
ニッケル部分の厚さが0.25μmないし20μmであ
る特許請求の範囲第1項記載の半導体装置。 3 銅板の厚さが200μmないし600μmであり、
ニッケルメッキの厚さが0.5μmないし25μmであ
る特許請求の範囲第1項記載の半導体装置。 4 銅板の厚さが400μmないし600μmであり、
ニッケルメッキの厚さが1μmないし25μmである特
許請求の範囲第1項記載の半導体装置。 5 銅板とニツケルメツキ層との界面に銅とニッケルと
の相互拡散層を設けて冷間圧接し、そのとき前記相互拡
散層の厚さが0.5μmないし10μmであり、実質的
に銅からなる銅板の厚さが399.5μmないし590
μmであり、実質的にニッケルからなるニッケルメッキ
層の厚さが0.5μmないし15μmである特許請求の
範囲第2項又は第4項記載の半導体装置。 6 被圧接金属板の外周縁から0.2mm以上隔てた内
側の環状部分を冷間圧接する特許請求の範囲第1項ない
し第5項のいずれかに記載の半導体装置。 7 2つの被圧接金属板を互いに重ね合わせ、該金属板
の外周縁から所定の距離を隔てた内側の環状部分を冷間
圧接して気密封止される半導体装置の製造方法において
、厚さ200μmないし800μmの銅板からなる2つ
の被圧接金属板のそれぞれの被圧接面に厚さ0.5μm
ないし30μmのニツケルメツキを施し、次に前記被圧
接金属板を熱処理して銅板とニッケルメッキ層との界面
に銅とニッケルとの相互拡散層を形成した後、前記冷間
圧接部分の百分率で表した変形率の数値が10ないし8
5であとあると共にこの変形率の数値がμmで表した前
記ニツケルメツキの厚さに2.25を乗じた数値と11
5との和からμmで表した前記銅板の厚さに0.21を
乗じた数値を減じた数値より小さくならないように冷間
圧接することを特徴とする半導体装置の製造方法。 8 相互拡散層の厚さが、熱処理前の前記ニッケルメッ
キの厚さの2分の1を超えない厚さであり且つ10μm
を超えない厚さである特許請求の範囲第7項記載の半導
体装置の製造方法。 9 被圧接金属板の外周縁から0.2mm以上隔てた内
側の環状部分を冷間圧接する特許請求の範囲第7項又は
第8項記載の半導体装置の製造方法。
[Scope of Claims] 1. A semiconductor device that is hermetically sealed by stacking two pressure-welded metal plates on top of each other and cold-pressing an inner annular portion spaced a predetermined distance from the outer periphery of the metal plates, The base material of the cold pressure welded portions of the two metal plates to be pressure welded are both copper plates with a thickness of 200 μm to 800 μm,
The pressure welding surfaces of the two copper plates of the cold welded portion are each plated with nickel to a thickness of 0.5 μm to 30 μm, and the deformation rate expressed as a percentage of the cold welded portion is 10 to 85. At the same time, the value of this deformation rate is calculated by multiplying the thickness of the copper plate in μm by 0.21 from the sum of 115 and the value obtained by multiplying the thickness of the nickel plating in μm by 2.25. A semiconductor device characterized in that the value is not smaller than the subtracted value. 2. An interdiffusion layer of copper and nickel is provided at the interface between the copper plate and the nickel plating layer and cold pressure welded, and the thickness of the interdiffusion layer is 0.25 μm to 10 μm and consists essentially of copper only. 2. The semiconductor device according to claim 1, wherein the copper plate portion has a thickness of 199.75 μm to 790 μm, and the nickel portion consisting essentially of nickel has a thickness of 0.25 μm to 20 μm. 3 The thickness of the copper plate is 200 μm to 600 μm,
The semiconductor device according to claim 1, wherein the nickel plating has a thickness of 0.5 μm to 25 μm. 4 The thickness of the copper plate is 400 μm to 600 μm,
The semiconductor device according to claim 1, wherein the nickel plating has a thickness of 1 μm to 25 μm. 5. An interdiffusion layer of copper and nickel is provided at the interface between the copper plate and the nickel plating layer, and the interdiffusion layer is cold-pressed, and the thickness of the interdiffusion layer is 0.5 μm to 10 μm, and the copper plate is substantially made of copper. The thickness of 399.5μm to 590μm
The semiconductor device according to claim 2 or 4, wherein the thickness of the nickel plating layer substantially made of nickel is 0.5 μm to 15 μm. 6. The semiconductor device according to any one of claims 1 to 5, wherein the inner annular portion separated by 0.2 mm or more from the outer peripheral edge of the metal plate to be pressure-welded is cold-welded. 7. A method for manufacturing a semiconductor device in which two metal plates to be pressure-welded are stacked on top of each other and the inner annular portion separated by a predetermined distance from the outer periphery of the metal plates is cold-welded and hermetically sealed, with a thickness of 200 μm. A thickness of 0.5 μm is applied to each pressure contact surface of two pressure contact metal plates made of copper plates with a thickness of 0.5 μm to 800 μm.
After applying nickel plating to a thickness of 30 μm to 30 μm, and then heat-treating the metal plate to be welded under pressure to form a mutual diffusion layer of copper and nickel at the interface between the copper plate and the nickel plating layer, it was expressed as a percentage of the cold welded area. Deformation rate value is 10 to 8
5, and the value of this deformation rate is the value obtained by multiplying the thickness of the nickel plating in μm by 2.25, and 11
5. A method for manufacturing a semiconductor device, characterized in that cold welding is carried out so as not to be smaller than a value obtained by subtracting a value obtained by multiplying the thickness of the copper plate in μm by 0.21 from the sum of 5 and 5. 8. The thickness of the interdiffusion layer is not more than half the thickness of the nickel plating before heat treatment, and is 10 μm.
8. The method of manufacturing a semiconductor device according to claim 7, wherein the thickness does not exceed . 9. The method of manufacturing a semiconductor device according to claim 7 or 8, wherein the inner annular portion separated by 0.2 mm or more from the outer peripheral edge of the metal plate to be pressure-welded is cold-welded.
JP61020065A 1985-06-05 1986-02-03 Semiconductor device and manufacturing method thereof Expired - Fee Related JP2549623B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60-120682 1985-06-05
JP12068285 1985-06-05

Publications (2)

Publication Number Publication Date
JPS6297356A true JPS6297356A (en) 1987-05-06
JP2549623B2 JP2549623B2 (en) 1996-10-30

Family

ID=14792336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61020065A Expired - Fee Related JP2549623B2 (en) 1985-06-05 1986-02-03 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2549623B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086962A (en) * 2006-10-04 2008-04-17 Ryosen Engineers Co Ltd Drum structure of high-pressure vessel having cylindrical drum and method for manufacturing drum
JP2009014332A (en) * 2007-06-04 2009-01-22 Furukawa Electric Co Ltd:The Pressure welding junction type heat pipe

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5952031A (en) * 1982-09-16 1984-03-26 Kubota Ltd Excavating working vehicle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5952031A (en) * 1982-09-16 1984-03-26 Kubota Ltd Excavating working vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086962A (en) * 2006-10-04 2008-04-17 Ryosen Engineers Co Ltd Drum structure of high-pressure vessel having cylindrical drum and method for manufacturing drum
JP2009014332A (en) * 2007-06-04 2009-01-22 Furukawa Electric Co Ltd:The Pressure welding junction type heat pipe

Also Published As

Publication number Publication date
JP2549623B2 (en) 1996-10-30

Similar Documents

Publication Publication Date Title
JPS6071579A (en) Method of bonding alumina and metal
JP2860037B2 (en) Method of manufacturing heat dissipation board for semiconductor device
EP0398760A1 (en) Diffussion bonding of aluminium and aluminium alloys
JP2000164746A (en) Electronic component package, lid material thereof, and manufacture thereof
JPS6297356A (en) Semiconductor device and manufacture thereof
US4736883A (en) Method for diffusion bonding of liquid phase sintered materials
JPS58141880A (en) Joining method of sintered hard alloy
WO2020022046A1 (en) Method for brazing alumina dispersion strengthened copper
JP6606661B1 (en) Alumina dispersion strengthened copper brazing method
US3937383A (en) High speed room temperature seam bonding of metal sheets
JPS626783A (en) Production of titanium clad steel sheet by rolling
JP2550667B2 (en) Hermetically sealed lid manufacturing method
US5067969A (en) Cutter and manufacturing method therefor
JP6852927B1 (en) Brazing joining method of copper and copper alloy
JP2713450B2 (en) Bonding method of metal material containing oxide
JPS6333174A (en) Production of target for sputtering
JPH02165892A (en) Method for joining different metallic materials
JPS60261667A (en) Manufacture of clad steel
JPH0225287A (en) Cold press welding method
JP3281318B2 (en) Pressure contact type semiconductor device and method of manufacturing the same
JPS5952031B2 (en) Cold welding method
JPS6356371A (en) Manufacture of titanium clad steel sheet
JPH0639582A (en) Precise composite brazing filler metal
KR850000796B1 (en) Method for producting clad steel plate
JPH03218497A (en) Production of first wall of fusion reactor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees