JPS6297264A - Fuel cell power generating system - Google Patents

Fuel cell power generating system

Info

Publication number
JPS6297264A
JPS6297264A JP60235683A JP23568385A JPS6297264A JP S6297264 A JPS6297264 A JP S6297264A JP 60235683 A JP60235683 A JP 60235683A JP 23568385 A JP23568385 A JP 23568385A JP S6297264 A JPS6297264 A JP S6297264A
Authority
JP
Japan
Prior art keywords
flow rate
valve opening
detection signal
detector
differential pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60235683A
Other languages
Japanese (ja)
Inventor
Reiji Mitarai
御手洗 礼治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60235683A priority Critical patent/JPS6297264A/en
Publication of JPS6297264A publication Critical patent/JPS6297264A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04402Pressure; Ambient pressure; Flow of anode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04388Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04395Pressure; Ambient pressure; Flow of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/0441Pressure; Ambient pressure; Flow of cathode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04425Pressure; Ambient pressure; Flow at auxiliary devices, e.g. reformers, compressors, burners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04432Pressure differences, e.g. between anode and cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04761Pressure; Flow of fuel cell exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04776Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04783Pressure differences, e.g. between anode and cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04104Regulation of differential pressures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To improve the extent of responsiveness to a load variation as well as to improve preservability in a system to gap differential pressure, by composing each valve opening command signal out of a stationary characteristic compensating part and a transient characteristic compensating part separately and thereby controlling a degree of valve opening. CONSTITUTION:Each detection signal out of both first and second flow detectors 51A and 51B and a differential pressure detector 52, each desired value signal corresponding to these detections signals, a detection signal out of a differential pressure detector 53, and each valve opening detection signal out of first to fourth flow control valves 4A-4D are all inputted into an optimum arithmetic unit 31. With a load variation in a fuel cell, either of these two inputted signals is varied whereby at least one side of respective value opening command signals is varied. With this constitution, each valve opening of these first to fourth flow control valves 4A-4D is controlled in an optimum condition. Therefore, responsiveness is improved and, what is more, system preservability to gap differential pressure is improved so better.

Description

【発明の詳細な説明】 (発明の技術分野〕 本発明は燃料電池発電システムに係り、特に燃料電池に
対する燃料ガスと酸化剤ガスの各流量制御および燃料極
と酸化剤極との間の差圧(以下、極間差圧と称する)制
御を最適に行なう圧力流量最適制御装置を備えた燃料電
池発電システムに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a fuel cell power generation system, and in particular to flow control of fuel gas and oxidant gas to a fuel cell and differential pressure between a fuel electrode and an oxidizer electrode. The present invention relates to a fuel cell power generation system equipped with a pressure flow rate optimum control device that optimally controls pressure (hereinafter referred to as interelectrode differential pressure).

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、燃料の有している化学的エネルギーを直接電気的
エネルギーに変換するものとして燃料電池が知られてい
る。この燃料電池は通常、電解質を含浸した厚ざ1リミ
以下のマトリクスを挟んで燃料極および酸化剤極の一対
の電極を配置すると共に、燃料極に水素ガス等の燃料ガ
スを供給しまた酸化剤極に空気等の酸化剤ガスを供給し
、このとき起こる電気化学的反応を利用して上記両電極
間から電気エネルギーを取出すようにしたものであり、
上記燃料ガスと酸化剤ガスが供給されている限り^い変
換効率で電気エネルギーを取出すことができるものであ
る。
Conventionally, fuel cells have been known as devices that directly convert chemical energy contained in fuel into electrical energy. This fuel cell normally has a pair of electrodes, a fuel electrode and an oxidizer electrode, sandwiched between an electrolyte-impregnated matrix with a thickness of 1 mm or less, and a fuel gas such as hydrogen gas is supplied to the fuel electrode, and an oxidizer An oxidant gas such as air is supplied to the electrodes, and the electrochemical reaction that occurs at this time is used to extract electrical energy from between the two electrodes.
As long as the above fuel gas and oxidant gas are supplied, electrical energy can be extracted with high conversion efficiency.

さて、このような燃料電池においては、燃料極と酸化剤
極との圧力差により燃料ガスまたは酸化剤ガスが容易に
透過してその発電効率を低下させるのみでなく、装置と
しての老朽化を早めることになる。また、この極間差圧
がある許容値を超えたような場合には、燃料電池を構成
するマトリクスを破損することが確められている。一方
、燃料電池ではその運転方法において高度な負荷追従性
が要求されることから、負荷変動に応じて燃料極と酸化
剤極の各ガス流量を適切な値に確保しなくてはならない
。従って、このような燃料電池における圧力、1量の制
御を行なう装置としては、システムの保全として極間差
圧を抑制することと1、負荷応答性としての燃料極、酸
化剤極の各ガス流量制御とを同時に行なうことが要求さ
れる。
In such fuel cells, fuel gas or oxidant gas easily permeates due to the pressure difference between the fuel electrode and the oxidizer electrode, which not only reduces the power generation efficiency but also accelerates the deterioration of the device. It turns out. Furthermore, it has been confirmed that if this interelectrode differential pressure exceeds a certain permissible value, the matrix constituting the fuel cell will be damaged. On the other hand, a fuel cell requires a high degree of load followability in its operating method, so it is necessary to ensure appropriate gas flow rates at the fuel electrode and oxidizer electrode in response to load fluctuations. Therefore, as a device for controlling the pressure and quantity in such a fuel cell, it is necessary to suppress the differential pressure between the electrodes to maintain the system, and to control the gas flow rates at the fuel electrode and oxidizer electrode to ensure load responsiveness. control is required at the same time.

ところで、このような要求を満足する制御を行なうため
には、一般に複数個の流量制御弁を操作の対象としなく
てはならない。そして従来では、燃料電池に対する燃料
ガスおよび酸化剤ガスの供給ライン上に夫々設けられた
各流量制御弁によって燃料極、酸化剤極の各ガス流量を
、また燃料ガスおよび酸化剤ガスの排出ライン上に夫々
設けられた各流量制御弁によって燃料極、酸化剤極の極
間差圧を、比例、積分(P、T)動作を行なうP。
By the way, in order to perform control that satisfies such requirements, it is generally necessary to operate a plurality of flow control valves. Conventionally, each gas flow rate of the fuel electrode and oxidizer electrode was controlled by each flow control valve provided on the supply line of fuel gas and oxidant gas to the fuel cell, and also on the discharge line of fuel gas and oxidant gas. Proportional and integral (P, T) operations are performed on the differential pressure between the fuel electrode and the oxidizer electrode by the respective flow control valves provided in the P.

111節器で夫々制mする合計4つの独立した1郊構成
となっており、制tllffiと操作対象とが1対1に
対応したいるゆる申−人出力制御方式を単独に組合わせ
ている。しかし、このような方式で問題となる点は、4
つの流量制御弁が夫々独立にしか扱えないことである。
It has a total of four independent units each controlled by 111 nodes, and is a single combination of all individual output control systems in which the control unit and the operation target correspond one-to-one. However, the problem with such a method is that
The two flow control valves can only be operated independently.

すなわち、燃料電池におけるガスの流量と圧力とは物理
的関係に従い、燃料極と酸化剤極とは制御上極間差圧の
点で結合しているため、4つの操作対象を有する本制御
対象は結局は参入力多出力系の相互干渉系であることが
わかる。従って、上述のような制御構成において、P、
I調節器の設計パラメータ合計8個は本来相互の関連を
考慮して設定すべきものであるが、このような従来の制
御方式では互いに協調のとれたパラメータの設定を行な
うことができず、結局は試行錯誤によって1つの操作対
象毎に設定しているものであることから、制御系全体と
して見た場合の制御性能が非常に悪いものとなっている
In other words, the flow rate and pressure of gas in a fuel cell follow a physical relationship, and the fuel electrode and oxidizer electrode are connected at the pressure difference between the electrodes for control purposes, so this control object, which has four operation objects, is In the end, it turns out that it is a mutual interference system with multiple input inputs and multiple outputs. Therefore, in the control configuration as described above, P,
A total of eight design parameters for the I controller should originally be set in consideration of their mutual relationships, but with such conventional control methods, it is not possible to set the parameters in a mutually coordinated manner, and in the end, Since the settings are made for each operation target through trial and error, the control performance of the control system as a whole is extremely poor.

〔発明の目的〕[Purpose of the invention]

本発明は上記のような問題点を解決するために成された
もので、その目的は操作対象である4個の流量制御弁の
調節を互いに協調をとりながら最適に行ない、燃料電池
の負荷変動に対する応答性を向上させると共に燃料極と
酸化剤極の極間差圧に対するシステムの保全性を改善す
ることが可能な制御性能の良い圧力流Ill適制御装置
を備えた信頼性の高い燃料電池発電システムを提供する
ことにある。
The present invention was made to solve the above-mentioned problems, and its purpose is to optimally adjust the four flow control valves that are to be operated in coordination with each other, and to control the load fluctuation of the fuel cell. Highly reliable fuel cell power generation equipped with a pressure flow control device with good control performance that can improve response to pressure differences between the fuel electrode and the oxidizer electrode, as well as system integrity with respect to the differential pressure between the fuel electrode and the oxidizer electrode. The goal is to provide a system.

[発明の概要] 上記目的を達成するために本発明では、電解質を含浸し
たマトリクスを挟んで燃料極および酸化剤極の一対の電
極を配置して成り、燃料極に燃料ガスをまた酸化剤極に
酸化剤ガスを夫々供給してこのとき起こる電気化学的反
応により両電極間から電気エネルギーを取出すようにし
た燃料電池において、上記燃料電池に対する燃料ガスの
供給ラインおよび排出ライン上に夫々設けられた第1の
流量制御弁および第2の流量制御弁と、上記燃料電池に
対する酸化剤ガスの供給ラインおよび排出ライン上に夫
々設けられた第3の流量制御弁および第4の流量制御弁
と、上記燃料ガスおよび酸化剤ガスの供給ラインを通過
するガス流量を夫々検出する第1の流ω検出器および第
2の流量検出器と、上記燃料極の圧力を検出する圧力検
出器と、上記燃料穫と酸化剤極との間の差圧(極間差圧
)を検出する差圧検出器と、上記第1.第2の流」検出
器、圧力検出器からの各検出信号とこれらの検出信号に
対応した各目標値信号および差圧検出器からの検出信号
を夫々入力とし、上記第1.第2の流量検出器、圧力検
出器からの各検出信号とこれらに対応した各目標値信号
とを夫々比較演算して得られる各比較信号ならびに上記
差圧検出器からの検出信号に対して夫々異なった比例演
算を行ない、かつこれらの各比例演算信号を合成し積分
演算を行なって上記第1乃至第4の各流量制御弁に夫々
対応した第1の弁開度指令信号を得る定常特性補償部、
および上記圧力検出器、差圧検出器からの各検出信号お
よび上記第1乃至第4の流量制御弁の各弁開度検出信号
を夫々入力とし、上記圧力検出器からの検出信号と差圧
検出器からの検出信号とを比較演算して得られる比較信
号ならびに上記圧力検出器からの検出信号、各弁開度検
出信号に対して夫々異なった比例演算を行ない。
[Summary of the Invention] In order to achieve the above object, the present invention comprises a pair of electrodes, a fuel electrode and an oxidizer electrode, which are arranged with a matrix impregnated with an electrolyte sandwiched therebetween. In a fuel cell in which an oxidant gas is supplied to each electrode and electrical energy is extracted from between the two electrodes through an electrochemical reaction that occurs, a fuel cell is provided on a fuel gas supply line and a discharge line for the fuel cell, respectively. a first flow control valve and a second flow control valve; a third flow control valve and a fourth flow control valve provided on the supply line and discharge line of the oxidant gas to the fuel cell, respectively; a first flow ω detector and a second flow rate detector that detect the gas flow rates passing through the fuel gas and oxidizing gas supply lines, respectively; a pressure detector that detects the pressure of the fuel electrode; and a pressure detector that detects the pressure of the fuel electrode; and the oxidizer electrode (interelectrode pressure difference); The detection signals from the "second flow" detector and the pressure detector, the target value signals corresponding to these detection signals, and the detection signal from the differential pressure detector are respectively inputted, and the detection signals from the "second flow" detector and the pressure detector are respectively input. For each comparison signal obtained by comparing and calculating each detection signal from the second flow rate detector and the pressure detector and each target value signal corresponding thereto, and the detection signal from the differential pressure detector, respectively. Steady characteristic compensation for obtaining first valve opening command signals corresponding to each of the first to fourth flow rate control valves by performing different proportional calculations, synthesizing these respective proportional calculation signals, and performing integral calculations. Department,
and each detection signal from the pressure detector, the differential pressure detector, and each valve opening detection signal of the first to fourth flow control valves are respectively input, and the detection signal from the pressure detector and the differential pressure detection are input. Different proportional calculations are performed on the comparison signal obtained by comparing the detection signal from the pressure sensor, the detection signal from the pressure sensor, and each valve opening detection signal.

かつこれらの各比例演算信号を合成して上記第1乃至第
4の各流m制御弁に夫々対応した第2の弁開度指令信号
を得る過渡特性補償部から成り、上記定常特性補償部か
らの各第1の弁開度指令信号と過渡特性補償部からの各
第2の弁開度指令信号とを夫々各別に合成して得られる
各信号を上記第1乃至第4の流量制御弁に対する弁開度
指令信号として出力する最適演算装置とを備えることに
より、燃料極流量および酸化剤極滝壷を夫々の目標値に
オフセットなしで追従させ、また極間差圧を8極の流量
変化、外乱入力に対して瞬時に零にレギュレーションさ
せるようにしたことを特徴とする。
and a transient characteristic compensator for synthesizing each of these proportional calculation signals to obtain a second valve opening command signal corresponding to each of the first to fourth flow m control valves; Each signal obtained by separately synthesizing each first valve opening command signal and each second valve opening command signal from the transient characteristic compensator is applied to the first to fourth flow rate control valves. By being equipped with an optimal calculation device that outputs a valve opening command signal, the fuel electrode flow rate and oxidizer electrode waterfall basin can be made to follow their respective target values without offset, and the differential pressure between the electrodes can be adjusted to the flow rate change of the 8 poles and disturbances. It is characterized by instantaneously regulating the input to zero.

まず、本発明の前提となる基本的な考え方について述べ
る。
First, the basic idea that is the premise of the present invention will be described.

第3図は、本発明に適用する制御系の構成例を模式的に
ブロック図で示すものである。すなわち本制御系は、プ
ロセスからの制御0Ilyとこれに対応した目標値rと
を比較演算して得られる比較信号である偏差lieに対
して比例(H)演算を行ない、かつこの比例演算量に対
し積分(S)演算を行なってプロセスに対する第1の操
作量を得る定常特性補償部と、プロセスからの状態量x
に対して比例(G)演算を行ないプロセスに対する第2
の操作量を得る過渡特性補償部とを備えて、定常特性補
償部からの第1の操作量と過渡特性補償部からの第2の
操作−とを合成したものを、プロセスに対する最終的な
操作luとして与えるように構成している。
FIG. 3 is a block diagram schematically showing a configuration example of a control system applied to the present invention. In other words, this control system performs a proportional (H) calculation on the deviation lie, which is a comparison signal obtained by comparing the control 0Ily from the process and the corresponding target value r, and On the other hand, there is a steady characteristic compensator that performs an integral (S) operation to obtain the first manipulated variable for the process, and a state quantity x from the process.
The proportional (G) operation is performed on the second
and a transient characteristic compensator that obtains the manipulated variable of the process. The configuration is such that it is given as lu.

ここで、Gはプロセスの特性改善要素、Hは積分(S)
要素とともに定常値を補償する要素であり、それぞれ行
列をなしている。そして、制御パラメータであるこのG
、Hは次のように定められる。すなわち第3図において
、制御量y、状状態量X。作量り、目標値r、幅偏差e
は、夫々適当な要素をもつベクトルである。そして、プ
ロセスが線形モデル X−AX+Bu  ・・・・−・(1a)y−cx  
   ・・・・・・(1b)で記述される場合、適当な
重み行列Q、Rを与えた評価指標 J−f  (efi’ Qe+uTRQ)dt  ・ 
(2)を最小にする制御法則は、最適問題の解としてu
−Gx+Hf”  edt+ua  ・・・・・13)
なる形で表わされ、この時の係数行列G、Hは(1a)
、(1b)、(2)式の係数行列から唯−解として与え
ることができる。以上から、本制御系は状態空間法によ
る制御方式を成すため、制御パラメータG、Hの設定は
ある最適条件を満足するように数学的に定めることがで
きる。なお上記で、交の・は微分(d/dt)を、Tは
天地行列、unは操作量Uの初期値をそれぞれ表わして
いる。
Here, G is the process characteristic improvement factor, H is the integral (S)
Together with the elements, they are elements that compensate for steady-state values, and each form a matrix. And this G which is a control parameter
, H are determined as follows. That is, in FIG. 3, the control amount y and the state amount X. Production weight, target value r, width deviation e
are vectors each having appropriate elements. Then, the process is a linear model X-AX+Bu... (1a) y-cx
......When described in (1b), the evaluation index J-f (efi' Qe+uTRQ) dt with appropriate weight matrices Q and R is given.
The control law that minimizes (2) is
-Gx+Hf" edt+ua...13)
The coefficient matrices G and H at this time are (1a)
, (1b), and (2) can be given as a unique solution from the coefficient matrix of equations. From the above, since this control system implements a control method based on the state space method, the settings of the control parameters G and H can be determined mathematically so as to satisfy certain optimal conditions. Note that in the above, the cross represents the differential (d/dt), T represents the vertical matrix, and un represents the initial value of the manipulated variable U, respectively.

〔発明の実施例〕[Embodiments of the invention]

以下、上記のような考え方に基づく本発明の一実施例に
ついて図面を参照して説明する。第1図は、本発明によ
る圧力流量最適制御装置を備えてなる燃料電池発電シス
テムの構成例をブロック的に示すものである。
An embodiment of the present invention based on the above concept will be described below with reference to the drawings. FIG. 1 shows in block form an example of the configuration of a fuel cell power generation system equipped with a pressure flow rate optimum control device according to the present invention.

図において、1は電解質を含浸したマトリクスを挟んで
燃料極2および酸化剤極3の一対のN極を配置して成り
、燃料極2に水素等の燃料ガスをまた酸化剤極3に空気
等の酸化剤ガスを夫々供給し、このとき起こる電気化学
的反応により両電極2.3間から電気エネルギーを取出
す燃料電池である。一方、4Aおよび4Bは上記燃料電
池1に対する燃料ガスの供給ラインおよび排出ライン上
に夫々設けた第1の流量制御弁および第2の流量制御弁
、4Cおよび4Dは同じく燃料電池1に対する酸化剤ガ
スの供給ラインおよび排出ライン上に夫々設けた第3の
流量制御弁および第4の流m制御弁、51Aおよび51
Bは上記燃料ガスおよび酸化剤ガスの供給ラインを通過
するガス流量を夫々検出する第1のin検出器および第
2の流量検出器、52は上記燃料極2の圧力を検出する
圧力検出器、53は上記燃料極2と酸化剤極3の極間差
圧を検出する差圧検出器である。また、31はその詳細
を後述する最適演算装置であり、上記第1の流量検出器
51A、第2の流量検出器51B、圧力検出器52から
の各検出信号FAND。
In the figure, 1 consists of a pair of N electrodes, a fuel electrode 2 and an oxidizer electrode 3, arranged with an electrolyte-impregnated matrix in between, and the fuel electrode 2 is supplied with a fuel gas such as hydrogen, and the oxidizer electrode 3 is supplied with a fuel gas such as hydrogen, etc. This is a fuel cell in which oxidizing gases are supplied to each electrode, and electrical energy is extracted from between the two electrodes 2 and 3 through the electrochemical reaction that occurs at this time. On the other hand, 4A and 4B are a first flow control valve and a second flow control valve provided on the fuel gas supply line and discharge line for the fuel cell 1, respectively, and 4C and 4D are oxidant gas for the fuel cell 1, respectively. a third flow control valve and a fourth flow control valve provided on the supply line and the discharge line, respectively, of 51A and 51;
B is a first in detector and a second flow rate detector that respectively detect the gas flow rates passing through the fuel gas and oxidant gas supply lines; 52 is a pressure detector that detects the pressure of the fuel electrode 2; Reference numeral 53 denotes a differential pressure detector for detecting the differential pressure between the fuel electrode 2 and the oxidizer electrode 3. Reference numeral 31 denotes an optimal calculation device whose details will be described later, and each detection signal FAND from the first flow rate detector 51A, second flow rate detector 51B, and pressure detector 52.

FCAT、PANDと、これらの検出信号FAND、F
cxv、PANDに対応した各目標値信号F*AND、
F*CAT、P*AND、差圧検出器53からの検出信
号DP1および第1〜第4の流量制御弁4A〜4Dの各
弁開度検出信号■1〜v4を夫々入力とし、これらの各
信号に基づいて上記第1〜第4の流量制御弁4A〜4D
に対する最適な弁開度指令信号u1〜U4を夫々出力す
るものである。
FCAT, PAND and their detection signals FAND, F
cxv, each target value signal F*AND corresponding to PAND,
F*CAT, P*AND, the detection signal DP1 from the differential pressure detector 53, and each valve opening detection signal ■1 to v4 of the first to fourth flow control valves 4A to 4D are input, respectively. Based on the signal, the first to fourth flow control valves 4A to 4D
The optimum valve opening command signals u1 to U4 are output for each of the valve opening command signals u1 to U4.

次に第2図は、上記最適演算装置31の詳細な構成例を
示すものである。第2図において、231.232,2
33は第1の流量検出器51A。
Next, FIG. 2 shows a detailed configuration example of the optimal arithmetic unit 31. In Figure 2, 231.232,2
33 is a first flow rate detector 51A.

第2の流量検出器51B、圧力検出器52からの各検出
器@FAND、FCAT、PANDと各目標値信号F*
AND、F*OAT、P*ANDとを夫々各別に比較し
てその偏差信号を得る加減算器、241,242.24
3および244はこれらの各偏差信号および上記差圧検
出器53からの検出信号DPに対して夫々異なった比例
演算(hil、 h12. h13. h14. h2
1. h31. h41.・・・。
Each detector @FAND, FCAT, PAND and each target value signal F* from the second flow rate detector 51B and pressure detector 52
Adder/subtractor that compares AND, F*OAT, and P*AND separately to obtain a deviation signal, 241, 242.24
3 and 244 perform different proportional calculations (hil, h12. h13. h14. h2) on these deviation signals and the detection signal DP from the differential pressure detector 53, respectively.
1. h31. h41. ....

hij)を行なって得られる各比例演算信号を合成する
加減算器、211,212,213および214はこれ
ら各加減算器241,242,243および224から
の出力信号を積分(S)演算して、上記第1〜第4の各
流量制御弁4A〜4Dに夫々対応した第1の弁開度指令
信号を得る積分器であり、これらの各要素から定常特性
補償部を構成している。また、22は上記圧力検出器5
2からの検出信号PANDと差圧検出器53からの検出
信号DPとを比較して偏差信号POAT(酸化剤極3の
圧力)を得る加減算器、251,252゜253および
254は上記圧力検出器51からの検出信号PA pi
 o 、上記加減算器25からの偏差信号Pc A T
 、上記各弁開度検出信号■1〜■4に対して夫々異な
った比例演算(qll、 Q12゜Q13.014. 
Q15. Q16. Q21. Q31. Q41.・
・・。
The adders/subtractors 211, 212, 213, and 214 which synthesize the respective proportional operation signals obtained by performing the above-mentioned adder/subtractors 241, 242, 243, and 224 integrate (S) the output signals from the respective adders/subtractors 241, 242, 243, and 224, and perform the above-mentioned This is an integrator that obtains a first valve opening command signal corresponding to each of the first to fourth flow rate control valves 4A to 4D, and these elements constitute a steady-state characteristic compensator. Further, 22 is the pressure detector 5
251, 252; 253 and 254 are the pressure detectors mentioned above; 251, 252; 253 and 254; Detection signal from 51 PA pi
o, deviation signal Pc AT from the adder/subtractor 25
, different proportional calculations (qll, Q12°Q13.014.
Q15. Q16. Q21. Q31. Q41.・
....

oij)を行なって得られる各比例演算信号を合成して
、上記第1〜第4の各流量制御弁4 A−40に夫々対
応した第2の弁開度指令信号を得る加減算器であり、こ
れらの各要素から過渡特性補償部を構成している。そし
て、上記定常特性補償部からの各第1の弁開度指令信号
と過渡特性補償部からの各第2の弁開度指令信号とを加
減算器261〜264で夫々各別に合成して得られる各
信号を、上記第1〜第4の流量制御弁4A〜4Dに対す
る弁開度指令信号u1〜u4として出力するいわゆる多
入力多出力制御構成としている。 なお上記で、Qij
(i=1.2,3.4、j=1.2.3゜4)、hij
(i=1.2.3.4、j=1.2゜3.4.5.6)
は比例ゲインを夫々表わし、これらは行列を成し前述し
た第3図のG、Hに対応している。
an adder/subtractor that synthesizes each proportional calculation signal obtained by performing (oij) and obtains a second valve opening command signal corresponding to each of the first to fourth flow rate control valves 4A-40, Each of these elements constitutes a transient characteristic compensator. Then, each of the first valve opening degree command signals from the steady-state characteristic compensation section and each of the second valve opening degree command signals from the transient characteristic compensation section are separately synthesized by adders and subtractors 261 to 264. A so-called multi-input multi-output control configuration is adopted in which each signal is output as valve opening command signals u1 to u4 for the first to fourth flow rate control valves 4A to 4D. Note that in the above, Qij
(i = 1.2, 3.4, j = 1.2.3°4), hij
(i=1.2.3.4, j=1.2°3.4.5.6)
represent proportional gains, which form a matrix and correspond to G and H in FIG. 3 described above.

次に、かかる如く構成した圧力流山最適制御装置を喝え
てなる燃料電池発電システムの作用について述べる。
Next, the operation of the fuel cell power generation system using the pressure flow optimization control device constructed as described above will be described.

まず第1図において、燃料電池1の負荷量に応じて燃料
極2へ水素等の燃料ガスを、また酸化剤極3へ空気等の
酸化剤ガスを夫々供給することにより、これらを電気化
学的に反応させて両電極2゜3間から電気エネルギーを
取出し発電が行なわれている。また、第1の流量検出器
51A、第2の流量検出器51B、圧力検出器52から
の各検出信号FAND、FCAT、PANDと、これら
の検出信号FAND、FCAT、PANDに対応した各
目標値信号F*AND、F*CAT。
First, in FIG. 1, by supplying a fuel gas such as hydrogen to the fuel electrode 2 and an oxidant gas such as air to the oxidizer electrode 3 according to the load amount of the fuel cell 1, these are electrochemically In response to this, electrical energy is extracted from between the two electrodes 2.3 to generate electricity. In addition, each detection signal FAND, FCAT, PAND from the first flow rate detector 51A, second flow rate detector 51B, and pressure detector 52, and each target value signal corresponding to these detection signals FAND, FCAT, and PAND. F*AND, F*CAT.

P*A N o 、差圧検出器53からの検出信号DP
P*A No, detection signal DP from differential pressure detector 53
.

および第1〜第4の流量制御弁4A〜4Dの各弁開度検
出信号V1〜■4が、最適演算装置31に夫々入力され
ている。
The valve opening detection signals V1 to V4 of the first to fourth flow rate control valves 4A to 4D are input to the optimum calculation device 31, respectively.

今、かかる状態から燃料電池1の負荷量が変動すると、
最適演算!131は上述したように多変数制御構成とし
ていることから、燃料電池1の負荷変動に伴っていずれ
か1つの入力信号が変化することにより、定常特性補正
部で得られる第1の弁開度指令信号または過渡特性補正
部で得られる第2の弁開度指令信号の少なくともいずれ
か一方がその影響を受けて変化する。これにより、加減
尊器261〜264で得られる最終的な弁開度指令信号
u1〜u4も変化して、第1の流山制御弁4A、第2の
FIL壷制御弁4B、第3の流量制御弁4C,第4の流
量制御弁4Dの夫々の弁開度は、互いに協調をとりなが
ら最適に制御されることになる。その結果、燃料極2の
ガス流量FANDおよび酸化剤極3のガス1IFc A
rは夫々の目標1i1F*ANnおよびF*CATにオ
フセットなしで追従し、また燃料極2と酸化剤極3の極
間差圧DPは冬場の流量変化、外乱入力に対して瞬時に
零にレギュレーションされることになる。従って、燃料
電池1の負荷変動に対する応答性を向上させると共に、
燃料極2と酸化剤極3の極間差圧DPに対するシステム
の保全性を改善することが可能となり、制御性能の良好
な圧力流量最適制御装置を備えた極めて信頼性の高い燃
料電池発電システムと得ることができる。
Now, if the load amount of the fuel cell 1 changes from this state,
Optimal calculation! Since 131 has a multivariable control configuration as described above, the first valve opening degree command obtained by the steady-state characteristic correction section is determined by changing any one input signal as the load of the fuel cell 1 changes. At least one of the signal and the second valve opening command signal obtained by the transient characteristic correction section changes under the influence thereof. As a result, the final valve opening command signals u1 to u4 obtained by the adjusters 261 to 264 also change, and the first flow mountain control valve 4A, the second FIL pot control valve 4B, and the third flow rate control The respective valve opening degrees of the valve 4C and the fourth flow control valve 4D are optimally controlled while cooperating with each other. As a result, the gas flow rate FAND of the fuel electrode 2 and the gas flow rate 1IFc A of the oxidizer electrode 3 are determined.
r follows the respective targets 1i1F*ANn and F*CAT without offset, and the differential pressure DP between the fuel electrode 2 and oxidizer electrode 3 is instantly regulated to zero in response to flow rate changes and disturbance inputs in winter. will be done. Therefore, the responsiveness of the fuel cell 1 to load fluctuations is improved, and
It is now possible to improve the system integrity with respect to the interelectrode pressure difference DP between the fuel electrode 2 and oxidizer electrode 3, resulting in an extremely reliable fuel cell power generation system equipped with a pressure flow rate optimization control device with good control performance. Obtainable.

なお、第4図は燃料電池1の負荷を50%から100%
までステップ上昇させた時の応答を示すものであり、目
標値はいずれも初期値に保持されているため、実線で示
す如く速やかに偏差零の状態に集束している。図から明
らかなように、破線で示した従来の制御と比べて変動幅
が減少し集束も速くなっている。また、第5図は燃料電
池1の燃料極2のガス流量目標値F*ANDをステップ
上昇させた時の応答を示すものである。図から、破線で
示した従来の制御によるものが大きく変動するのに比べ
て、燃料極2のガス流IFANDは実線で示す如く速や
かに目標値に達し、このとき酸化剤極3のガス流IFO
NTと極間差圧DPはほとんど変化することはなく、実
線で示す如くほぼ零の状態に保たれていることがわかる
In addition, in Figure 4, the load on the fuel cell 1 is changed from 50% to 100%.
This shows the response when the target value is raised stepwise to 0. Since the target values are all held at their initial values, the deviation quickly converges to zero as shown by the solid line. As is clear from the figure, the fluctuation range is reduced and the convergence is faster compared to the conventional control shown by the broken line. Further, FIG. 5 shows the response when the target gas flow rate value F*AND of the fuel electrode 2 of the fuel cell 1 is increased in steps. From the figure, it can be seen that the gas flow IFAND of the fuel electrode 2 quickly reaches the target value as shown by the solid line, while the gas flow IFO of the oxidizer electrode 3 quickly reaches the target value as shown by the solid line, whereas the conventional control shown by the broken line fluctuates greatly.
It can be seen that NT and the interelectrode differential pressure DP hardly change and are maintained at almost zero as shown by the solid line.

尚、本発明は上述した実施例に限定されるものではなく
、その要旨を変更しない範囲で種々に変形して実施する
ことができるものである。
Note that the present invention is not limited to the embodiments described above, and can be implemented with various modifications without changing the gist thereof.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に本発明によれば、操作対象である4個
の流量III III弁の調節を互いに協調をとりなが
ら最適に行ない、燃料電池の負荷変動に対する応答性を
向上させると共に燃料極と酸化剤極の極間差圧に対する
システムの保全性を改善することが可能なtilll[
l性能の良い圧力1i11Ja適制−装置を備えた極め
て信頼性の高い燃料電池発電システムが提供できる。
As explained above, according to the present invention, the four flow rate III valves to be operated are optimally adjusted in coordination with each other, improving the response to load fluctuations of the fuel cell, and improving the fuel electrode and oxidation Till[
An extremely reliable fuel cell power generation system equipped with a pressure control device with good performance can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成ブロック図、第2
図は同実施例における最適演算装置の詳細を示す構成図
、第3図は本発明の詳細な説明するための模式図、第4
図および第5図は同実施例における作用を説明するため
の図である。 1・・・燃料電池、2・・・燃料極、3・・・酸化剤極
、31・・・最適演WI装置、4A〜4D・・・第1〜
第4の流層制御弁、51A、51B・・・第1.第2の
流量検出器、52・・・圧力検出器、53・・・差圧検
出器、211〜214・・・積分器、22.231〜2
33゜241〜244.251〜254゜ 261〜264・・・加減算器。 出願人代理人  弁理士 鈴江武彦 第1図 1菌゛506ムー100@ムズテソフ゛上1シブを第4
FIG. 1 is a configuration block diagram showing one embodiment of the present invention, and FIG.
The figure is a block diagram showing the details of the optimal arithmetic unit in the same embodiment, FIG. 3 is a schematic diagram for explaining the present invention in detail, and FIG.
This figure and FIG. 5 are diagrams for explaining the operation of the same embodiment. DESCRIPTION OF SYMBOLS 1... Fuel cell, 2... Fuel electrode, 3... Oxidizer electrode, 31... Optimal performance WI device, 4A to 4D... First to
Fourth flow layer control valve, 51A, 51B...first. Second flow rate detector, 52... Pressure detector, 53... Differential pressure detector, 211-214... Integrator, 22.231-2
33°241~244.251~254°261~264...addition/subtraction device. Applicant's representative Patent attorney Takehiko Suzue Figure 1 1 Bacteria 506 mu 100
figure

Claims (1)

【特許請求の範囲】[Claims] (1)電解質を含浸したマトリクスを挟んで燃料極およ
び酸化剤極の一対の電極を配置して成り、燃料極に燃料
ガスをまた酸化剤極に酸化剤ガスを夫々供給してこのと
き起こる電気化学的反応により両電極間から電気エネル
ギーを取出すようにした燃料電池において、前記燃料電
池に対する燃料ガスの供給ラインおよび排出ライン上に
夫々設けられた第1の流量制御弁および第2の流量制御
弁と、前記燃料電池に対する酸化剤ガスの供給ラインお
よび排出ライン上に夫々設けられた第3の流量制御弁お
よび第4の流量制御弁と、前記燃料ガスおよび酸化剤ガ
スの供給ラインを通過するガス流量を夫々検出する第1
の流量検出器および第2の流量検出器と、前記燃料極の
圧力を検出する圧力検出器と、前記燃料極と酸化剤極と
の間の差圧(極間差圧)を検出する差圧検出器と、前記
第1、第2の流量検出器、圧力検出器からの各検出信号
とこれらの検出信号に対応した各目標値信号および差圧
検出器からの検出信号を夫々入力とし、前記第1、第2
の流量検出器、圧力検出器からの各検出信号とこれらに
対応した各目標値信号とを夫々比較演算して得られる各
比較信号ならびに前記差圧検出器からの検出信号に対し
て夫々異なった比例演算を行ない、かつこれらの各比例
演算信号を合成し積分演算を行なって前記第1乃至第4
の各流量制御弁に夫々対応した第1の弁開度指令信号を
得る定常特性補償部、および前記圧力検出器、差圧検出
器からの各検出信号および前記第1乃至第4の流量制御
弁の各弁開度検出信号を夫々入力とし、前記圧力検出器
からの検出信号と差圧検出器からの検出信号とを比較演
算して得られる比較信号ならびに前記圧力検出器からの
検出信号、各弁開度検出信号に対して夫々異なった比例
演算を行ない、かつこれらの各比例演算信号を合成して
前記第1乃至第4の各流量制御弁に夫々対応した第2の
弁開度指令信号を得る過渡特性補償部から成り、前記定
常特性補償部からの各第1の弁開度指令信号と過渡特性
補償部からの各第2の弁開度指令信号とを夫々各別に合
成して得られる各信号を前記第1乃至第4の流量制御弁
に対する弁開度指令信号として出力する最適演算装置と
を備えるようにしたことを特徴とする燃料電池発電シス
テム。
(1) A pair of electrodes, a fuel electrode and an oxidizer electrode, are arranged with an electrolyte-impregnated matrix in between, and the electricity generated by supplying fuel gas to the fuel electrode and oxidant gas to the oxidizer electrode, respectively. In a fuel cell that extracts electrical energy from between two electrodes through a chemical reaction, a first flow control valve and a second flow control valve are provided on a supply line and a discharge line of fuel gas to the fuel cell, respectively. a third flow control valve and a fourth flow control valve provided on the oxidant gas supply line and discharge line for the fuel cell, respectively; and gas passing through the fuel gas and oxidant gas supply lines. The first one detects the flow rate respectively.
a flow rate detector and a second flow rate detector, a pressure detector that detects the pressure of the fuel electrode, and a pressure difference that detects the differential pressure between the fuel electrode and the oxidizer electrode (interelectrode differential pressure). Each detection signal from the detector, the first and second flow rate detectors, and the pressure detector, each target value signal corresponding to these detection signals, and the detection signal from the differential pressure detector are respectively input, and the 1st, 2nd
Each comparison signal obtained by comparing each detection signal from the flow rate detector and the pressure sensor with each corresponding target value signal and the detection signal from the differential pressure detector, respectively, is different. A proportional calculation is performed, and each of these proportional calculation signals is combined and an integral calculation is performed to obtain the first to fourth signals.
a steady-state characteristic compensation unit that obtains a first valve opening command signal corresponding to each of the flow rate control valves, and each detection signal from the pressure detector and the differential pressure detector and the first to fourth flow rate control valves; A comparison signal obtained by comparing and calculating the detection signal from the pressure detector and the detection signal from the differential pressure detector with each valve opening detection signal as input, and the detection signal from the pressure detector, respectively. Different proportional calculations are performed on the valve opening detection signals, and these proportional calculation signals are combined to generate a second valve opening command signal corresponding to each of the first to fourth flow rate control valves. the first valve opening command signal from the steady characteristic compensator and the second valve opening command signal from the transient characteristic compensator, respectively. and an optimum arithmetic unit that outputs each signal as a valve opening command signal for the first to fourth flow rate control valves.
JP60235683A 1985-10-22 1985-10-22 Fuel cell power generating system Pending JPS6297264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60235683A JPS6297264A (en) 1985-10-22 1985-10-22 Fuel cell power generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60235683A JPS6297264A (en) 1985-10-22 1985-10-22 Fuel cell power generating system

Publications (1)

Publication Number Publication Date
JPS6297264A true JPS6297264A (en) 1987-05-06

Family

ID=16989659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60235683A Pending JPS6297264A (en) 1985-10-22 1985-10-22 Fuel cell power generating system

Country Status (1)

Country Link
JP (1) JPS6297264A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6476674A (en) * 1987-09-16 1989-03-22 Toshiba Corp Pressure flow control device of fuel cell power generating system fuel system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6476674A (en) * 1987-09-16 1989-03-22 Toshiba Corp Pressure flow control device of fuel cell power generating system fuel system

Similar Documents

Publication Publication Date Title
US20220209274A1 (en) Redox flow battery with a balancing cell
Na et al. Nonlinear control of PEM fuel cells by exact linearization
David et al. Model-based control design for H2 purity regulation in high-pressure alkaline electrolyzers
CN110345137B (en) Combined hydraulic double-cylinder synchronous control method
US11139489B2 (en) System for electrolysing water (SOEC) or fuel-cell stack (SOFC) operating under pressure, the regulation of which is improved
JP4338914B2 (en) Fuel circulation fuel cell system
JPS6297264A (en) Fuel cell power generating system
JPS6282659A (en) Pressure and flow rate controller of fuel cell power generating plant
JPH06267577A (en) Control device for fuel cell
CN115347218A (en) Cascade control method of air supply system of proton exchange membrane fuel cell
JPS62160666A (en) Fuel cell power generation system
Na et al. Nonlinear control of PEM fuel cells by exact linearization
CN113721457A (en) Design method of hydrogen fuel cell optimal parameter variable controller based on LMI
CN109994760A (en) Temperature control system and method and fuel cell system for fuel cell system
US20030209441A1 (en) Control arrangement for an alkaline pressure electrolyzer
JPS62160665A (en) Fuel cell power generation system
JPS62160667A (en) Fuel cell power generation system
Rgab et al. Polymer electrolyte membrane fuel cell control with feed-forward and feedback strategy
JPH01144569A (en) Pressure and flow control device for fuel cell power generating system
JPS6039772A (en) System for controlling pressure and flow rate in fuel cell power generation plant
CN115764979B (en) Distributed photovoltaic system stability quantitative evaluation method considering communication delay
JPS62259353A (en) Fuel cell power generating system
CN114362132B (en) Interconnected power system load frequency controller design method based on fractional order sliding mode
CN115986718A (en) Sampling control-based power system load frequency control method
JPS6231954A (en) Fuel cell differential pressure control device