JPS6296727A - Power output control method of engine - Google Patents
Power output control method of engineInfo
- Publication number
- JPS6296727A JPS6296727A JP23629285A JP23629285A JPS6296727A JP S6296727 A JPS6296727 A JP S6296727A JP 23629285 A JP23629285 A JP 23629285A JP 23629285 A JP23629285 A JP 23629285A JP S6296727 A JPS6296727 A JP S6296727A
- Authority
- JP
- Japan
- Prior art keywords
- exhaust
- exhaust gas
- engine
- timing
- exhaust pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Electrical Control Of Ignition Timing (AREA)
- Characterised By The Charging Evacuation (AREA)
- Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Description
【発明の詳細な説明】 〔発明の技術分野〕 本発明はエンジンの出力制御方法に関するものである。[Detailed description of the invention] [Technical field of invention] The present invention relates to an engine output control method.
一般に、エンジンの点火時期はエンジン回転数に応じて
最大出力を発揮させるため、高速回転になるほど進角す
るように制御されている。Generally, the ignition timing of an engine is controlled to advance as the engine rotates at higher speeds in order to produce maximum output according to the engine speed.
また、エンジンの出力特性は、一般に慣性効果や脈動効
果と呼ばれる排気管内ガス流の動的効果によって大きく
左右されることが知られている。すなわち、エンジンの
排気孔から排気管へ排出される排気ガスの脈動波は排気
管端等から反射して再び排気孔へ及ぶ現象があり、この
脈動反射波の正圧又は負圧のうちいずれが開口期間中の
排気孔に及ぶかによって出力が大きく左右されることが
知られている。Furthermore, it is known that the output characteristics of an engine are largely influenced by dynamic effects of gas flow in the exhaust pipe, generally referred to as inertia effects and pulsation effects. In other words, there is a phenomenon in which the pulsating waves of exhaust gas discharged from the exhaust port of the engine to the exhaust pipe are reflected from the end of the exhaust pipe and reach the exhaust port again, and whether the positive pressure or negative pressure of this pulsating reflected wave is It is known that the output is greatly influenced by whether the exhaust hole is reached during the opening period.
例えば2サイクルエンジンの場合、掃気孔の開口期間中
に排気孔に負圧の反射波が及ぶように制御すると、この
負圧波は燃焼室、掃気通路。For example, in the case of a two-stroke engine, if the control is performed so that a negative pressure reflected wave reaches the exhaust hole during the opening period of the scavenging hole, this negative pressure wave will be transmitted to the combustion chamber and the scavenging passage.
クランクケースを経て吸気孔に及び、より多量の新気を
吸い込むようになり、またその直後に正圧の反射波を排
気孔に及ばせると、燃焼室に押し込まれた新気の流出を
防止する。そのため、これらにより充填効率が向上し、
出力を上げることができるのである。It reaches the intake hole through the crankcase and sucks in a larger amount of fresh air, and immediately after that, a reflected wave of positive pressure reaches the exhaust hole, preventing the fresh air pushed into the combustion chamber from flowing out. . Therefore, these improve filling efficiency and
It is possible to increase the output.
従来、このような排気管内ガス流の脈動反射波の制御は
、エンジンの回転数に応じて排気時期等の排気系諸元を
制御することによって行われていた。ところが、反射波
の伝播速度は温度によって変化し、温度が高いときは速
く、低くなるほど遅くなるという特性がある。このため
、上述のようにエンジン回転数に応じて排気時期を制御
するだけでは、例えば雨中走行のように排気管が雨によ
り冷却されるときとか、あるいは冬の厳寒時に走行する
ときのように排気管が強冷されるとき等では、定常時に
比べて反射波の伝播速度が遅くなるため、上記動的効果
による出力向上が低減することになる。Conventionally, such pulsating reflected waves of the gas flow in the exhaust pipe have been controlled by controlling exhaust system specifications such as exhaust timing in accordance with the engine rotational speed. However, the propagation speed of reflected waves changes depending on the temperature, and has a characteristic that it is faster when the temperature is high and slower as the temperature is lower. For this reason, simply controlling the exhaust timing according to the engine speed as described above will not work, for example, when the exhaust pipe is cooled by rain when driving in the rain, or when driving in the bitter cold of winter. When the tube is strongly cooled, the propagation speed of the reflected wave becomes slower than in a steady state, so the improvement in output due to the above-mentioned dynamic effect is reduced.
本発明の目的は、上述のような問題を解消し、排気管回
りの温度の違いによって排気ガス流の動的効果による出
力特性が影響されないようにし、常に高出力を発揮でき
るようにするエンジンの出力制御方法を提供することに
ある。The purpose of the present invention is to solve the above-mentioned problems, to prevent the output characteristics from being affected by the dynamic effect of the exhaust gas flow due to differences in temperature around the exhaust pipe, and to provide an engine that can always produce high output. The object of the present invention is to provide an output control method.
〔発明の構成〕
上記目的を達成する本発明は、排気管の長さ方向に複数
配置したセンサから検出した排気管内ガス温度の平均温
度と、エンジン回転数とに応じて、点火時期と排気時期
等の排気ガス流の動的効果を律する排気系諸元とを最大
出力にすべく制御することを特徴とするものである。[Structure of the Invention] The present invention, which achieves the above object, adjusts the ignition timing and the exhaust timing according to the average temperature of the gas inside the exhaust pipe detected by a plurality of sensors arranged in the longitudinal direction of the exhaust pipe and the engine rotation speed. It is characterized by controlling the exhaust system specifications that govern the dynamic effects of the exhaust gas flow, such as the following, to maximize output.
以下、本発明を図に示す実施例により説明する。 The present invention will be explained below with reference to embodiments shown in the drawings.
第1図は本発明が適用される自動二輪車用エンジンを示
し、1は2サイクルのエンジンである。この2サイクル
エンジン1において、2はピストン、3はクランク軸、
4は点火栓、5は吸気孔、6は排気孔、7は排気孔6に
接続された排気管である。FIG. 1 shows a motorcycle engine to which the present invention is applied, and 1 is a two-cycle engine. In this two-stroke engine 1, 2 is a piston, 3 is a crankshaft,
4 is a spark plug, 5 is an intake hole, 6 is an exhaust hole, and 7 is an exhaust pipe connected to the exhaust hole 6.
排気孔6の上部には、その排気孔6の上部開口を開閉す
る回転弁8が設けられている。この回転弁8は、後述す
るようにエンジン回転数と共に排気管内ガス温度に応じ
てアクチュエータ14を介して制御され、排気孔6の上
部開口部の開度を変化させることにより、ピストン2が
排気孔6を閉じるときの排気時期を調節するようにして
いる。A rotary valve 8 is provided above the exhaust hole 6 to open and close the upper opening of the exhaust hole 6. As described later, this rotary valve 8 is controlled via an actuator 14 according to the engine speed and the gas temperature in the exhaust pipe, and by changing the opening degree of the upper opening of the exhaust hole 6, the piston 2 is moved into the exhaust hole. The exhaust timing when closing 6 is adjusted.
排気管7は前部に同一径の直管部7fを有し、その後部
に径を拡大した拡径部7rを接続し、最後部に消音部7
mを接続している。直管部7fの前端部には共鳴室9が
分岐するように設けられ、その入口に蝶形の開閉弁10
が設けられている。この開閉弁10は、後述するように
エンジン回転数と共に排気管内ガス温度に応じてアクチ
ュエータ15を介して制御され、その開度が調節される
ようになっている。The exhaust pipe 7 has a straight pipe part 7f of the same diameter at the front part, an enlarged diameter part 7r with an enlarged diameter is connected to the rear part thereof, and a muffler part 7 at the rearmost part.
m is connected. A resonance chamber 9 is provided at the front end of the straight pipe section 7f so as to branch out, and a butterfly-shaped on-off valve 10 is installed at the entrance of the resonance chamber 9.
is provided. As will be described later, this on-off valve 10 is controlled via an actuator 15 in accordance with the engine speed and the exhaust pipe gas temperature, and its opening degree is adjusted.
また、排気管7には、排気ガス温度を検出する熱電対ま
たはサーミスタ等のセンサ11が直管部7fに2個と拡
径部7rに2個ずつ計4個が設けられている。一方、ク
ランク軸3にはエンジン回転数を検出する電磁コイルな
どのピックアップからなるセンサ12が対設されている
。Further, the exhaust pipe 7 is provided with a total of four sensors 11 such as thermocouples or thermistors for detecting exhaust gas temperature, two in the straight pipe part 7f and two in the enlarged diameter part 7r. On the other hand, a sensor 12 consisting of a pickup such as an electromagnetic coil is provided opposite to the crankshaft 3 to detect the engine speed.
これらセンサ11 、−−−−−−−、 11のヰ★出
信号とセンサ12の検出信号とはマイコンからなる制御
部16に入力され、これらの信号に基づいて制御部16
は駆動ユニット17を駆動するようになっている。この
とき複数のセンサ11 、−・−211により検出され
た排気ガス温度は、制御部16において予めこれらの平
均温度に演算されたのち使用されるようになっている。The output signals of these sensors 11, 11 and the detection signal of sensor 12 are input to a control section 16 consisting of a microcomputer, and the control section 16 is controlled based on these signals.
is adapted to drive the drive unit 17. At this time, the exhaust gas temperatures detected by the plurality of sensors 11, .
上記駆動ユニット17のうち点火系ユニット17aは点
火コイル18を介して点火栓4の点火時期を制御し、ま
た駆動ユニット17の排気系ユニット17bはアクチュ
エータ14を介して回転弁8を駆動し、それによって後
述する排気ガス流の動的効果による出力向上を最大にす
るように排気時期を制御する。また、排気系ユニット1
7cはアクチュエータ15を介して開閉弁10を駆動し
、その開度によって排気ガスの圧力波形を変化させ、同
じく排気ガス流の動的効果による出力向上を最大となる
ように制御する。これら駆動ユニット17の排気系ユニ
ットには、第2図に示すように、必要により更に他の排
気系諸元を制御するように加えてもよい。Of the drive units 17, the ignition system unit 17a controls the ignition timing of the spark plug 4 via the ignition coil 18, and the exhaust system unit 17b of the drive unit 17 drives the rotary valve 8 via the actuator 14. The exhaust timing is controlled so as to maximize the output improvement due to the dynamic effect of the exhaust gas flow, which will be described later. In addition, exhaust system unit 1
7c drives the on-off valve 10 via the actuator 15, changes the pressure waveform of the exhaust gas depending on its opening degree, and similarly controls the output improvement due to the dynamic effect of the exhaust gas flow to be maximized. As shown in FIG. 2, other exhaust system specifications may be added to the exhaust system unit of the drive unit 17 to control other exhaust system specifications, if necessary.
上述した制御において、エンジン回転数(r。In the above-described control, the engine speed (r.
p、m、)に応じて出力を最大にする最適点火時期(”
BTDC−・−上列点前角度)は、第4図に示すよう
に、エンジン回転速度が高速になるほど進角するように
制御される。また、エンジン回転数(r、p、m、)に
応じて出力を最大にする最適排気時期(0^TDC・・
・上死点後角度)および最適開閉弁回転角θ(″・−閉
状態を基準にした開度−第1図参照)は、それぞれ第5
図、第6図のように実施される。後者の最適排気時期と
最適開閉弁回転角の制御は排気ガス流の動的効果による
出力増大を得るようにするためのもので、掃気孔が開口
しているときに負圧の脈動反射波を排気孔6に及ばせ、
それを燃焼室、掃気通路、クランクケースを経て吸気孔
5に及ばせ、より多量の新気を吸い込むようにし、次い
で直後の排気孔6が開口しているとき正圧の反射波を及
ばせるようにし、燃焼室に押し込まれた新気の流出を防
止するようにする。これによって新気の充填効率が向上
し、出力が向上する。また、最適開閉弁回転角は、開閉
弁10の回転角の制御により排気ガスの圧力波形を変化
させ、上述した負圧および正圧の反射波の効果が得られ
るようにするものである。Optimum ignition timing to maximize output according to p, m, )
BTDC--upper row point front angle) is controlled to advance as the engine rotation speed increases, as shown in FIG. In addition, the optimal exhaust timing (0^TDC...) that maximizes the output according to the engine speed (r, p, m,)
・The angle after top dead center) and the optimum opening/closing valve rotation angle θ (''・- opening degree based on the closed state - see Figure 1) are determined by
It is carried out as shown in FIG. The latter control of optimal exhaust timing and optimal opening/closing valve rotation angle is intended to increase output due to the dynamic effect of exhaust gas flow, and to control the pulsating reflected waves of negative pressure when the scavenging hole is open. Extend it to the exhaust hole 6,
The air flows through the combustion chamber, the scavenging passage, and the crankcase to the intake hole 5 to suck in a larger amount of fresh air, and then when the exhaust hole 6 immediately after it opens, a reflected wave of positive pressure is applied. to prevent fresh air forced into the combustion chamber from escaping. This improves fresh air charging efficiency and increases output. Further, the optimum opening/closing valve rotation angle is such that the pressure waveform of the exhaust gas is changed by controlling the rotation angle of the opening/closing valve 10, so that the effect of the negative pressure and positive pressure reflected waves described above can be obtained.
本発明において、制御部16による最適点火時期、最適
排気時期、最適開閉弁回転角の制御は、単にエンジン回
転数によってのみ行われるのではなく、センサ11が検
出する排気管内ガス温度に応じて補正が行われる。すな
わち、脈動波の伝播速度は温度により変化し、第3図に
示すように、排気孔6出口Pにおける排気ガス圧力の変
化は、排気管7が弱冷却されたときは曲線へのようにな
るが、強冷却されたときは曲線Bのように遅れた状態に
なる。このため排気ガス流の動的効果による出力向上特
性も排気ガス温度により変化するので、これを排気管内
ガス温度に基づいて補正することにより動的効果による
出力向上を維持し、常に“高出力を発揮するようにする
のである。このように排気管内ガス温度に基づいて補正
された最適点火時期、最適排気時期、最適開閉弁回転角
は、第7図、第8図、第9図のように行われる。In the present invention, the optimum ignition timing, optimum exhaust timing, and optimum opening/closing valve rotation angle are controlled by the control unit 16 not only based on the engine speed, but also corrected according to the exhaust pipe gas temperature detected by the sensor 11. will be held. That is, the propagation speed of the pulsating wave changes depending on the temperature, and as shown in FIG. 3, the change in exhaust gas pressure at the outlet P of the exhaust hole 6 becomes like a curve when the exhaust pipe 7 is slightly cooled. However, when it is strongly cooled, it becomes a delayed state as shown by curve B. For this reason, the output improvement characteristics due to the dynamic effect of the exhaust gas flow also change depending on the exhaust gas temperature, so by correcting this based on the exhaust pipe gas temperature, the output improvement due to the dynamic effect can be maintained and "high output" can be maintained at all times. In this way, the optimal ignition timing, optimal exhaust timing, and optimal opening/closing valve rotation angle corrected based on the gas temperature in the exhaust pipe are as shown in Figures 7, 8, and 9. It will be done.
すなわち、点火時期の場合であれば、点火時期を遅らせ
ると排気ガス温度が上昇する特性があるので、例えば雨
天走行時のように排気管が冷却されて排気ガス温度が低
くなるときは、点火時期を上死点方向に遅らせて排気ガ
ス温度を上昇させるように補正する。また、排気時期の
場合は、排気時期を早くすると排気ガス温度が高くなる
特性があるので、例えば雨天走行時のように排気ガス温
度が低くなるときは、排気時期を上死点方向に早めて排
気ガス温度を上昇させる補正をするのである。In other words, in the case of ignition timing, if the ignition timing is delayed, the exhaust gas temperature will rise, so when the exhaust pipe is cooled and the exhaust gas temperature is low, such as when driving in the rain, the ignition timing should be adjusted. The exhaust gas temperature is corrected by delaying it toward top dead center and increasing the exhaust gas temperature. In addition, in the case of exhaust timing, if the exhaust timing is advanced, the exhaust gas temperature will increase, so when the exhaust gas temperature is low, such as when driving in the rain, the exhaust timing should be advanced toward top dead center. This is a correction that increases the exhaust gas temperature.
しかも、この発明では、制御のために使用する排気管内
ガス温度として、排気管7の長さ方向に複数配置したセ
ンサ11.・・−・−,11の平均値が使用されるため
、極めて精度の高い制御を行うことができる。すなわち
、排気管7内の排気ガス温度は、第10図に示す温度曲
線Eのようにエンジン1の排気孔6に近い直管部7fで
は高いが、拡径部7rでは次第に低くなっているので、
その測定個所によっては上記補正制御の正確性を欠くこ
とになるが、上述のように排気管7の長手方向に沿う複
数個所の検出温度の平均値を制御因子としたことにより
外部要因による誤差を少なくすることができる。Moreover, in the present invention, a plurality of sensors 11. Since the average value of . . . -, 11 is used, control with extremely high precision can be performed. That is, the exhaust gas temperature in the exhaust pipe 7 is high in the straight pipe section 7f near the exhaust hole 6 of the engine 1, as shown in the temperature curve E shown in FIG. 10, but gradually decreases in the enlarged diameter section 7r. ,
Depending on the measurement location, the above correction control may lack accuracy, but by using the average value of the detected temperatures at multiple locations along the longitudinal direction of the exhaust pipe 7 as the control factor as described above, errors caused by external factors can be eliminated. It can be reduced.
また、排気ガス温度を検出するセンサ11は排気管7の
長手方向に沿って出来るだけ多くの複数個を配置するこ
とが望ましいが、その数を2個だけにするときは、直管
部7fには配置せず、拡径部7rだけに配置することが
好ましい。Further, it is desirable to arrange as many sensors 11 as possible along the longitudinal direction of the exhaust pipe 7 for detecting the exhaust gas temperature, but when the number is only two, it is preferable to arrange the sensors 11 in the straight pipe section 7f. It is preferable not to arrange it, but to arrange it only in the enlarged diameter part 7r.
これは、第10図の温度曲線Eで明らかであるように、
排気管7内の温度分布は断面積の小さい直管部7fでは
排気ガスの流速が速い上に、長さ方向の温度変化が大き
くなっているため、測定位置による誤差が大きくなるの
に対し、拡径部7rでは排気ガスの流速が遅く、また長
さ方向の温度変化も小さいため測定位置による誤差が小
さいからである。This is clear from the temperature curve E in Figure 10,
Regarding the temperature distribution inside the exhaust pipe 7, in the straight pipe part 7f with a small cross-sectional area, the flow velocity of the exhaust gas is high and the temperature change in the length direction is large, so the error depending on the measurement position becomes large. This is because the flow rate of the exhaust gas is slow in the enlarged diameter portion 7r, and the temperature change in the longitudinal direction is also small, so errors due to measurement positions are small.
上述したように本発明の出力制御方法は、排気管の長さ
方向に複数配置したセンサから検出した排気管内ガス温
度の平均温度と、エンジン回転数とに応じて、点火時期
と排気時期等の排気ガス流の動的効果を律する排気系諸
元とを最大出力にすべく制御するので、排気管回りの温
度変化によって排気ガス温度が変化したとき、排気ガス
流の動的効果による出力増加を減殺することがなく、常
に高出力を発揮することができる。As described above, the output control method of the present invention adjusts the ignition timing, exhaust timing, etc. according to the average temperature of the gas inside the exhaust pipe detected by a plurality of sensors arranged along the length of the exhaust pipe and the engine rotation speed. The exhaust system specifications that govern the dynamic effects of the exhaust gas flow are controlled to maximize output, so when the exhaust gas temperature changes due to temperature changes around the exhaust pipe, the output increases due to the dynamic effects of the exhaust gas flow. It can always produce high output without loss of power.
しかも、排気管内ガス温度として、排気管の長さ方向に
複数設置したセンサによる検出温度の平均値が使用され
るため、測定場所による誤差がなく、正確な制御を行う
ことができる。Furthermore, since the average value of the temperatures detected by a plurality of sensors installed in the longitudinal direction of the exhaust pipe is used as the exhaust pipe internal gas temperature, there is no error due to measurement locations, and accurate control can be performed.
第1図は本発明の制御方法が適用される自動二輪車用エ
ンジンの概略図、第2図は同制御方法の概念図、第3図
は排気孔出口部における排気ガス圧力の変動図、第4図
はエンジン回転数と最適点火時期の関係図、第5図はエ
ンジン回転数と最適排気時期の関係図、第6図はエンジ
ン回転数と最適開閉弁回転角の関係図、第7図は排気管
内ガス温度と最適点火時期の関係図、第8図は排気管内
ガス温度と最適排気時期の関係図、第9図は排気管内ガ
ス温度と最適開閉弁回転角の関係図、第10図は排気管
内ガス温度と排気管位置との関係図である。
1−・エンジン、 3・−・クランク軸、 4一点
火栓、 5−吸気孔、 6−排気孔、 7−排気管、
7f−直管部、 7r−拡径部、 8−・回転弁、 9
・−・・・共鳴室、 1〇−開閉弁、11−・−(排気
管内ガス温度の)センサ、 12−・(エンジン回転
数の)センサ、 14.15・−アクチュエータ、
16・・・−制御部、 17・−・−駆動ユニット
、 18・−・点火系ユニット。FIG. 1 is a schematic diagram of a motorcycle engine to which the control method of the present invention is applied, FIG. 2 is a conceptual diagram of the same control method, FIG. 3 is a diagram of fluctuations in exhaust gas pressure at the exhaust port outlet, and FIG. The figure shows the relationship between engine speed and optimal ignition timing, Figure 5 shows the relationship between engine speed and optimal exhaust timing, Figure 6 shows the relationship between engine speed and optimal opening/closing valve rotation angle, and Figure 7 shows the relationship between exhaust timing. Figure 8 is a diagram showing the relationship between gas temperature in the exhaust pipe and optimal ignition timing, Figure 9 is a diagram showing the relationship between gas temperature in the exhaust pipe and optimal opening/closing valve rotation angle, and Figure 10 is a diagram showing the relationship between gas temperature in the exhaust pipe and optimal opening/closing valve rotation angle. FIG. 3 is a relationship diagram between pipe gas temperature and exhaust pipe position. 1--engine, 3--crankshaft, 4-single spark plug, 5-intake hole, 6-exhaust hole, 7-exhaust pipe,
7f-straight pipe section, 7r-expanded diameter section, 8-rotary valve, 9
...resonance chamber, 10-opening/closing valve, 11--(exhaust pipe gas temperature) sensor, 12-(engine speed) sensor, 14.15--actuator,
16...-control unit, 17...-drive unit, 18...-ignition system unit.
Claims (2)
した排気管内ガス温度の平均温度と、エンジン回転数と
に応じて、点火時期と排気時期等の排気ガス流の動的効
果を律する排気系諸元とを最大出力にすべく制御するこ
とを特徴とするエンジンの出力制御方法。(1) Dynamic effects of exhaust gas flow, such as ignition timing and exhaust timing, are controlled according to the average temperature of the gas inside the exhaust pipe detected by multiple sensors arranged along the length of the exhaust pipe and the engine speed. An engine output control method characterized by controlling exhaust system specifications to maximize output.
のセンサにより排気管内ガス温度の平均温度を検出する
特許請求の範囲第1項記載のエンジンの出力制御方法。(2) The engine output control method according to claim 1, wherein two sensors are provided in the enlarged diameter portion of the exhaust pipe, and the two sensors detect the average temperature of the gas inside the exhaust pipe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60236292A JPH0776531B2 (en) | 1985-10-24 | 1985-10-24 | Engine output control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60236292A JPH0776531B2 (en) | 1985-10-24 | 1985-10-24 | Engine output control method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6296727A true JPS6296727A (en) | 1987-05-06 |
JPH0776531B2 JPH0776531B2 (en) | 1995-08-16 |
Family
ID=16998627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60236292A Expired - Fee Related JPH0776531B2 (en) | 1985-10-24 | 1985-10-24 | Engine output control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0776531B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55132321U (en) * | 1979-03-12 | 1980-09-19 | ||
JPS55160107U (en) * | 1979-05-02 | 1980-11-17 | ||
JPS55160107A (en) * | 1979-05-29 | 1980-12-12 | Yamaha Motor Co Ltd | Actuating device for exhaust valve of two-cycle engine |
JPS5874826A (en) * | 1981-10-28 | 1983-05-06 | Yamaha Motor Co Ltd | Exhaust muffler for two-cycle internal-combustion engine |
-
1985
- 1985-10-24 JP JP60236292A patent/JPH0776531B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55132321U (en) * | 1979-03-12 | 1980-09-19 | ||
JPS55160107U (en) * | 1979-05-02 | 1980-11-17 | ||
JPS55160107A (en) * | 1979-05-29 | 1980-12-12 | Yamaha Motor Co Ltd | Actuating device for exhaust valve of two-cycle engine |
JPS5874826A (en) * | 1981-10-28 | 1983-05-06 | Yamaha Motor Co Ltd | Exhaust muffler for two-cycle internal-combustion engine |
Also Published As
Publication number | Publication date |
---|---|
JPH0776531B2 (en) | 1995-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5698776A (en) | Method and apparatus for detecting combustion conditions of an internal combustion engine, and engine control method using the detection method, and engine control apparatus using the detection apparatus | |
JP3215104B2 (en) | Exhaust timing control system for in-cylinder injection two-cycle engine | |
RU2001122101A (en) | Device for eliminating detonation knocks in an internal combustion engine | |
KR930005958B1 (en) | Control device for an internal combustion engine | |
JP2010203413A (en) | Air-fuel ratio control device for each of cylinders of internal combustion engine | |
JPS6296727A (en) | Power output control method of engine | |
JP2554991B2 (en) | Engine output control method | |
JP3879227B2 (en) | Mirror cycle engine intake / exhaust valve control system | |
JP2508684B2 (en) | Air-fuel ratio controller for two-cycle multi-cylinder internal combustion engine | |
JPS6296728A (en) | Power output control of method engine | |
JPS62186064A (en) | Ignition timing control method for engine | |
JPS6329102B2 (en) | ||
JPS62178720A (en) | Output control method for engine | |
JPS6296729A (en) | Exhaust timing control method of engine | |
JP2914192B2 (en) | Ignition timing control device for internal combustion engine | |
JP2530647B2 (en) | Ignition timing control device for supercharged engine | |
JP3996474B2 (en) | Fuel injection control device for internal combustion engine | |
JP2591116B2 (en) | Exhaust gas temperature control system by air-fuel ratio control of internal combustion engine | |
JPS5872631A (en) | Air-fuel ratio control method of engine | |
JP2509919B2 (en) | Ignition timing control method for vehicle engine | |
JPH03229921A (en) | Exhaust control device for internal combustion engine | |
JPS6390621A (en) | Supercharging pressure control device for engine with supercharger | |
JPH07247846A (en) | Operation state control device for engine | |
JPS6179835A (en) | Fuel supply control device in dual intake-air passage type internal combustion engine | |
JPS6139502B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |