JP2010203413A - Air-fuel ratio control device for each of cylinders of internal combustion engine - Google Patents

Air-fuel ratio control device for each of cylinders of internal combustion engine Download PDF

Info

Publication number
JP2010203413A
JP2010203413A JP2009052707A JP2009052707A JP2010203413A JP 2010203413 A JP2010203413 A JP 2010203413A JP 2009052707 A JP2009052707 A JP 2009052707A JP 2009052707 A JP2009052707 A JP 2009052707A JP 2010203413 A JP2010203413 A JP 2010203413A
Authority
JP
Japan
Prior art keywords
air
cylinder
fuel ratio
exhaust
exhaust pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009052707A
Other languages
Japanese (ja)
Inventor
Akihiro Okamoto
明浩 岡本
Tetsuharu Mitsuta
徹治 光田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2009052707A priority Critical patent/JP2010203413A/en
Publication of JP2010203413A publication Critical patent/JP2010203413A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent deterioration of the accuracy of the control of an air-fuel ratio for each of cylinders due to the influence of the pulsation of the exhaust gas pressure in a system in which the air-fuel ratio of each cylinder is estimated based on the output of the air-fuel ratio sensor mounted to the exhaust gas collection portion of an engine to control separately the air-fuel ratio of the each cylinder based on the estimated results. <P>SOLUTION: The influence coefficient of the exhaust gas pressure (the influence degree of the exhaust gas pressure on the output of an air-fuel ratio sensor 24) is calculated at each timing of the detections of the air-fuel ratio of the each cylinder (each sampling timing of the output of the air-fuel ratio sensor 24) based on the operational conditions of an engine (for example, an engine rotation speed, a load of an engine and the like) and the length (or volume) of an exhaust gas manifold 39, and then the output of the air-fuel sensor 24 is corrected using the obtained influence coefficient of the exhaust gas pressure, whereby the air-fuel ratio of each cylinder is estimated with high accuracy without being influenced by the pulsation of the exhaust gas pressure by excluding the fraction coming from the influence of the pulsation of the exhaust gas pressure from the output of the air-fuel ratio sensor 24 to estimate the air-fuel ratio of the each cylinder based on the corrected output of the air-fuel ratio sensor 24. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、内燃機関の排気集合部に設置した空燃比センサの出力に基づいて各気筒の空燃比を推定し、その推定結果に基づいて各気筒の空燃比を気筒別に制御する内燃機関の気筒別空燃比制御装置に関する発明である。   The present invention relates to a cylinder of an internal combustion engine that estimates the air-fuel ratio of each cylinder based on the output of an air-fuel ratio sensor installed in an exhaust collecting portion of the internal combustion engine and controls the air-fuel ratio of each cylinder for each cylinder based on the estimation result. It is an invention related to another air-fuel ratio control device.

近年、内燃機関の空燃比制御精度を向上させるために、例えば、特許文献1(特開2008−14178号公報)に記載されているように、内燃機関の複数の気筒の排出ガスが集合して流れる排気集合部に設置した1つの空燃比センサの検出値(排気集合部の空燃比)と各気筒の空燃比とを関連付けたモデルを用いて各気筒の空燃比を推定し、その推定結果に基づいて各気筒の空燃比の気筒間ばらつきが小さくなるように各気筒の空燃比(例えば燃料噴射量)を気筒別に制御する気筒別空燃比制御を実行するようにしたものがある。   In recent years, in order to improve the air-fuel ratio control accuracy of an internal combustion engine, as described in, for example, Japanese Patent Application Laid-Open No. 2008-14178, exhaust gases from a plurality of cylinders of an internal combustion engine are gathered. Estimate the air-fuel ratio of each cylinder using a model that associates the detection value of the air-fuel ratio sensor installed in the flowing exhaust gas collection part (the air-fuel ratio of the exhaust gas collection part) with the air-fuel ratio of each cylinder. On the basis of this, there is a type in which cylinder-by-cylinder air-fuel ratio control is performed in which the air-fuel ratio (for example, fuel injection amount) of each cylinder is controlled on a cylinder-by-cylinder basis so that the variation in the air-fuel ratio of each cylinder is reduced.

特開2008−14178号公報JP 2008-14178 A

ところで、内燃機関の排気通路に設けた排気タービンによってコンプレッサを駆動して吸入空気を過給する排気タービン式過給機を備えたシステムで、気筒別空燃比制御を行う場合には、排気タービンの下流側よりも排気タービンの上流側に空燃比センサを設置した方が、空燃比センサの出力に各気筒の空燃比に応じた変化が現れ易いため、排気タービンの上流側に空燃比センサを設置するのが好ましい。   By the way, in a system including an exhaust turbine supercharger that drives a compressor by an exhaust turbine provided in an exhaust passage of an internal combustion engine to supercharge intake air, when performing air-fuel ratio control by cylinder, When the air-fuel ratio sensor is installed upstream of the exhaust turbine rather than downstream, the air-fuel ratio sensor is more likely to change in the output of the air-fuel ratio sensor depending on the air-fuel ratio of each cylinder. It is preferable to do this.

しかし、排気タービンの上流側は排気圧が大きく脈動(変動)する傾向があり、空燃比センサは排気圧によって出力が変化するという特性があるため、排気タービンの上流側に空燃比センサを設置すると、排気圧脈動の影響を受けて空燃比センサの出力の誤差が大きくなる可能性がある。このように排気圧脈動の影響によって空燃比センサの出力の誤差が大きくなると、空燃比センサの出力に基づく各気筒の空燃比の推定精度が低下して、気筒別空燃比制御の精度が低下してしまい、気筒別空燃比制御によるエミッション低減効果が減殺されてしまう。このような排気圧脈動の影響による課題は、過給機付きの内燃機関に限定されず、過給機の無い内燃機関についても、程度の差こそあれ、同様に生じる課題である。   However, since the exhaust pressure tends to pulsate (fluctuate) greatly on the upstream side of the exhaust turbine, and the air-fuel ratio sensor has a characteristic that the output changes depending on the exhaust pressure, if the air-fuel ratio sensor is installed upstream of the exhaust turbine, There is a possibility that the error of the output of the air-fuel ratio sensor becomes large due to the influence of the exhaust pressure pulsation. When the error in the output of the air-fuel ratio sensor becomes large due to the influence of exhaust pressure pulsation in this way, the estimation accuracy of the air-fuel ratio of each cylinder based on the output of the air-fuel ratio sensor is lowered, and the accuracy of cylinder-by-cylinder air-fuel ratio control is lowered. Therefore, the emission reduction effect by the cylinder-by-cylinder air-fuel ratio control is diminished. The problem due to the influence of the exhaust pressure pulsation is not limited to an internal combustion engine with a supercharger, and is also a problem that similarly occurs to some extent even with an internal combustion engine without a supercharger.

そこで、本発明が解決しようとする課題は、排気圧脈動の影響による気筒別空燃比制御の精度の低下を防止することができる内燃機関の気筒別空燃比制御装置を提供することにある。   Accordingly, an object of the present invention is to provide a cylinder-by-cylinder air-fuel ratio control apparatus for an internal combustion engine that can prevent a decrease in accuracy of cylinder-by-cylinder air-fuel ratio control due to the influence of exhaust pressure pulsation.

上記課題を解決するために、請求項1に係る発明は、内燃機関の複数の気筒の排出ガスが合流して流れる排気集合部に空燃比センサを設置して、各気筒の空燃比検出タイミング毎に空燃比センサの出力に基づいて各気筒の空燃比を推定し、その推定結果に基づいて各気筒の空燃比を気筒別に制御する内燃機関の気筒別空燃比制御装置において、各気筒の空燃比検出タイミング毎に空燃比センサの出力に及ぼす内燃機関の排気圧の影響度合を判定する排気圧影響度合判定手段と、各気筒の空燃比検出タイミング毎に排気圧影響度合判定手段で判定した排気圧の影響度合に基づいて空燃比センサの出力を補正するセンサ出力補正手段と、各気筒の空燃比検出タイミング毎にセンサ出力補正手段で補正した空燃比センサの出力に基づいて各気筒の空燃比を推定する気筒別空燃比推定手段とを備えた構成としたものである。   In order to solve the above-mentioned problems, an invention according to claim 1 is provided such that an air-fuel ratio sensor is installed in an exhaust gas collecting portion where exhaust gases of a plurality of cylinders of an internal combustion engine flow to flow, and each air-fuel ratio detection timing of each cylinder is detected. In the air-fuel ratio control apparatus for each cylinder of an internal combustion engine that estimates the air-fuel ratio of each cylinder based on the output of the air-fuel ratio sensor and controls the air-fuel ratio of each cylinder based on the estimation result, the air-fuel ratio of each cylinder Exhaust pressure influence degree determining means for determining the degree of influence of the exhaust pressure of the internal combustion engine on the output of the air fuel ratio sensor at each detection timing, and the exhaust pressure determined by the exhaust pressure influence degree determining means at each air fuel ratio detection timing of each cylinder Sensor output correction means for correcting the output of the air-fuel ratio sensor based on the degree of influence of the air-fuel ratio, and the air-fuel ratio sensor output corrected by the sensor output correction means at each air-fuel ratio detection timing of each cylinder based on the output of the air-fuel ratio sensor. It is obtained by a structure in which a cylinder air-fuel ratio estimating means for estimating a ratio.

この構成では、各気筒の空燃比検出タイミング毎に空燃比センサの出力に及ぼす排気圧の影響度合に基づいて空燃比センサの出力を補正することで、空燃比センサの出力から排気圧脈動の影響分を排除することができ、その補正後の空燃比センサの出力に基づいて各気筒の空燃比を推定することで、排気圧脈動の影響を受けずに各気筒の空燃比を精度良く推定することができる。これにより、排気圧脈動の影響による気筒別空燃比制御の精度の低下を防止することができて、気筒別空燃比制御によるエミッション低減効果の低下を回避することができる。   In this configuration, the influence of the exhaust pressure pulsation from the output of the air-fuel ratio sensor is corrected by correcting the output of the air-fuel ratio sensor based on the degree of influence of the exhaust pressure on the output of the air-fuel ratio sensor at each air-fuel ratio detection timing of each cylinder. By estimating the air-fuel ratio of each cylinder based on the corrected output of the air-fuel ratio sensor, the air-fuel ratio of each cylinder can be accurately estimated without being affected by the exhaust pressure pulsation. be able to. Thereby, it is possible to prevent the accuracy of the cylinder-by-cylinder air-fuel ratio control from being lowered due to the influence of the exhaust pressure pulsation, and it is possible to avoid the reduction in the emission reduction effect by the cylinder-by-cylinder air-fuel ratio control.

この場合、空燃比センサの出力に及ぼす排気圧の影響度合を判定する具体的な方法は、例えば、請求項2のように、排気集合部に排気圧を検出する排気圧センサを設け、この排気圧センサの出力に基づいて排気圧の影響度合を判定するようにしても良い。このようにすれば、排気圧センサで検出した排気集合部の排気圧に基づいて、排気集合部に設置された空燃比センサの出力に及ぼす排気圧の影響度合を精度良く判定することができる。   In this case, as a specific method for determining the degree of influence of the exhaust pressure on the output of the air-fuel ratio sensor, for example, an exhaust pressure sensor for detecting the exhaust pressure is provided at the exhaust collecting portion as in claim 2, and this exhaust The influence degree of the exhaust pressure may be determined based on the output of the atmospheric pressure sensor. In this way, it is possible to accurately determine the degree of influence of the exhaust pressure on the output of the air-fuel ratio sensor installed in the exhaust collection portion based on the exhaust pressure of the exhaust collection portion detected by the exhaust pressure sensor.

或は、請求項3のように、各気筒の排気マニホールド毎にそれぞれ排気圧を検出する排気圧センサを設け、各気筒の排気圧センサの出力に基づいて排気圧の影響度合を判定するようにしても良い。各気筒の排気圧によって排気集合部の排気圧が変化するため、各気筒の排気圧センサで検出した各気筒の排気圧を用いれば、排気集合部に設置された空燃比センサの出力に及ぼす排気圧の影響度合を精度良く判定することができる。   Alternatively, as in claim 3, an exhaust pressure sensor for detecting the exhaust pressure is provided for each exhaust manifold of each cylinder, and the degree of influence of the exhaust pressure is determined based on the output of the exhaust pressure sensor of each cylinder. May be. Since the exhaust pressure of the exhaust collecting portion changes depending on the exhaust pressure of each cylinder, if the exhaust pressure of each cylinder detected by the exhaust pressure sensor of each cylinder is used, the exhaust effect on the output of the air-fuel ratio sensor installed in the exhaust collecting portion is affected. The degree of influence of atmospheric pressure can be accurately determined.

また、請求項4のように、各気筒の筒内圧を検出又は推定する筒内圧取得手段を設け、この筒内圧取得手段で検出又は推定した各気筒の筒内圧と各気筒の排気マニホールドの長さ又は容積(=流路断面積×長さ)とに基づいて排気圧の影響度合を判定するようにしても良い。各気筒の筒内圧(例えば燃焼時の筒内圧や排気バルブ開弁時の筒内圧等)や各気筒の排気マニホールドの長さ又は容積によって各気筒の排気圧が変化して、排気集合部の排気圧が変化するため、各気筒の筒内圧と各気筒の排気マニホールドの長さ又は容積とを用いれば、排気集合部に設置された空燃比センサの出力に及ぼす排気圧の影響度合を精度良く判定することができる。   Further, as in claim 4, there is provided in-cylinder pressure acquisition means for detecting or estimating the in-cylinder pressure of each cylinder, and the in-cylinder pressure of each cylinder detected or estimated by this in-cylinder pressure acquisition means and the length of the exhaust manifold of each cylinder. Alternatively, the influence degree of the exhaust pressure may be determined based on the volume (= channel cross-sectional area × length). The exhaust pressure of each cylinder varies depending on the in-cylinder pressure of each cylinder (for example, the in-cylinder pressure at the time of combustion or the in-cylinder pressure when the exhaust valve is opened) and the length or volume of the exhaust manifold of each cylinder. Because the air pressure changes, using the in-cylinder pressure of each cylinder and the length or volume of the exhaust manifold of each cylinder accurately determines the degree of influence of the exhaust pressure on the output of the air-fuel ratio sensor installed in the exhaust collection section can do.

更に、請求項5のように、内燃機関の運転状態と各気筒の排気マニホールドの長さ又は容積とに基づいて排気圧の影響度合を判定するようにしても良い。内燃機関の運転状態(例えば回転速度や負荷等)に応じて各気筒の燃焼状態が変化して各気筒の筒内圧(例えば燃焼時の筒内圧や排気バルブ開弁時の筒内圧等)が変化し、各気筒の筒内圧や各気筒の排気マニホールドの長さや容積によって各気筒の排気圧が変化して、排気集合部の排気圧が変化するため、内燃機関の運転状態と各気筒の排気マニホールドの長さ又は容積とを用いれば、排気集合部に設置された空燃比センサの出力に及ぼす排気圧の影響度合を精度良く判定することができる。   Further, as in claim 5, the degree of influence of the exhaust pressure may be determined based on the operating state of the internal combustion engine and the length or volume of the exhaust manifold of each cylinder. The combustion state of each cylinder changes according to the operating state of the internal combustion engine (for example, rotation speed, load, etc.), and the in-cylinder pressure of each cylinder (for example, the in-cylinder pressure during combustion or the in-cylinder pressure when the exhaust valve opens) changes. Since the exhaust pressure of each cylinder changes due to the in-cylinder pressure of each cylinder and the length and volume of the exhaust manifold of each cylinder, and the exhaust pressure of the exhaust collecting portion changes, the operating state of the internal combustion engine and the exhaust manifold of each cylinder If the length or the volume is used, it is possible to accurately determine the degree of influence of the exhaust pressure on the output of the air-fuel ratio sensor installed in the exhaust collecting portion.

また、請求項6のように、内燃機関の複数の気筒の排出ガスが合流して流れる排気集合部に空燃比センサを設置して、該空燃比センサの出力に基づいて各気筒の空燃比を推定し、その推定結果に基づいて各気筒の空燃比を気筒別に制御する気筒別空燃比制御を実行する内燃機関の気筒別空燃比制御装置において、空燃比センサの出力に及ぼす内燃機関の排気圧の影響度合が許容レベルを越えたか否かを判定する排気圧影響度合判定手段と、この排気圧影響度合判定手段により排気圧の影響度合が許容レベルを越えたと判定された場合に気筒別空燃比制御を中止又は禁止する中止手段とを備えた構成としても良い。   According to another aspect of the present invention, an air-fuel ratio sensor is installed in an exhaust gas collecting portion where exhaust gases from a plurality of cylinders of an internal combustion engine flow, and the air-fuel ratio of each cylinder is determined based on the output of the air-fuel ratio sensor. In the cylinder-by-cylinder air-fuel ratio control apparatus for executing the cylinder-by-cylinder air-fuel ratio control for controlling the air-fuel ratio of each cylinder based on the estimation result, the exhaust pressure of the internal combustion engine that affects the output of the air-fuel ratio sensor Exhaust pressure influence degree determining means for determining whether or not the influence degree of the exhaust gas has exceeded the allowable level, and if the exhaust pressure influence degree determining means determines that the influence degree of the exhaust pressure has exceeded the allowable level, the air-fuel ratio for each cylinder It is good also as a structure provided with the cancellation means to cancel or prohibit control.

この構成では、空燃比センサの出力に及ぼす内燃機関の排気圧の影響度合が許容レベルを越えたと判定された場合には、排気圧脈動の影響を受けて空燃比センサの出力の誤差が大きくなるため、空燃比センサの出力に基づく各気筒の空燃比の推定精度が低下して、気筒別空燃比制御を精度良く行うことができないと判断して、気筒別空燃比制御を中止又は禁止することができる。これにより、排気圧脈動の影響による気筒別空燃比制御の精度の低下を未然に防止することができる。   In this configuration, when it is determined that the degree of influence of the exhaust pressure of the internal combustion engine on the output of the air-fuel ratio sensor has exceeded the allowable level, the error in the output of the air-fuel ratio sensor increases due to the influence of exhaust pressure pulsation. Therefore, the estimation accuracy of the air-fuel ratio of each cylinder based on the output of the air-fuel ratio sensor is lowered, and it is determined that the cylinder-by-cylinder air-fuel ratio control cannot be performed accurately, and the cylinder-by-cylinder air-fuel ratio control is stopped or prohibited. Can do. As a result, it is possible to prevent a decrease in the accuracy of cylinder-by-cylinder air-fuel ratio control due to the influence of exhaust pressure pulsation.

この場合、空燃比センサの出力に及ぼす排気圧の影響度合が許容レベルを越えたか否かを判定する具体的な方法は、例えば、請求項7のように、排気集合部又は各気筒の排気マニホールド毎に排気圧を検出する排気圧センサを設け、所定期間(例えば1サイクルである720CA間)における排気圧センサの出力の変動量が所定値以上のときに、排気圧の影響度合が許容レベルを越えたと判定するようにしても良い。このようにすれば、排気集合部の排気圧の変動量や各気筒の排気圧の変動量が所定値以上になったときに、排気集合部に設置された空燃比センサの出力に及ぼす排気圧の影響度合が許容レベルを越えたと判定することができる。   In this case, a specific method for determining whether or not the degree of influence of the exhaust pressure on the output of the air-fuel ratio sensor has exceeded an allowable level is, for example, as in claim 7, an exhaust manifold or an exhaust manifold of each cylinder. An exhaust pressure sensor that detects the exhaust pressure is provided every time, and when the fluctuation amount of the output of the exhaust pressure sensor in a predetermined period (for example, between 720 CAs in one cycle) is a predetermined value or more, the influence level of the exhaust pressure reaches an allowable level. You may make it determine with having exceeded. In this way, when the amount of fluctuation of the exhaust pressure in the exhaust collecting portion or the amount of fluctuation in the exhaust pressure of each cylinder exceeds a predetermined value, the exhaust pressure exerted on the output of the air-fuel ratio sensor installed in the exhaust collecting portion. It can be determined that the degree of influence exceeds the allowable level.

或は、請求項8のように、所定期間(例えば1サイクルである720CA間)における空燃比センサの出力を周波数解析して該空燃比センサの出力のうちの燃焼間隔に関連する周波数成分(例えば4気筒の場合は180CA間隔の周期に相当する周波数の成分)の振幅が所定値以上のときに、排気圧の影響度合が許容レベルを越えたと判定するようにしても良い。このようにすれば、燃焼間隔毎に脈動する排気圧の影響によって空燃比センサの出力のうちの燃焼間隔に関連する周波数成分の振幅が所定値以上になったときに、空燃比センサの出力に及ぼす排気圧の影響度合が許容レベルを越えたと判定することができる。   Alternatively, the frequency component (for example, the frequency component related to the combustion interval in the output of the air-fuel ratio sensor is analyzed by frequency analysis of the output of the air-fuel ratio sensor in a predetermined period (for example, between 720 CA which is one cycle). In the case of four cylinders, it may be determined that the degree of influence of the exhaust pressure exceeds the allowable level when the amplitude of the frequency component corresponding to the period of 180 CA intervals is equal to or greater than a predetermined value. In this way, when the amplitude of the frequency component related to the combustion interval out of the output of the air-fuel ratio sensor exceeds a predetermined value due to the influence of the exhaust pressure pulsating at each combustion interval, the output of the air-fuel ratio sensor is increased. It can be determined that the degree of influence of the exhaust pressure exerted exceeds an allowable level.

また、請求項9のように、所定期間(例えば1サイクルである720CA間)における空燃比センサの出力のピーク値とボトム値との差が所定値以上のときに、排気圧の影響度合が許容レベルを越えたと判定するようにしても良い。このようにすれば、排気圧の脈動によって空燃比センサの出力のピーク値とボトム値との差が所定値以上になったときに、空燃比センサの出力に及ぼす排気圧の影響度合が許容レベルを越えたと判定することができる。   Further, as in claim 9, when the difference between the peak value and the bottom value of the output of the air-fuel ratio sensor in a predetermined period (for example, between 720 CA which is one cycle) is a predetermined value or more, the influence degree of the exhaust pressure is allowed. It may be determined that the level has been exceeded. In this way, when the difference between the peak value and the bottom value of the output of the air-fuel ratio sensor exceeds a predetermined value due to the pulsation of the exhaust pressure, the degree of influence of the exhaust pressure on the output of the air-fuel ratio sensor is at an allowable level. Can be determined to have exceeded

また、本発明は、請求項10のように、内燃機関の排気通路に設けた排気タービンによってコンプレッサを駆動して吸入空気を過給する排気タービン式過給機を備え、排気タービンの上流側に空燃比センサが設置されたシステムに適用しても良い。排気タービン式過給機を備えたシステムで、気筒別空燃比制御を行う場合には、排気タービンの下流側よりも排気タービンの上流側に空燃比センサを設置した方が、空燃比センサの出力に各気筒の空燃比に応じた変化が現れ易いため、排気タービンの上流側に空燃比センサを設置するのが好ましい。しかし、排気タービンの上流側に空燃比センサを設置すると、排気圧脈動の影響により空燃比センサの出力の誤差が大きくなって、気筒別空燃比制御の精度が低下する可能性がある。そこで、本発明を適用すれば、空燃比センサの出力に各気筒の空燃比に応じた変化が現れ易い排気タービンの上流側に空燃比センサを設置しながら、排気圧脈動の影響による気筒別空燃比制御の精度の低下を防止することができる。   According to a tenth aspect of the present invention, there is provided an exhaust turbine type supercharger that drives a compressor by an exhaust turbine provided in an exhaust passage of an internal combustion engine to supercharge intake air, and is provided upstream of the exhaust turbine. You may apply to the system in which the air fuel ratio sensor was installed. When performing cylinder-by-cylinder air-fuel ratio control in a system equipped with an exhaust turbine supercharger, it is more effective to install an air-fuel ratio sensor upstream of the exhaust turbine than downstream of the exhaust turbine. Therefore, it is preferable to install an air-fuel ratio sensor upstream of the exhaust turbine. However, if an air-fuel ratio sensor is installed upstream of the exhaust turbine, an error in the output of the air-fuel ratio sensor increases due to the influence of exhaust pressure pulsation, and the accuracy of air-fuel ratio control for each cylinder may be reduced. Therefore, if the present invention is applied, an air-fuel ratio sensor is installed on the upstream side of the exhaust turbine in which the output corresponding to the air-fuel ratio of each cylinder easily appears in the output of the air-fuel ratio sensor, and the cylinder-by-cylinder air due to the effect of exhaust pressure pulsation is installed. A decrease in the accuracy of the fuel ratio control can be prevented.

図1は本発明の実施例1におけるエンジン制御システム全体の概略構成図である。FIG. 1 is a schematic configuration diagram of the entire engine control system in Embodiment 1 of the present invention. 図2(a)は排気圧の挙動を示すタイムチャートであり、図2(b)は空燃比センサ出力の挙動を示すタイムチャートである。FIG. 2A is a time chart showing the behavior of the exhaust pressure, and FIG. 2B is a time chart showing the behavior of the air-fuel ratio sensor output. 図3は空燃比センサ出力に及ぼす排気圧の影響度合を判定する方法及びその排気圧の影響度合に基づいて空燃比センサ出力を補正する方法を説明するブロック図である。FIG. 3 is a block diagram illustrating a method for determining the degree of influence of the exhaust pressure on the air-fuel ratio sensor output and a method for correcting the air-fuel ratio sensor output based on the degree of influence of the exhaust pressure. 図4は空燃比センサ出力に及ぼす排気圧脈動の影響を説明する図である。FIG. 4 is a diagram for explaining the influence of the exhaust pressure pulsation on the air-fuel ratio sensor output. 図5は実施例1の気筒別空燃比制御メインルーチンの処理の流れを説明するフローチャートである。FIG. 5 is a flowchart for explaining the flow of processing of the cylinder-by-cylinder air-fuel ratio control main routine according to the first embodiment. 図6は実施例1の排気圧影響度合判定及びセンサ出力補正ルーチンの処理の流れを説明するフローチャートである。FIG. 6 is a flowchart for explaining the flow of processing of the exhaust pressure influence degree determination and sensor output correction routine of the first embodiment. 図7は実施例2の排気圧影響度合判定ルーチンの処理の流れを説明するフローチャートである。FIG. 7 is a flowchart for explaining the processing flow of the exhaust pressure influence degree determination routine of the second embodiment.

以下、本発明を実施するための形態を排気タービン式過給機付きの内燃機関に適用して具体化した幾つかの実施例を説明する。   Hereinafter, some embodiments in which the mode for carrying out the present invention is applied to an internal combustion engine with an exhaust turbine supercharger will be described.

本発明の実施例1を図1乃至図6に基づいて説明する。
まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。
内燃機関であるエンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14の下流側には、後述する排気タービン式過給機25のコンプレッサ27と、このコンプレッサ27で加圧された吸入空気を冷却するインタークーラー31が設けられている。このインタークーラー31の下流側には、モータ等によって開度調節されるスロットルバルブ15と、このスロットルバルブ15の開度(スロットル開度)を検出するスロットル開度センサ16とが設けられている。
A first embodiment of the present invention will be described with reference to FIGS.
First, a schematic configuration of the entire engine control system will be described with reference to FIG.
An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 of the engine 11 that is an internal combustion engine, and an air flow meter 14 that detects the intake air amount is provided downstream of the air cleaner 13. A downstream side of the air flow meter 14 is provided with a compressor 27 of an exhaust turbine supercharger 25 described later and an intercooler 31 that cools intake air pressurized by the compressor 27. A throttle valve 15 whose opening is adjusted by a motor or the like and a throttle opening sensor 16 for detecting the opening (throttle opening) of the throttle valve 15 are provided on the downstream side of the intercooler 31.

更に、スロットルバルブ15の下流側には、サージタンク17が設けられ、このサージタンク17には、スロットルバルブ15の下流側圧力(吸気圧)を検出する吸気圧センサ18が設けられている。また、サージタンク17には、エンジン11の各気筒に空気を導入する吸気マニホールド19が設けられ、各気筒の吸気マニホールド19の吸気ポート近傍に、それぞれ吸気ポートに向けて燃料を噴射する燃料噴射弁20が取り付けられている。また、エンジン11のシリンダヘッドには、各気筒毎に点火プラグ21が取り付けられ、各点火プラグ21の火花放電によって各気筒の混合気に着火される。   Further, a surge tank 17 is provided on the downstream side of the throttle valve 15, and an intake pressure sensor 18 that detects a downstream pressure (intake pressure) of the throttle valve 15 is provided in the surge tank 17. The surge tank 17 is provided with an intake manifold 19 that introduces air into each cylinder of the engine 11, and a fuel injection valve that injects fuel toward the intake port in the vicinity of the intake port of the intake manifold 19 of each cylinder. 20 is attached. A spark plug 21 is attached to the cylinder head of the engine 11 for each cylinder, and an air-fuel mixture in each cylinder is ignited by spark discharge of each spark plug 21.

一方、エンジン11の排気管22(排気通路)のうちの各気筒の排気マニホールド39が集合する排気集合部40(各気筒の排出ガスが合流して流れる部分)には、排出ガスの空燃比を検出する空燃比センサ24が設けられ、この空燃比センサ24の下流側に、排出ガスを浄化する三元触媒等の触媒23が設けられている。   On the other hand, in the exhaust pipe 22 (exhaust passage) of the engine 11, the exhaust gas collection portion 40 (the portion where the exhaust gas from each cylinder joins and flows) where the exhaust manifold 39 of each cylinder gathers has an air-fuel ratio of the exhaust gas. An air-fuel ratio sensor 24 for detection is provided, and a catalyst 23 such as a three-way catalyst for purifying exhaust gas is provided downstream of the air-fuel ratio sensor 24.

このエンジン11には、排気タービン式過給機25が搭載されている。この排気タービン式過給機25は、排気管22のうちの空燃比センサ24と触媒23との間に排気タービン26が配置され、吸気管12のうちのエアフローメータ14とスロットルバルブ15との間にコンプレッサ27が配置されている。過給機25は、排気タービン26とコンプレッサ27とが連結され、排出ガスの運動エネルギーで排気タービン26を回転駆動することでコンプレッサ27を回転駆動して吸入空気を過給するようになっている。   An exhaust turbine supercharger 25 is mounted on the engine 11. In the exhaust turbine supercharger 25, an exhaust turbine 26 is disposed between the air-fuel ratio sensor 24 and the catalyst 23 in the exhaust pipe 22, and between the air flow meter 14 and the throttle valve 15 in the intake pipe 12. A compressor 27 is arranged in the front. In the supercharger 25, an exhaust turbine 26 and a compressor 27 are connected, and the exhaust turbine 26 is rotationally driven by the kinetic energy of exhaust gas, whereby the compressor 27 is rotationally driven to supercharge intake air. .

更に、吸気管12には、スロットルバルブ15の上流側においてコンプレッサ27の上流側と下流側とをバイパスさせる吸気バイパス通路28が設けられ、この吸気バイパス通路28の途中に、吸気バイパス通路28を開閉するエアバイパスバルブ(以下「ABV」と表記する)29が設けられている。このABV29は、ABV用バキュームスイッチングバルブ30を制御することでABV29の開閉動作が制御されるようになっている。   Further, the intake pipe 12 is provided with an intake bypass passage 28 that bypasses the upstream side and the downstream side of the compressor 27 on the upstream side of the throttle valve 15. An air bypass valve (hereinafter referred to as “ABV”) 29 is provided. The ABV 29 is configured such that the opening / closing operation of the ABV 29 is controlled by controlling the ABV vacuum switching valve 30.

一方、排気管22には、排気タービン26の上流側と下流側とをバイパスさせる排気バイパス通路32が設けられ、この排気バイパス通路32の途中に、排気バイパス通路32を開閉するウェイストゲートバルブ(以下「WGV」と表記する)33が設けられている。このWGV33は、WGV用バキュームスイッチングバルブ34を制御してダイヤフラム式のアクチュエータ35を制御することでWGV33の開度が制御されるようになっている。   On the other hand, the exhaust pipe 22 is provided with an exhaust bypass passage 32 that bypasses the upstream side and the downstream side of the exhaust turbine 26, and a waste gate valve (hereinafter referred to as a waste gate valve) that opens and closes the exhaust bypass passage 32 in the middle of the exhaust bypass passage 32. 33 (denoted as “WGV”). The WGV 33 is configured such that the opening degree of the WGV 33 is controlled by controlling the WGV vacuum switching valve 34 and the diaphragm actuator 35.

また、エンジン11のシリンダブロックには、冷却水温を検出する冷却水温センサ36や、エンジン11のクランク軸が所定クランク角回転する毎にパルス信号を出力するクランク角センサ37が取り付けられている。このクランク角センサ37の出力信号に基づいてクランク角やエンジン回転速度が検出される。   A cooling water temperature sensor 36 that detects the cooling water temperature and a crank angle sensor 37 that outputs a pulse signal each time the crankshaft of the engine 11 rotates a predetermined crank angle are attached to the cylinder block of the engine 11. Based on the output signal of the crank angle sensor 37, the crank angle and the engine speed are detected.

これら各種センサの出力は、エンジン制御回路(以下「ECU」と表記する)38に入力される。このECU38は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御ルーチンを実行することで、エンジン運転状態に応じて燃料噴射弁20の燃料噴射量や点火プラグ21の点火時期を制御すると共に、WGV33の開度を制御して排気タービン26に供給する排出ガス量を制御することで、排気タービン26とコンプレッサ27の回転を制御して過給圧を制御する。   Outputs of these various sensors are input to an engine control circuit (hereinafter referred to as “ECU”) 38. The ECU 38 is mainly composed of a microcomputer, and executes various engine control routines stored in a built-in ROM (storage medium), so that the fuel injection amount of the fuel injection valve 20 can be changed according to the engine operating state. The ignition timing of the spark plug 21 is controlled, and the opening of the WGV 33 is controlled to control the amount of exhaust gas supplied to the exhaust turbine 26, thereby controlling the rotation of the exhaust turbine 26 and the compressor 27 to increase the supercharging pressure. Control.

また、ECU38は、後述する図5及び図6の気筒別空燃比制御用の各ルーチンを実行することで、後述する気筒別空燃比推定モデルを用いて空燃比センサ24の検出値(排気集合部40を流れる排出ガスの実空燃比)に基づいて各気筒の空燃比を推定し、各気筒の推定空燃比と基準空燃比(全気筒の推定空燃比の平均値又は制御目標値)との偏差を各気筒毎に算出して、その偏差が小さくなるように各気筒の空燃比補正量(各気筒の燃料噴射量の補正量)を算出し、その算出結果に基づいて各気筒の燃料噴射量を補正することで、各気筒に供給する混合気の空燃比を各気筒毎に補正して気筒間の空燃比のばらつきを小さくするように制御する気筒別空燃比制御を実行する。   Further, the ECU 38 executes respective routines for cylinder-by-cylinder air-fuel ratio control shown in FIGS. 5 and 6 to be described later, thereby using the detected values (exhaust gas collection unit) of the air-fuel ratio sensor 24 using a cylinder-by-cylinder air-fuel ratio estimation model to be described later. The air-fuel ratio of each cylinder is estimated based on the actual air-fuel ratio of the exhaust gas flowing through 40, and the deviation between the estimated air-fuel ratio of each cylinder and the reference air-fuel ratio (the average value or control target value of the estimated air-fuel ratio of all cylinders) Is calculated for each cylinder, and the air-fuel ratio correction amount (correction amount of the fuel injection amount of each cylinder) is calculated so that the deviation becomes small, and the fuel injection amount of each cylinder is calculated based on the calculation result By correcting the air-fuel ratio, the air-fuel ratio of the air-fuel mixture supplied to each cylinder is corrected for each cylinder, and the cylinder-by-cylinder air-fuel ratio control is executed to control the variation in the air-fuel ratio among the cylinders.

ここで、空燃比センサ24の検出値(排気集合部40を流れる排出ガスの実空燃比)に基づいて各気筒の空燃比を推定するモデル(以下「気筒別空燃比推定モデル」という)の具体例を説明する。   Here, a specific example of a model for estimating the air-fuel ratio of each cylinder based on the detected value of the air-fuel ratio sensor 24 (actual air-fuel ratio of exhaust gas flowing through the exhaust collecting portion 40) (hereinafter referred to as "cylinder-specific air-fuel ratio estimation model"). An example will be described.

排気集合部40におけるガス交換に着目して、空燃比センサ24の検出値を、排気集合部40における各気筒の推定空燃比の履歴と空燃比センサ24の検出値の履歴とにそれぞれ所定の重みを乗じて加算したものとしてモデル化し、このモデルを用いて各気筒の空燃比を推定するようにしている。この際、オブザーバとしてはカルマンフィルタを用いる。   Paying attention to the gas exchange in the exhaust collecting section 40, the detected value of the air-fuel ratio sensor 24 is given a predetermined weight to the estimated air-fuel ratio history of each cylinder and the detected value history of the air-fuel ratio sensor 24 in the exhaust collecting section 40, respectively. The model is obtained by multiplying and adding, and the air-fuel ratio of each cylinder is estimated using this model. At this time, a Kalman filter is used as an observer.

より具体的には、排気集合部40におけるガス交換のモデルを次の(1)式にて近似する。
ys(t)=k1 ×u(t-1) +k2 ×u(t-2) −k3 ×ys(t-1)−k4 ×ys(t-2)
……(1)
ここで、ys は空燃比センサ24の検出値、uは排気集合部40に流入するガスの空燃比、k1 〜k4 は定数である。
More specifically, a gas exchange model in the exhaust collecting portion 40 is approximated by the following equation (1).
ys (t) = k1 * u (t-1) + k2 * u (t-2) -k3 * ys (t-1) -k4 * ys (t-2)
...... (1)
Here, ys is a detected value of the air-fuel ratio sensor 24, u is an air-fuel ratio of the gas flowing into the exhaust collecting section 40, and k1 to k4 are constants.

排気系では、排気集合部40におけるガス流入及び混合の一次遅れ要素と、空燃比センサ24の応答遅れによる一次遅れ要素とが存在する。そこで、上記(1)式では、これらの一次遅れ要素を考慮して過去2回分の履歴を参照することとしている。   In the exhaust system, there are a primary delay element of gas inflow and mixing in the exhaust collecting portion 40 and a primary delay element due to a response delay of the air-fuel ratio sensor 24. Therefore, in the above equation (1), the history for the past two times is referred to in consideration of these first order lag elements.

上記(1)式を状態空間モデルに変換すると、次の(2a)、(2b)式が導き出される。
X(t+1) =A・X(t) +B・u(t) +W(t) ……(2a)
Y(t) =C・X(t) +D・u(t) ……(2b)
ここで、A,B,C,Dはモデルのパラメータ、Yは空燃比センサ24の検出値、Xは状態変数としての各気筒の推定空燃比、Wはノイズである。
When the above equation (1) is converted into a state space model, the following equations (2a) and (2b) are derived.
X (t + 1) = A.X (t) + B.u (t) + W (t) (2a)
Y (t) = C · X (t) + D · u (t) (2b)
Here, A, B, C, and D are model parameters, Y is a detected value of the air-fuel ratio sensor 24, X is an estimated air-fuel ratio of each cylinder as a state variable, and W is noise.

更に、上記(2a)、(2b)式によりカルマンフィルタを設計すると、次の(3)式が得られる。
X^(k+1|k)=A・X^(k|k-1)+K{Y(k) −C・A・X^(k|k-1)} ……(3) ここで、X^(エックスハット)は各気筒の推定空燃比、Kはカルマンゲインである。X^(k+1|k)の意味は、時間(k) の推定値により次の時間(k+1) の推定値を求めることを表す。
Further, when the Kalman filter is designed by the above equations (2a) and (2b), the following equation (3) is obtained.
X ^ (k + 1 | k) = A.X ^ (k | k-1) + K {Y (k) -C.A.X ^ (k | k-1)} (3) where X ^ (X hat) is the estimated air-fuel ratio of each cylinder, and K is the Kalman gain. The meaning of X ^ (k + 1 | k) represents that the estimated value of the next time (k + 1) is obtained from the estimated value of time (k).

以上のようにして、気筒別空燃比推定モデルをカルマンフィルタ型オブザーバにて構成することにより、燃焼サイクルの進行に伴って各気筒の空燃比を順次推定することができる。   As described above, the cylinder-by-cylinder air-fuel ratio estimation model is configured by the Kalman filter type observer, whereby the air-fuel ratio of each cylinder can be sequentially estimated as the combustion cycle proceeds.

次に、各気筒の空燃比検出タイミング(空燃比センサ24の出力のサンプルタイミング)の設定方法について説明する。本実施例1では、各気筒から排出される排出ガスが空燃比センサ24付近に到達してその空燃比が検出されるまでの遅れ(以下「排気系の応答遅れ」という)がエンジン運転状態によって変化することを考慮して、エンジン運転状態(例えばエンジン負荷、エンジン回転速度等)に応じてマップ等により各気筒の空燃比検出タイミングを設定する。一般に、エンジン負荷やエンジン回転速度が低下するほど、排気系の応答遅れが大きくなるため、各気筒の空燃比検出タイミングは、エンジン負荷やエンジン回転速度が低下するほど、遅角側にシフトされるように設定されている。   Next, a method for setting the air-fuel ratio detection timing of each cylinder (sample timing of the output of the air-fuel ratio sensor 24) will be described. In the first embodiment, the delay until the exhaust gas discharged from each cylinder reaches the vicinity of the air-fuel ratio sensor 24 and the air-fuel ratio is detected (hereinafter referred to as “response delay of the exhaust system”) depends on the engine operating state. In consideration of the change, the air-fuel ratio detection timing of each cylinder is set by a map or the like according to the engine operating state (for example, engine load, engine speed, etc.). Generally, as the engine load and the engine speed decrease, the response delay of the exhaust system increases. Therefore, the air-fuel ratio detection timing of each cylinder is shifted to the retard side as the engine load and the engine speed decrease. Is set to

ところで、排気タービン式過給機25を備えたシステムで、気筒別空燃比制御を行う場合には、排気タービン26の下流側よりも排気タービン26の上流側に空燃比センサ24を設置した方が、空燃比センサ24の出力に各気筒の空燃比に応じた変化が現れ易いため、排気タービン26の上流側に空燃比センサ24を設置するのが好ましい。   By the way, in the case of performing the cylinder-by-cylinder air-fuel ratio control in the system including the exhaust turbine supercharger 25, it is preferable to install the air-fuel ratio sensor 24 on the upstream side of the exhaust turbine 26 rather than on the downstream side of the exhaust turbine 26. Since the output corresponding to the air-fuel ratio of each cylinder tends to appear in the output of the air-fuel ratio sensor 24, it is preferable to install the air-fuel ratio sensor 24 upstream of the exhaust turbine 26.

しかし、図2(a)に示すように、排気タービン26の上流側は排気圧が大きく脈動(変動)する傾向があり、空燃比センサ24は排気圧によって出力が変化するという特性があるため、図2(b)に示すように、排気タービン26の上流側に空燃比センサ24を設置した場合には、排気圧脈動の影響を受けて空燃比センサ24の出力の誤差が大きくなる可能性がある。このように、排気圧脈動の影響による空燃比センサ24の出力の誤差が大きくなると、空燃比センサ24の出力に基づく各気筒の空燃比の推定精度が低下して、気筒別空燃比制御を精度良く行うことができなくなり、エミッションが悪化する可能性がある。   However, as shown in FIG. 2A, the upstream side of the exhaust turbine 26 has a tendency that the exhaust pressure tends to pulsate (fluctuate), and the air-fuel ratio sensor 24 has a characteristic that the output changes depending on the exhaust pressure. As shown in FIG. 2B, when the air-fuel ratio sensor 24 is installed on the upstream side of the exhaust turbine 26, the output error of the air-fuel ratio sensor 24 may increase due to the influence of the exhaust pressure pulsation. is there. Thus, when the error in the output of the air-fuel ratio sensor 24 due to the influence of the exhaust pressure pulsation increases, the estimation accuracy of the air-fuel ratio of each cylinder based on the output of the air-fuel ratio sensor 24 decreases, and the cylinder-by-cylinder air-fuel ratio control becomes more accurate. Emissions may be worsened due to poor performance.

この対策として、本実施例1では、各気筒の空燃比検出タイミング毎(空燃比センサ24の出力のサンプルタイミング毎)に、空燃比センサ24の出力に及ぼす排気圧の影響度合を判定して、この排気圧の影響度合に基づいて空燃比センサ24の出力を補正し、補正後の空燃比センサ24の出力に基づいて各気筒の空燃比を推定する。   As a countermeasure, in the first embodiment, the degree of influence of the exhaust pressure on the output of the air-fuel ratio sensor 24 is determined for each air-fuel ratio detection timing of each cylinder (each sample timing of the output of the air-fuel ratio sensor 24). The output of the air-fuel ratio sensor 24 is corrected based on the degree of influence of the exhaust pressure, and the air-fuel ratio of each cylinder is estimated based on the corrected output of the air-fuel ratio sensor 24.

ここで、空燃比センサ24の出力に及ぼす排気圧の影響度合を判定する方法及びその排気圧の影響度合に基づいて空燃比センサ24の出力を補正する方法について説明する。尚、以下の説明では、理論空燃比に対する実空燃比の比率である空気過剰率λを「空燃比」の情報として用いる。
空気過剰率λ=実空燃比/理論空燃比
Here, a method for determining the degree of influence of the exhaust pressure on the output of the air-fuel ratio sensor 24 and a method for correcting the output of the air-fuel ratio sensor 24 based on the degree of influence of the exhaust pressure will be described. In the following description, the excess air ratio λ, which is the ratio of the actual air-fuel ratio to the stoichiometric air-fuel ratio, is used as “air-fuel ratio” information.
Excess air ratio λ = actual air-fuel ratio / stoichiometric air-fuel ratio

図3に示すように、各気筒の空燃比検出タイミング毎に、エンジン運転状態(例えばエンジン回転速度とエンジン負荷等)と各気筒の排気マニホールド39の長さ又は容積(=流路断面積×長さ)とに基づいて排気集合部40の排気圧をマップ等により算出(推定)し、この排気集合部40の排気圧に基づいて排気圧影響係数ベース値(排気集合部40に設置された空燃比センサ24の出力に及ぼす排気圧の影響度合の情報)をマップ等により算出する。排気圧影響係数ベース値のマップは、排気集合部40の排気圧が高くなるほど排気圧影響係数ベース値が大きくなるように設定されている。   As shown in FIG. 3, at each air-fuel ratio detection timing of each cylinder, the engine operating state (for example, engine speed and engine load) and the length or volume of the exhaust manifold 39 of each cylinder (= channel cross-sectional area × length). The exhaust pressure of the exhaust collecting portion 40 is calculated (estimated) based on the exhaust pressure of the exhaust collecting portion 40 based on the exhaust pressure of the exhaust collecting portion 40 (the air pressure installed in the exhaust collecting portion 40). Information on the degree of influence of the exhaust pressure on the output of the fuel ratio sensor 24) is calculated from a map or the like. The map of the exhaust pressure influence coefficient base value is set so that the exhaust pressure influence coefficient base value increases as the exhaust pressure of the exhaust collecting portion 40 increases.

尚、エンジン運転状態と各気筒の排気マニホールド39の長さ(又は容積)とに基づいて各気筒の排気圧を算出(推定)し、各気筒の排気圧に基づいて排気圧影響係数ベース値を算出するようにしても良い。   The exhaust pressure of each cylinder is calculated (estimated) based on the engine operating state and the length (or volume) of the exhaust manifold 39 of each cylinder, and the exhaust pressure influence coefficient base value is calculated based on the exhaust pressure of each cylinder. It may be calculated.

エンジン運転状態に応じて各気筒の燃焼状態が変化して各気筒の筒内圧(例えば燃焼時の筒内圧や排気バルブ開弁時の筒内圧等)が変化し、各気筒の筒内圧や各気筒の排気マニホールド39の長さや容積によって各気筒の排気圧が変化して排気集合部40の排気圧が変化するため、エンジン運転状態と各気筒の排気マニホールド39の長さ(又は容積)とを用いれば、排気圧影響係数ベース値を精度良く算出することができる。   The combustion state of each cylinder changes according to the engine operating state, and the in-cylinder pressure of each cylinder (for example, the in-cylinder pressure at the time of combustion or the in-cylinder pressure at the time of opening of the exhaust valve) changes. Because the exhaust pressure of each cylinder changes depending on the length and volume of the exhaust manifold 39 and the exhaust pressure of the exhaust collecting portion 40 changes, the engine operating state and the length (or volume) of the exhaust manifold 39 of each cylinder can be used. Thus, the exhaust pressure influence coefficient base value can be calculated with high accuracy.

更に、空燃比センサ24の出力(検出空燃比)の平均値である平均空燃比が理論空燃比(空気過剰率λ=1.0)から離れるほど排気圧の脈動の影響を受け易くなって、排気圧の脈動による空燃比センサ24の出力の誤差が大きくなるという特性(図4参照)を考慮して、空燃比センサ24の出力(検出空燃比)に基づいて1サイクル(720CA)間の平均空燃比を算出し、この平均空燃比と理論空燃比(空気過剰率λ=1.0)との差を算出することで、理論空燃比に対する平均空燃比のずれを求め、この平均空燃比のずれを排気圧影響係数ベース値に乗算して最終的な排気圧影響係数を求める。   Furthermore, as the average air-fuel ratio, which is the average value of the output (detected air-fuel ratio) of the air-fuel ratio sensor 24, is more distant from the stoichiometric air-fuel ratio (excess air ratio λ = 1.0), it becomes more susceptible to exhaust pressure pulsation, In consideration of the characteristic that the error in the output of the air-fuel ratio sensor 24 due to the pulsation of the exhaust pressure becomes large (see FIG. 4), the average over one cycle (720 CA) based on the output (detected air-fuel ratio) of the air-fuel ratio sensor 24 By calculating the air-fuel ratio and calculating the difference between this average air-fuel ratio and the stoichiometric air-fuel ratio (excess air ratio λ = 1.0), the deviation of the average air-fuel ratio from the stoichiometric air-fuel ratio is obtained. The final exhaust pressure influence coefficient is obtained by multiplying the deviation by the exhaust pressure influence coefficient base value.

そして、空燃比センサ24の出力(検出空燃比)と理論空燃比との差を算出することで、理論空燃比に対する空燃比センサ24の出力(検出空燃比)のずれを求め、この空燃比センサ24の出力(検出空燃比)のずれを排気圧影響係数で除算した値を理論空燃比に加算することで、空燃比センサ24の出力を補正して、空燃比センサ24の出力から排気圧脈動の影響分を排除する。   Then, by calculating the difference between the output of the air-fuel ratio sensor 24 (detected air-fuel ratio) and the stoichiometric air-fuel ratio, the deviation of the output of the air-fuel ratio sensor 24 (detected air-fuel ratio) from the stoichiometric air-fuel ratio is obtained. The output of the air-fuel ratio sensor 24 is corrected by adding the value obtained by dividing the deviation of the output of 24 (detected air-fuel ratio) by the exhaust pressure influence coefficient to the stoichiometric air-fuel ratio. Eliminate the effects of.

以上説明した本実施例1の気筒別空燃比制御は、ECU38によって図5及び図6の気筒別空燃比制御用の各ルーチンに従って実行される。以下、これらの各ルーチンの処理内容を説明する。   The above-described cylinder-by-cylinder air-fuel ratio control according to the first embodiment is executed by the ECU 38 according to the routines for cylinder-by-cylinder air-fuel ratio control shown in FIGS. Hereinafter, the processing content of each of these routines will be described.

[気筒別空燃比制御メインルーチン]
図5に示す気筒別空燃比制御メインルーチンは、クランク角センサ37の出力パルスに同期して所定クランク角毎(例えば30℃A毎)に起動される。本ルーチンが起動されると、まず、ステップ101で、後述する図6の排気圧影響度合判定及びセンサ出力補正ルーチンを実行することで、各気筒の空燃比検出タイミング毎(空燃比センサ24の出力のサンプルタイミング毎)に、空燃比センサ24の出力に及ぼす排気圧の影響度合の情報として排気圧影響係数を算出し、この排気圧影響係数を用いて空燃比センサ24の出力を補正する。
[Air-fuel ratio control routine for each cylinder]
The cylinder-by-cylinder air-fuel ratio control main routine shown in FIG. 5 is started at every predetermined crank angle (for example, every 30 ° C. A) in synchronization with the output pulse of the crank angle sensor 37. When this routine is started, first, in step 101, an exhaust pressure influence degree determination and sensor output correction routine of FIG. 6 described later is executed, so that each air-fuel ratio detection timing (output of the air-fuel ratio sensor 24) of each cylinder is executed. At each sample timing), an exhaust pressure influence coefficient is calculated as information on the degree of influence of the exhaust pressure on the output of the air-fuel ratio sensor 24, and the output of the air-fuel ratio sensor 24 is corrected using this exhaust pressure influence coefficient.

この後、ステップ102に進み、各気筒の空燃比検出タイミング毎に前記気筒別空燃比推定モデルを用いて各気筒の空燃比を補正後の空燃比センサ37の出力に基づいて推定する。このステップ102の処理が特許請求の範囲でいう気筒別空燃比推定手段としての役割を果たす。   Thereafter, the routine proceeds to step 102 where the air-fuel ratio of each cylinder is estimated based on the corrected output of the air-fuel ratio sensor 37 using the cylinder-by-cylinder air-fuel ratio estimation model at each air-fuel ratio detection timing of each cylinder. The processing of step 102 serves as cylinder-by-cylinder air-fuel ratio estimation means in the claims.

この後、ステップ103に進み、全気筒の推定空燃比の平均値を算出して、その平均値を基準空燃比(全気筒の目標空燃比)に設定した後、ステップ104に進み、各気筒の推定空燃比と基準空燃比との偏差を算出して、その偏差が小さくなるように各気筒の空燃比補正量(各気筒の燃料噴射量の補正量)を算出した後、各気筒の空燃比補正量に基づいて各気筒の燃料噴射量を補正することで、各気筒に供給する混合気の空燃比を各気筒毎に補正して気筒間の空燃比ばらつきを小さくするように制御する。   Thereafter, the process proceeds to step 103, the average value of the estimated air-fuel ratios of all cylinders is calculated, the average value is set to the reference air-fuel ratio (target air-fuel ratio of all cylinders), and then the process proceeds to step 104, where After calculating the deviation between the estimated air-fuel ratio and the reference air-fuel ratio, and calculating the air-fuel ratio correction amount (correction amount of the fuel injection amount of each cylinder) so that the deviation becomes small, the air-fuel ratio of each cylinder By correcting the fuel injection amount of each cylinder based on the correction amount, the air-fuel ratio of the air-fuel mixture supplied to each cylinder is corrected for each cylinder so as to reduce the air-fuel ratio variation among the cylinders.

[排気圧影響度合判定及びセンサ出力補正ルーチン]
図6に示す排気圧影響度合判定及びセンサ出力補正ルーチンは、前記図5の気筒別空燃比制御メインルーチンのステップ101で実行されるサブルーチンであり、特許請求の範囲でいう排気圧影響度合判定手段及びセンサ出力補正手段としての役割を果たす。
[Exhaust pressure influence degree judgment and sensor output correction routine]
The exhaust pressure influence degree determination and sensor output correction routine shown in FIG. 6 is a subroutine executed in step 101 of the cylinder-by-cylinder air-fuel ratio control main routine of FIG. 5, and the exhaust pressure influence degree determination means in the claims. And it plays a role as a sensor output correction means.

本ルーチンが起動されると、まず、ステップ201で、現在のクランク角が各気筒の空燃比検出タイミング(空燃比センサ24の出力のサンプルタイミング)であるか否かを判定し、空燃比検出タイミングでなければ、ステップ202以降の処理を行うことなく、本ルーチンを終了する。   When this routine is started, first, at step 201, it is determined whether or not the current crank angle is the air-fuel ratio detection timing of each cylinder (sample timing of the output of the air-fuel ratio sensor 24). Otherwise, this routine is terminated without performing the processing from step 202 onward.

一方、上記ステップ201で、現在のクランク角が各気筒の空燃比検出タイミングであると判定されれば、ステップ202に進み、空燃比センサ24の出力を読み込んだ後、ステップ203に進み、エンジン運転状態(例えばエンジン回転速度とエンジン負荷等)を読み込む。   On the other hand, if it is determined in step 201 that the current crank angle is the air-fuel ratio detection timing of each cylinder, the process proceeds to step 202, and after reading the output of the air-fuel ratio sensor 24, the process proceeds to step 203, where engine operation is performed. The state (for example, engine speed and engine load) is read.

この後、ステップ204に進み、エンジン運転状態(例えばエンジン回転速度とエンジン負荷等)と各気筒の排気マニホールド39の長さ(又は容積)とに基づいて排気集合部40の排気圧をマップ等算出(推定)し、この排気集合部40の排気圧に基づいて排気圧影響係数ベース値をマップ等により算出する。尚、エンジン運転状態と各気筒の排気マニホールド39の長さ(又は容積)とに基づいて各気筒の排気圧を算出(推定)し、各気筒の排気圧に基づいて排気圧影響係数ベース値を算出しても良い。   Thereafter, the routine proceeds to step 204, where the exhaust pressure of the exhaust collecting section 40 is calculated based on the engine operating state (for example, engine rotation speed and engine load) and the length (or volume) of the exhaust manifold 39 of each cylinder. Based on the exhaust pressure of the exhaust collecting portion 40, the exhaust pressure influence coefficient base value is calculated by a map or the like. The exhaust pressure of each cylinder is calculated (estimated) based on the engine operating state and the length (or volume) of the exhaust manifold 39 of each cylinder, and the exhaust pressure influence coefficient base value is calculated based on the exhaust pressure of each cylinder. It may be calculated.

この後、ステップ205に進み、空燃比センサ24の出力(検出空燃比)に基づいて1サイクル(720CA)間の平均空燃比を算出し、この平均空燃比と理論空燃比(空気過剰率λ=1.0)との差を算出することで、理論空燃比に対する平均空燃比のずれを求め、この平均空燃比のずれを排気圧影響係数ベース値に乗算して最終的な排気圧影響係数を求める。   Thereafter, the routine proceeds to step 205, where the average air-fuel ratio for one cycle (720CA) is calculated based on the output (detected air-fuel ratio) of the air-fuel ratio sensor 24, and this average air-fuel ratio and the stoichiometric air-fuel ratio (excess air ratio λ = 1.0) to obtain the deviation of the average air-fuel ratio with respect to the theoretical air-fuel ratio, and multiply the deviation of the average air-fuel ratio by the exhaust pressure influence coefficient base value to obtain the final exhaust pressure influence coefficient. Ask.

この後、ステップ206に進み、空燃比センサ24の出力(検出空燃比)と理論空燃比)(空気過剰率λ=1.0)との差を算出することで、理論空燃比に対する空燃比センサ24の出力(検出空燃比)のずれを求め、この空燃比センサ24の出力(検出空燃比)のずれを排気圧影響係数で除算した値を理論空燃比に加算することで、空燃比センサ24の出力を補正して、空燃比センサ24の出力から排気圧脈動の影響分を排除する。   Thereafter, the process proceeds to step 206, and the difference between the output (detected air-fuel ratio) of the air-fuel ratio sensor 24 and the stoichiometric air-fuel ratio) (excess air ratio λ = 1.0) is calculated, whereby the air-fuel ratio sensor for the stoichiometric air-fuel ratio is calculated. 24 is obtained, and a value obtained by dividing the deviation of the output (detected air-fuel ratio) of the air-fuel ratio sensor 24 by the exhaust pressure influence coefficient is added to the stoichiometric air-fuel ratio 24. And the influence of the exhaust pressure pulsation is excluded from the output of the air-fuel ratio sensor 24.

以上説明した本実施例1では、空燃比センサ24の出力に及ぼす排気圧の影響度合として排気圧影響係数を算出し、この排気圧影響係数を用いて空燃比センサ24の出力を補正するようにしたので、空燃比センサ24の出力から排気圧脈動の影響分を排除することができ、その補正後の空燃比センサ24の出力に基づいて各気筒の空燃比を推定することで、排気圧脈動の影響を受けずに各気筒の空燃比を精度良く推定することができる。これにより、空燃比センサ24の出力に各気筒の空燃比に応じた変化が現れ易い排気タービン26の上流側に空燃比センサ24を設置しながら、排気圧脈動の影響による気筒別空燃比制御の精度の低下を防止することができて、気筒別空燃比制御によるエミッション低減効果の低下を回避することができる。   In the first embodiment described above, the exhaust pressure influence coefficient is calculated as the degree of influence of the exhaust pressure on the output of the air-fuel ratio sensor 24, and the output of the air-fuel ratio sensor 24 is corrected using this exhaust pressure influence coefficient. Therefore, the influence of the exhaust pressure pulsation can be eliminated from the output of the air-fuel ratio sensor 24, and the exhaust pressure pulsation is estimated by estimating the air-fuel ratio of each cylinder based on the corrected output of the air-fuel ratio sensor 24. It is possible to accurately estimate the air-fuel ratio of each cylinder without being affected by the above. As a result, the air-fuel ratio control for each cylinder due to the influence of the exhaust pressure pulsation is performed while the air-fuel ratio sensor 24 is installed on the upstream side of the exhaust turbine 26 in which the output corresponding to the air-fuel ratio of each cylinder easily appears in the output of the air-fuel ratio sensor 24. A decrease in accuracy can be prevented, and a decrease in emission reduction effect due to cylinder-by-cylinder air-fuel ratio control can be avoided.

尚、上記実施例1では、エンジン運転状態と各気筒の排気マニホールド39の長さ(又は容積)とに基づいて排気圧影響係数(空燃比センサ24の出力に及ぼす排気圧の影響度合)を算出するようにしたが、排気圧影響係数の算出方法は、適宜変更しても良い。   In the first embodiment, the exhaust pressure influence coefficient (the degree of influence of the exhaust pressure on the output of the air-fuel ratio sensor 24) is calculated based on the engine operating state and the length (or volume) of the exhaust manifold 39 of each cylinder. However, the method for calculating the exhaust pressure influence coefficient may be changed as appropriate.

例えば、各気筒毎に筒内圧を検出する筒内圧センサ(筒内圧取得手段)を設け、各気筒の筒内圧センサで検出した各気筒の筒内圧(例えば燃焼時の筒内圧や排気バルブ開弁時の筒内圧等)と各気筒の排気マニホールド39の長さ(又は容積)とに基づいて排気圧影響係数を求めるようにしても良い。或は、エンジン運転状態に基づいて各気筒の筒内圧を推定し、推定した各気筒の筒内圧と各気筒の排気マニホールド39の長さ(又は容積)とに基づいて排気圧影響係数を求めるようにしても良い。各気筒の筒内圧や各気筒の排気マニホールド39の長さや容積によって各気筒の排気圧が変化して、排気集合部40の排気圧が変化するため、各気筒の筒内圧と各気筒の排気マニホールド39の長さ(又は容積)とを用いれば、排気圧影響係数を精度良く求めることができる。   For example, an in-cylinder pressure sensor (in-cylinder pressure acquisition means) for detecting the in-cylinder pressure is provided for each cylinder, and the in-cylinder pressure of each cylinder detected by the in-cylinder pressure sensor of each cylinder (for example, in-cylinder pressure during combustion or when the exhaust valve is opened) Or the like) and the length (or volume) of the exhaust manifold 39 of each cylinder. Alternatively, the in-cylinder pressure of each cylinder is estimated based on the engine operating state, and the exhaust pressure influence coefficient is obtained based on the estimated in-cylinder pressure of each cylinder and the length (or volume) of the exhaust manifold 39 of each cylinder. Anyway. Since the exhaust pressure of each cylinder changes depending on the in-cylinder pressure of each cylinder and the length and volume of the exhaust manifold 39 of each cylinder, and the exhaust pressure of the exhaust collecting portion 40 changes, the in-cylinder pressure of each cylinder and the exhaust manifold of each cylinder If the length (or volume) of 39 is used, the exhaust pressure influence coefficient can be obtained with high accuracy.

また、排気集合部40に排気圧を検出する排気圧センサを設け、この排気圧センサの出力に基づいて排気圧影響係数を求めるようにしても良い。このようにすれば、排気圧センサで検出した排気集合部40の排気圧に基づいて排気圧影響係数を精度良く求めることができる。   Further, an exhaust pressure sensor for detecting the exhaust pressure may be provided in the exhaust collecting portion 40, and the exhaust pressure influence coefficient may be obtained based on the output of the exhaust pressure sensor. In this way, the exhaust pressure influence coefficient can be accurately obtained based on the exhaust pressure of the exhaust collecting portion 40 detected by the exhaust pressure sensor.

或は、各気筒の排気マニホールド39毎にそれぞれ排気圧を検出する排気圧センサを設け、各気筒の排気圧センサの出力に基づいて排気圧影響係数を求めるようにしても良い。各気筒の排気圧によって排気集合部40の排気圧が変化するため、各気筒の排気圧センサで検出した各気筒の排気圧を用いれば、排気圧影響係数を精度良く求めることができる。   Alternatively, an exhaust pressure sensor for detecting the exhaust pressure may be provided for each exhaust manifold 39 of each cylinder, and the exhaust pressure influence coefficient may be obtained based on the output of the exhaust pressure sensor of each cylinder. Since the exhaust pressure of the exhaust collecting portion 40 changes depending on the exhaust pressure of each cylinder, the exhaust pressure influence coefficient can be accurately obtained by using the exhaust pressure of each cylinder detected by the exhaust pressure sensor of each cylinder.

次に、図7を用いて本発明の実施例2を説明する。但し、前記実施例1と実質的に同一部分については説明を省略又は簡略化し、主として前記実施例1と異なる部分について説明する。   Next, Embodiment 2 of the present invention will be described with reference to FIG. However, description of substantially the same parts as those in the first embodiment will be omitted or simplified, and different parts from the first embodiment will be mainly described.

本実施例2では、ECU38により後述する図7の排気圧影響度合判定ルーチンを実行することで、空燃比センサ24の出力に及ぼす排気圧の影響度合が許容レベルを越えたか否かを判定し、排気圧の影響度合が許容レベルを越えたと判定された場合に気筒別空燃比制御を中止するようにしている。   In the second embodiment, the ECU 38 executes an exhaust pressure influence degree determination routine shown in FIG. 7 described later to determine whether or not the influence degree of the exhaust pressure on the output of the air-fuel ratio sensor 24 has exceeded an allowable level. When it is determined that the influence degree of the exhaust pressure exceeds the allowable level, the cylinder-by-cylinder air-fuel ratio control is stopped.

図7に示す排気圧影響度合判定ルーチンは、特許請求の範囲でいう排気圧影響度合判定手段及び中止手段としての役割を果たす。本ルーチンが起動されると、まず、ステップ301で、現在のクランク角が各気筒の空燃比検出タイミング(空燃比センサ24の出力のサンプルタイミング)であるか否かを判定し、空燃比検出タイミングでなければ、ステップ302以降の処理を行うことなく、本ルーチンを終了する。   The exhaust pressure influence degree determination routine shown in FIG. 7 serves as exhaust pressure influence degree determination means and stop means in the claims. When this routine is started, first, at step 301, it is determined whether or not the current crank angle is the air-fuel ratio detection timing of each cylinder (sample timing of the output of the air-fuel ratio sensor 24). Otherwise, this routine is terminated without performing the processing from step 302 onward.

一方、上記ステップ301で、現在のクランク角が各気筒の空燃比検出タイミングであると判定されれば、ステップ302に進み、空燃比センサ24の出力を読み込んだ後、ステップ303に進み、所定期間(例えば1サイクルである720CA間)における空燃比センサ24の出力をFFT(Fast Fourier Transform:高速フーリエ変換)等により周波数解析して、空燃比センサ24の出力の周波数成分毎の振幅を求める。   On the other hand, if it is determined in step 301 that the current crank angle is the air-fuel ratio detection timing of each cylinder, the process proceeds to step 302, the output of the air-fuel ratio sensor 24 is read, and then the process proceeds to step 303 for a predetermined period. The frequency of the output of the air-fuel ratio sensor 24 (for example, between 720 CA which is one cycle) is subjected to frequency analysis by FFT (Fast Fourier Transform) or the like, and the amplitude for each frequency component of the output of the air-fuel ratio sensor 24 is obtained.

この後、ステップ304に進み、周波数解析結果に基づいて空燃比センサ24の出力のうちの燃焼間隔に関連する周波数成分(例えば4気筒の場合は180CA間隔の周期に相当する周波数の成分)の振幅を抽出する。   Thereafter, the process proceeds to step 304, and the amplitude of the frequency component related to the combustion interval in the output of the air-fuel ratio sensor 24 based on the frequency analysis result (for example, the component of the frequency corresponding to the period of 180 CA intervals in the case of four cylinders). To extract.

この後、ステップ305に進み、空燃比センサ24の出力のうちの燃焼間隔に関連する周波数成分の振幅が所定値以上であるか否かを判定する。その結果、燃焼間隔毎に脈動する排気圧脈動の影響によって空燃比センサ24の出力のうちの燃焼間隔に関連する周波数成分の振幅が所定値以上になったと判定された場合には、空燃比センサ24の出力に及ぼす排気圧の影響度合が許容レベルを越えたと判定する。この場合、排気圧脈動の影響を受けて空燃比センサ24の出力の誤差が大きくなるため、空燃比センサ24の出力に基づく各気筒の空燃比の推定精度が低下して、気筒別空燃比制御を精度良く行うことができないと判断して、ステップ306に進み、気筒別空燃比制御実行フラグを、気筒別空燃比制御の中止を意味する「OFF」にリセットして、気筒別空燃比制御を中止又は禁止する。   Thereafter, the process proceeds to step 305, in which it is determined whether or not the amplitude of the frequency component related to the combustion interval in the output of the air-fuel ratio sensor 24 is greater than or equal to a predetermined value. As a result, when it is determined that the amplitude of the frequency component related to the combustion interval in the output of the air-fuel ratio sensor 24 has exceeded a predetermined value due to the influence of the exhaust pressure pulsation that pulsates at each combustion interval, the air-fuel ratio sensor It is determined that the degree of influence of the exhaust pressure on the output of 24 exceeds the allowable level. In this case, the error in the output of the air-fuel ratio sensor 24 increases due to the influence of the exhaust pressure pulsation, so that the estimation accuracy of the air-fuel ratio of each cylinder based on the output of the air-fuel ratio sensor 24 decreases, and the cylinder-by-cylinder air-fuel ratio control Therefore, the process proceeds to step 306, where the cylinder specific air-fuel ratio control execution flag is reset to “OFF” which means that the cylinder specific air-fuel ratio control is stopped, and the cylinder specific air-fuel ratio control is performed. Cancel or ban.

一方、上記ステップ305で、空燃比センサ24の出力のうちの燃焼間隔に関連する周波数成分の振幅が所定値よりも小さいと判定された場合には、空燃比センサ24の出力に及ぼす排気圧の影響度合が許容レベルを越えていないと判定して、ステップ307に進み、気筒別空燃比制御実行フラグを、気筒別空燃比制御の実行を意味する「ON」にセットして、気筒別空燃比制御を実行(継続)する。   On the other hand, if it is determined in step 305 that the amplitude of the frequency component related to the combustion interval in the output of the air-fuel ratio sensor 24 is smaller than a predetermined value, the exhaust pressure exerted on the output of the air-fuel ratio sensor 24 is reduced. It is determined that the degree of influence does not exceed the permissible level, the process proceeds to step 307, the cylinder-by-cylinder air-fuel ratio control execution flag is set to “ON” which means execution of the cylinder-by-cylinder air-fuel ratio control, and Execute (continue) control.

以上説明した本実施例2では、空燃比センサ24の出力に及ぼす排気圧の影響度合が許容レベルを越えたと判定された場合には、排気圧脈動の影響を受けて空燃比センサ24の出力の誤差が大きくなるため、空燃比センサ24の出力に基づく各気筒の空燃比の推定精度が低下して、気筒別空燃比制御を精度良く行うことができないと判断して、気筒別空燃比制御を中止又は禁止するようにしたので、空燃比センサ24の出力に各気筒の空燃比に応じた変化が現れ易い排気タービン26の上流側に空燃比センサ24を設置しながら、排気圧脈動の影響による気筒別空燃比制御の精度の低下を未然に防止することができて、気筒別空燃比制御によるエミッション低減効果の低下を回避することができる。   In the second embodiment described above, when it is determined that the degree of influence of the exhaust pressure on the output of the air-fuel ratio sensor 24 exceeds the allowable level, the output of the air-fuel ratio sensor 24 is affected by the exhaust pressure pulsation. Since the error becomes large, the estimation accuracy of the air-fuel ratio of each cylinder based on the output of the air-fuel ratio sensor 24 is lowered, and it is determined that the cylinder-by-cylinder air-fuel ratio control cannot be performed accurately. Since the air-fuel ratio sensor 24 is installed on the upstream side of the exhaust turbine 26 in which the output corresponding to the air-fuel ratio of each cylinder is likely to appear in the output of the air-fuel ratio sensor 24 because it is stopped or prohibited, The accuracy of the cylinder-by-cylinder air-fuel ratio control can be prevented from being lowered, and the emission reduction effect due to the cylinder-by-cylinder air-fuel ratio control can be avoided.

尚、上記実施例2では、空燃比センサ24の出力のうちの燃焼間隔に関連する周波数成分の振幅が所定値以上のときに、空燃比センサ24の出力に及ぼす排気圧の影響度合が許容レベルを越えたと判定するようにしたが、空燃比センサ24の出力に及ぼす排気圧の影響度合が許容レベルを越えたか否かを判定する具体的な方法は、適宜変更しても良い。   In the second embodiment, when the amplitude of the frequency component related to the combustion interval in the output of the air-fuel ratio sensor 24 is greater than or equal to a predetermined value, the degree of influence of the exhaust pressure on the output of the air-fuel ratio sensor 24 is at an allowable level. However, the specific method for determining whether or not the degree of influence of the exhaust pressure on the output of the air-fuel ratio sensor 24 has exceeded the allowable level may be changed as appropriate.

例えば、排気集合部40又は各気筒の排気マニホールド39毎に排気圧を検出する排気圧センサを設け、所定期間(例えば1サイクルである720CA間)における排気圧センサの出力の変動量(例えば所定時間当りの変化量、最大値と最小値との差等)が所定値以上のときに、排気圧の影響度合が許容レベルを越えたと判定するようにしても良い。このようにすれば、排気集合部40の排気圧の変動量や各気筒の排気圧の変動量が所定値以上になったときに、排気集合部40に設置された空燃比センサ24の出力に及ぼす排気圧の影響度合が許容レベルを越えたと判定することができる。   For example, an exhaust pressure sensor that detects the exhaust pressure is provided for each exhaust manifold 40 or each exhaust manifold 39 of each cylinder, and the fluctuation amount (for example, a predetermined time) of the output of the exhaust pressure sensor in a predetermined period (for example, between one cycle 720CA). It is also possible to determine that the degree of influence of the exhaust pressure has exceeded an allowable level when the amount of change per hit, the difference between the maximum value and the minimum value, etc. is equal to or greater than a predetermined value. In this way, when the fluctuation amount of the exhaust pressure of the exhaust collecting portion 40 or the fluctuation amount of the exhaust pressure of each cylinder exceeds a predetermined value, the output of the air-fuel ratio sensor 24 installed in the exhaust collecting portion 40 is increased. It can be determined that the degree of influence of the exhaust pressure exerted exceeds an allowable level.

また、所定期間(例えば1サイクルである720CA間)における空燃比センサ24の出力のピーク値とボトム値との差が所定値以上のときに、排気圧の影響度合が許容レベルを越えたと判定するようにしても良い。このようにすれば、排気圧の脈動によって空燃比センサ24の出力のピーク値とボトム値との差が所定値以上になったときに、空燃比センサ24の出力に及ぼす排気圧の影響度合が許容レベルを越えたと判定することができる。   Further, when the difference between the peak value and the bottom value of the output of the air-fuel ratio sensor 24 in a predetermined period (for example, between 720 CAs in one cycle) is a predetermined value or more, it is determined that the influence degree of the exhaust pressure exceeds the allowable level. You may do it. In this way, when the difference between the peak value and the bottom value of the output of the air-fuel ratio sensor 24 exceeds a predetermined value due to the pulsation of the exhaust pressure, the degree of influence of the exhaust pressure on the output of the air-fuel ratio sensor 24 is reduced. It can be determined that the allowable level has been exceeded.

また、本発明は、排気タービン式過給機を備えたシステムに限定されず、空燃比センサの出力に基づいて各気筒の空燃比を推定し、その推定結果に基づいて各気筒の空燃比を気筒別に制御するシステムに広く適用して実施できる。   The present invention is not limited to a system having an exhaust turbine supercharger. The air-fuel ratio of each cylinder is estimated based on the output of the air-fuel ratio sensor, and the air-fuel ratio of each cylinder is calculated based on the estimation result. It can be widely applied to a system that controls by cylinder.

その他、本発明は、図1に示すような吸気ポート噴射式エンジンに限定されず、筒内噴射式エンジンや、吸気ポート噴射用の燃料噴射弁と筒内噴射用の燃料噴射弁の両方を備えたデュアル噴射式のエンジンにも適用して実施できる。   In addition, the present invention is not limited to the intake port injection type engine as shown in FIG. 1, but includes an in-cylinder injection type engine, and both an intake port injection fuel injection valve and an in-cylinder injection fuel injection valve. It can also be applied to dual-injection engines.

11…エンジン(内燃機関)、12…吸気管、15…スロットルバルブ、20…燃料噴射弁、21…点火プラグ、22…排気管、24…空燃比センサ、25…排気タービン式過給機、26…排気タービン、27…コンプレッサ、38…ECU(排気圧影響度合判定手段,センサ出力補正手段,気筒別空燃比推定手段,中止手段)、39…排気マニホールド、40…排気集合部   DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Intake pipe, 15 ... Throttle valve, 20 ... Fuel injection valve, 21 ... Spark plug, 22 ... Exhaust pipe, 24 ... Air-fuel ratio sensor, 25 ... Exhaust turbine type supercharger, 26 ... exhaust turbine, 27 ... compressor, 38 ... ECU (exhaust pressure influence degree judging means, sensor output correcting means, cylinder air-fuel ratio estimating means, stopping means), 39 ... exhaust manifold, 40 ... exhaust collecting part

Claims (10)

内燃機関の複数の気筒の排出ガスが合流して流れる排気集合部に空燃比センサを設置して、各気筒の空燃比検出タイミング毎に前記空燃比センサの出力に基づいて各気筒の空燃比を推定し、その推定結果に基づいて各気筒の空燃比を気筒別に制御する内燃機関の気筒別空燃比制御装置において、
前記各気筒の空燃比検出タイミング毎に前記空燃比センサの出力に及ぼす内燃機関の排気圧の影響度合を判定する排気圧影響度合判定手段と、
前記各気筒の空燃比検出タイミング毎に前記排気圧影響度合判定手段で判定した排気圧の影響度合に基づいて前記空燃比センサの出力を補正するセンサ出力補正手段と、
前記各気筒の空燃比検出タイミング毎に前記センサ出力補正手段で補正した前記空燃比センサの出力に基づいて各気筒の空燃比を推定する気筒別空燃比推定手段と
を備えていることを特徴とする内燃機関の気筒別空燃比制御装置。
An air-fuel ratio sensor is installed at an exhaust gas collecting portion where exhaust gases from a plurality of cylinders of an internal combustion engine flow and the air-fuel ratio of each cylinder is determined based on the output of the air-fuel ratio sensor at each air-fuel ratio detection timing of each cylinder. In a cylinder-by-cylinder air-fuel ratio control apparatus for an internal combustion engine that estimates and controls the air-fuel ratio of each cylinder for each cylinder based on the estimation result,
Exhaust pressure influence degree determining means for determining the influence degree of the exhaust pressure of the internal combustion engine on the output of the air / fuel ratio sensor at each air / fuel ratio detection timing of each cylinder;
Sensor output correction means for correcting the output of the air-fuel ratio sensor based on the exhaust pressure influence degree determined by the exhaust pressure influence degree determination means at each air-fuel ratio detection timing of each cylinder;
A cylinder-specific air-fuel ratio estimating means for estimating the air-fuel ratio of each cylinder based on the output of the air-fuel ratio sensor corrected by the sensor output correcting means at each air-fuel ratio detection timing of each cylinder. A cylinder-by-cylinder air-fuel ratio control apparatus for an internal combustion engine.
前記排気集合部に排気圧を検出する排気圧センサを備え、
前記排気圧影響度合判定手段は、前記排気圧センサの出力に基づいて前記排気圧の影響度合を判定する手段を有することを特徴とする請求項1に記載の内燃機関の気筒別空燃比制御装置。
An exhaust pressure sensor for detecting an exhaust pressure in the exhaust collecting portion;
2. The cylinder-by-cylinder air-fuel ratio control apparatus for an internal combustion engine according to claim 1, wherein the exhaust pressure influence degree determining means includes means for determining the influence degree of the exhaust pressure based on an output of the exhaust pressure sensor. .
各気筒の排気マニホールド毎にそれぞれ排気圧を検出する排気圧センサを備え、
前記排気圧影響度合判定手段は、前記各気筒の排気圧センサの出力に基づいて前記排気圧の影響度合を判定する手段を有することを特徴とする請求項1に記載の内燃機関の気筒別空燃比制御装置。
An exhaust pressure sensor for detecting the exhaust pressure is provided for each exhaust manifold of each cylinder,
2. The cylinder-by-cylinder sky of the internal combustion engine according to claim 1, wherein the exhaust pressure influence degree determining means includes means for determining an influence degree of the exhaust pressure based on an output of an exhaust pressure sensor of each cylinder. Fuel ratio control device.
各気筒の筒内圧を検出又は推定する筒内圧取得手段を備え、
前記排気圧影響度合判定手段は、前記筒内圧取得手段で検出又は推定した各気筒の筒内圧と各気筒の排気マニホールドの長さ又は容積とに基づいて前記排気圧の影響度合を判定する手段を有することを特徴とする請求項1に記載の内燃機関の気筒別空燃比制御装置。
In-cylinder pressure acquisition means for detecting or estimating the in-cylinder pressure of each cylinder,
The exhaust pressure influence degree determining means is means for determining the influence degree of the exhaust pressure based on the in-cylinder pressure of each cylinder detected or estimated by the in-cylinder pressure acquisition means and the length or volume of the exhaust manifold of each cylinder. The cylinder-by-cylinder air-fuel ratio control apparatus for an internal combustion engine according to claim 1, comprising:
前記排気圧影響度合判定手段は、内燃機関の運転状態と各気筒の排気マニホールドの長さ又は容積とに基づいて前記排気圧の影響度合を判定する手段を有することを特徴とする請求項1に記載の内燃機関の気筒別空燃比制御装置。   The exhaust pressure influence degree determining means includes means for determining the influence degree of the exhaust pressure based on the operating state of the internal combustion engine and the length or volume of the exhaust manifold of each cylinder. The cylinder-by-cylinder air-fuel ratio control apparatus according to claim. 内燃機関の複数の気筒の排出ガスが合流して流れる排気集合部に空燃比センサを設置して、該空燃比センサの出力に基づいて各気筒の空燃比を推定し、その推定結果に基づいて各気筒の空燃比を気筒別に制御する気筒別空燃比制御を実行する内燃機関の気筒別空燃比制御装置において、
前記空燃比センサの出力に及ぼす内燃機関の排気圧の影響度合が許容レベルを越えたか否かを判定する排気圧影響度合判定手段と、
前記排気圧影響度合判定手段により前記排気圧の影響度合が許容レベルを越えたと判定された場合に前記気筒別空燃比制御を中止又は禁止する中止手段と
を備えていることを特徴とする内燃機関の気筒別空燃比制御装置。
An air-fuel ratio sensor is installed at an exhaust gas collecting portion where exhaust gases from a plurality of cylinders of an internal combustion engine flow, and the air-fuel ratio of each cylinder is estimated based on the output of the air-fuel ratio sensor. In a cylinder-by-cylinder air-fuel ratio control apparatus for an internal combustion engine that executes cylinder-by-cylinder air-fuel ratio control for controlling the air-fuel ratio of each cylinder by cylinder,
An exhaust pressure influence degree determining means for determining whether or not the influence degree of the exhaust pressure of the internal combustion engine on the output of the air-fuel ratio sensor exceeds an allowable level;
An internal combustion engine comprising: a stop unit that stops or prohibits the cylinder-by-cylinder air-fuel ratio control when the exhaust pressure influence level determination unit determines that the exhaust pressure level of influence exceeds a permissible level. Air-fuel ratio control device for each cylinder.
前記排気集合部又は各気筒の排気マニホールド毎に排気圧を検出する排気圧センサを備え、
前記排気圧影響度合判定手段は、所定期間における前記排気圧センサの出力の変動量が所定値以上のときに、前記排気圧の影響度合が許容レベルを越えたと判定する手段を有することを特徴とする請求項6に記載の内燃機関の気筒別空燃比制御装置。
An exhaust pressure sensor for detecting an exhaust pressure for each exhaust manifold or each exhaust manifold of each cylinder;
The exhaust pressure influence degree determining means includes means for determining that the influence degree of the exhaust pressure has exceeded an allowable level when the fluctuation amount of the output of the exhaust pressure sensor in a predetermined period is a predetermined value or more. The cylinder-by-cylinder air-fuel ratio control apparatus for an internal combustion engine according to claim 6.
前記排気圧影響度合判定手段は、所定期間における前記空燃比センサの出力を周波数解析して該空燃比センサの出力のうちの燃焼間隔に関連する周波数成分の振幅が所定値以上のときに、前記排気圧の影響度合が許容レベルを越えたと判定する手段を有することを特徴とする請求項6又は7に記載の内燃機関の気筒別空燃比制御装置。   The exhaust pressure influence degree determining means performs frequency analysis on the output of the air-fuel ratio sensor during a predetermined period, and when the amplitude of the frequency component related to the combustion interval in the output of the air-fuel ratio sensor is equal to or greater than a predetermined value, 8. The cylinder-by-cylinder air-fuel ratio control apparatus for an internal combustion engine according to claim 6, further comprising means for determining that the degree of influence of the exhaust pressure exceeds an allowable level. 前記排気圧影響度合判定手段は、所定期間における前記空燃比センサの出力のピーク値とボトム値との差が所定値以上のときに、前記排気圧の影響度合が許容レベルを越えたと判定する手段を有することを特徴とする請求項6乃至8のいずれかに記載の内燃機関の気筒別空燃比制御装置。   The exhaust pressure influence degree determining means is a means for determining that the influence degree of the exhaust pressure exceeds an allowable level when the difference between the peak value and the bottom value of the output of the air-fuel ratio sensor in a predetermined period is equal to or greater than a predetermined value. The air-fuel ratio control apparatus for each cylinder of the internal combustion engine according to any one of claims 6 to 8, characterized by comprising: 内燃機関の排気通路に設けた排気タービンによってコンプレッサを駆動して吸入空気を過給する排気タービン式過給機を備え、
前記排気タービンの上流側に前記空燃比センサが設置されていることを特徴とする請求項1乃至9のいずれかに記載の内燃機関の気筒別空燃比制御装置。
An exhaust turbine supercharger that supercharges intake air by driving a compressor by an exhaust turbine provided in an exhaust passage of the internal combustion engine;
10. The cylinder-by-cylinder air-fuel ratio control apparatus for an internal combustion engine according to claim 1, wherein the air-fuel ratio sensor is installed upstream of the exhaust turbine.
JP2009052707A 2009-03-05 2009-03-05 Air-fuel ratio control device for each of cylinders of internal combustion engine Pending JP2010203413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009052707A JP2010203413A (en) 2009-03-05 2009-03-05 Air-fuel ratio control device for each of cylinders of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009052707A JP2010203413A (en) 2009-03-05 2009-03-05 Air-fuel ratio control device for each of cylinders of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2010203413A true JP2010203413A (en) 2010-09-16

Family

ID=42965136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009052707A Pending JP2010203413A (en) 2009-03-05 2009-03-05 Air-fuel ratio control device for each of cylinders of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2010203413A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012092719A (en) * 2010-10-26 2012-05-17 Toyota Motor Corp Signal processor of exhaust gas sensor
JP2012107521A (en) * 2010-11-15 2012-06-07 Toyota Motor Corp Control device for internal combustion engine
US20130253802A1 (en) * 2012-03-22 2013-09-26 Toyota Jidosha Kabushiki Kaisha Inter-cylinder air-fuel ratio imbalance detection apparatus for internal combustion engine
CN104373236A (en) * 2013-08-15 2015-02-25 通用汽车环球科技运作有限责任公司 Static and dynamic pressure compensation for intake oxygen sensing
US9588017B2 (en) 2013-04-05 2017-03-07 Toyota Jidosha Kabushiki Kaisha Apparatus for detecting variation abnormality in air-fuel ratio between cylinders
US10288526B2 (en) 2014-09-24 2019-05-14 Denso Corporation Signal processing apparatus for gas sensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012092719A (en) * 2010-10-26 2012-05-17 Toyota Motor Corp Signal processor of exhaust gas sensor
JP2012107521A (en) * 2010-11-15 2012-06-07 Toyota Motor Corp Control device for internal combustion engine
US20130253802A1 (en) * 2012-03-22 2013-09-26 Toyota Jidosha Kabushiki Kaisha Inter-cylinder air-fuel ratio imbalance detection apparatus for internal combustion engine
JP2013224651A (en) * 2012-03-22 2013-10-31 Toyota Motor Corp Inter-cylinder air-fuel ratio variation abnormality detection apparatus for internal combustion engine
US9588017B2 (en) 2013-04-05 2017-03-07 Toyota Jidosha Kabushiki Kaisha Apparatus for detecting variation abnormality in air-fuel ratio between cylinders
CN104373236A (en) * 2013-08-15 2015-02-25 通用汽车环球科技运作有限责任公司 Static and dynamic pressure compensation for intake oxygen sensing
US10288526B2 (en) 2014-09-24 2019-05-14 Denso Corporation Signal processing apparatus for gas sensor

Similar Documents

Publication Publication Date Title
US7047740B2 (en) Boost pressure estimation apparatus for internal combustion engine with supercharger
US8201442B2 (en) System and method for estimating EGR mass flow rates
US7905135B2 (en) Throttle upstream pressure estimating apparatus and cylinder charged air quantity calculating apparatus for internal combustion engine
US10400697B2 (en) Control apparatus of engine
US20120304640A1 (en) Exhaust gas recirculation system for an internal combustion engine
US10006383B2 (en) Control device and control method for an internal combustion engine with a supercharger
JP2011185159A (en) Abnormality diagnosing device of internal combustion engine with supercharger
JP2016169686A (en) Control device and abnormal combustion detection method for internal combustion engine
JP2010203413A (en) Air-fuel ratio control device for each of cylinders of internal combustion engine
JP4192759B2 (en) Injection quantity control device for diesel engine
JP2013113180A (en) Controller for internal combustion engine
JP5387914B2 (en) In-cylinder inflow EGR gas flow rate estimation device for internal combustion engine
JP6860313B2 (en) Engine control method and engine
JP2007315193A (en) Air-fuel ratio detecting device of internal combustion engine
WO2014080523A1 (en) Control device of internal combustion engine
JP2010236358A (en) Signal-processing apparatus for gas sensor
JP6127906B2 (en) Control device for internal combustion engine
JP5427715B2 (en) Engine control device
JP5608614B2 (en) Engine EGR flow rate detection device
JP2006057526A (en) Failure diagnosis device for internal combustion engine
JP3956458B2 (en) Fuel injection control device for internal combustion engine
JP5929823B2 (en) Control device for internal combustion engine
JP5317022B2 (en) Fuel injection control device for internal combustion engine
JP2012007566A (en) Fuel injection control device of internal combustion engine
JP5517110B2 (en) EGR control device for internal combustion engine