JPS6296372A - Method of joining silicon nitride base sintered body - Google Patents

Method of joining silicon nitride base sintered body

Info

Publication number
JPS6296372A
JPS6296372A JP23428285A JP23428285A JPS6296372A JP S6296372 A JPS6296372 A JP S6296372A JP 23428285 A JP23428285 A JP 23428285A JP 23428285 A JP23428285 A JP 23428285A JP S6296372 A JPS6296372 A JP S6296372A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
strength
group
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23428285A
Other languages
Japanese (ja)
Other versions
JPH0635344B2 (en
Inventor
和憲 古賀
清 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP23428285A priority Critical patent/JPH0635344B2/en
Publication of JPS6296372A publication Critical patent/JPS6296372A/en
Publication of JPH0635344B2 publication Critical patent/JPH0635344B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (発明の分野) 本発明は窒化珪素質から成る焼結体同士を強固に接合す
るための方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of the Invention) The present invention relates to a method for firmly joining sintered bodies made of silicon nitride.

(従来技術) 近年、窒化珪素質焼結体はその高強度、耐熱性、耐食性
などの優れた性質を有することから、内燃機関、工具用
材料等幅広い分野に亘り、開発が進められている。しか
しながら内燃機関等の部品は高度な空気力学、材料力学
、破壊力学に基づいて設計され、非常に複雑で高精度な
ものとなっている。このような複雑な形状のものを得る
に際し、各部分を単純な部品に分割し焼結と同時に、あ
るいは焼結後にこれらを接合し一体化することが必須で
ある。
(Prior Art) In recent years, silicon nitride sintered bodies have been developed in a wide range of fields such as internal combustion engines and tool materials because of their excellent properties such as high strength, heat resistance, and corrosion resistance. However, parts of internal combustion engines and the like are designed based on advanced aerodynamics, material mechanics, and fracture mechanics, and are extremely complex and highly precise. In order to obtain such a complex shape, it is essential to divide each part into simple parts and join and integrate them at the same time as sintering or after sintering.

従来、窒化珪素質焼結体の接合は、その間にガラス質や
Ti−、Zr等の活性化金属を介在させて熱処理するか
、また金属シリコンを介在させて反応焼結させるか、あ
るいは窒化珪素粉末と焼結助剤とを介在させてホットプ
レスする等の方法が考えられている。
Conventionally, silicon nitride sintered bodies have been bonded by heat treatment with glass or activated metal such as Ti- or Zr interposed between them, by reaction sintering with metallic silicon interposed between them, or by reaction sintering with silicon nitride interposed between them. Methods such as hot pressing using a powder and a sintering aid have been considered.

(発明が解決しようとする問題点) しかしながら、ガラス質による接合では接合強度が低く
、特に、高温使用時ではガラス転移温度以上で極端に強
度が劣化する傾向にある。また、活性金属による場合は
、焼結体と金属とのぬれ性が不完全で、しかも熱膨張率
の差に基づく熱応力のために剥離が生じたり、金属であ
ることから耐熱性および耐酸化性に限度があった。さら
に反応焼結による場合は焼結体間が不連続となり、接合
強度が十分でなく、ホットプレスによる場合は、形状に
おいては制限される等の問題点が生じていた。
(Problems to be Solved by the Invention) However, the bonding strength of glass bonding is low, and particularly when used at high temperatures, the strength tends to deteriorate extremely at temperatures above the glass transition temperature. In addition, when active metals are used, the wettability between the sintered body and the metal is incomplete, and peeling may occur due to thermal stress due to the difference in coefficient of thermal expansion. There were limits to sexuality. Furthermore, when reaction sintering is used, the sintered bodies become discontinuous, resulting in insufficient bonding strength, and when hot pressing is used, there are problems such as limitations in shape.

(発明の目的) 本発明は、上記問題点を解決することを主たる目的とす
るもので、焼結体の形状にかかわらず、優れた接合強度
を得ることのできる窒化珪素質焼結体の接合方法を提供
するものである。
(Object of the Invention) The main purpose of the present invention is to solve the above-mentioned problems, and it is possible to join silicon nitride sintered bodies that can obtain excellent joint strength regardless of the shape of the sintered body. The present invention provides a method.

(問題点を解決するための手段) 即ち、本発明によれば、接合すべき窒化珪素質焼結体間
に、周期律表ma族金属の1種あるいは2種以上を1乃
至60重量%含有するアルミニウム合金を介在させて窒
素雰囲気中で1000乃至1800℃の範囲で加熱する
ことを特徴とする窒化珪素質焼結体の接合方法が提供さ
れる。
(Means for Solving the Problems) That is, according to the present invention, between the silicon nitride sintered bodies to be joined, one or more metals of group Ma of the periodic table are contained in an amount of 1 to 60% by weight. Provided is a method for joining silicon nitride sintered bodies, which is characterized by heating in a range of 1000 to 1800° C. in a nitrogen atmosphere with an aluminum alloy interposed therebetween.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明によれば、接合すべき窒化珪素質焼結体の間に周
期律表ma族金属(以下、単にma族金属という)を含
有してなるアルミニウム合金を介在させることが重要で
ある。ma族金属の微粉体は単体としては、安定して大
気中に存在することが困難であるが合金化することによ
って安定に存在させることが可能となる。しかも、各成
分は窒素との反応性に冨むために窒化珪素と強固に接合
することが可能となる。
According to the present invention, it is important to interpose an aluminum alloy containing a group MA metal of the periodic table (hereinafter simply referred to as a group MA metal) between the silicon nitride sintered bodies to be joined. It is difficult for the fine powder of the Ma group metal to exist stably in the atmosphere as a single substance, but it can be made to exist stably by alloying it. Moreover, since each component has high reactivity with nitrogen, it becomes possible to bond firmly to silicon nitride.

なお、この合金は焼結体間に介在させる場合、粉末、箔
あるいはスパッタリング等による皮膜として介在させる
Note that when this alloy is interposed between the sintered bodies, it is interposed as a powder, a foil, or a film formed by sputtering or the like.

本発明によれば、上記の合金が介在された焼結体は、1
000乃至1800℃、特ニ1100乃至1700’C
(7)窒素雰囲気中で熱処理される。
According to the present invention, the sintered body in which the above alloy is interposed has 1
000 to 1800℃, especially 1100 to 1700'C
(7) Heat treated in a nitrogen atmosphere.

この熱処理によって、合金は下記の窒化反応が生ずる。This heat treatment causes the alloy to undergo the following nitriding reaction.

N。N.

RE−AI −”  REN  +  AIN (RE
: ma族金属)この窒化反応によって生じる窒化物は
いずれも融点が上昇するとともに窒化珪素質焼結体中の
窒化珪素結晶相あるいは粒界相に固溶するため、接合部
における強度、特に、高温時の強度を高めることが可能
となる。
RE-AI -” REN + AIN (RE
: MA group metals) The nitrides produced by this nitriding reaction increase their melting point and dissolve into the silicon nitride crystal phase or grain boundary phase in the silicon nitride sintered body, which reduces the strength of the joint, especially at high temperatures. It becomes possible to increase the strength of the time.

本発明に用いられるIIIa族金属としては特にY。The Group IIIa metal used in the present invention is particularly Y.

Sc、 La+ Nd+ Sm、 Yb、 Dy等が挙
げられ、1種あるいは2種以上を用いることができ、こ
れらの中でも特にYが好ましい。
Examples include Sc, La+Nd+Sm, Yb, Dy, etc., and one type or two or more types can be used, and among these, Y is particularly preferred.

アルミニウム合金中のma族金属の割合は、1乃至60
重量%、好ましくは10乃至50重量%の範囲に設定さ
れる。
The proportion of ma group metal in aluminum alloy is 1 to 60
It is set in a range of 10 to 50% by weight, preferably 10 to 50% by weight.

ma族金属の量が上記範囲よりも少ないと窒化珪素との
反応性が低下し、均質、高強度の接合ができず、上記範
囲を越えると、ma族金属の窒化物の割合が増加し、化
学的に不安定となる。また、ma族金属は一般に高価で
あり不経済である。
If the amount of the MA group metal is less than the above range, the reactivity with silicon nitride will decrease, making it impossible to form a homogeneous, high-strength bond; if it exceeds the above range, the proportion of the nitride of the MA group metal will increase, Becomes chemically unstable. Furthermore, the MA group metals are generally expensive and uneconomical.

なお、この時、熱処理における温度が1000℃より低
いと窒化反応、および窒化珪素への反応が進まず、十分
な強度を得ることができない。一方、1800℃を越え
ると5iJa とAINとの反応により分解が激しくな
る。
At this time, if the temperature in the heat treatment is lower than 1000° C., the nitriding reaction and the reaction to silicon nitride will not proceed, making it impossible to obtain sufficient strength. On the other hand, when the temperature exceeds 1800°C, the decomposition becomes more intense due to the reaction between 5iJa and AIN.

また、熱処理時の窒素圧力は窒化珪素の平衡窒素ガス分
圧の10倍程度が好ましい。
Further, the nitrogen pressure during the heat treatment is preferably about 10 times the equilibrium nitrogen gas partial pressure of silicon nitride.

本発明において用いられるma族金属とアルミニウムと
の合金は通常の方法で作成することができ、例えば、各
々の金属粉末を混合した後、非酸化性雰囲気中で700
乃至1500℃に融解し、その後冷却することによって
得られる。
The alloy of the MA group metal and aluminum used in the present invention can be created by a normal method. For example, after mixing the respective metal powders,
It is obtained by melting at a temperature of 1500°C to 1500°C and then cooling.

なお、本発明によれば、1IIa族金属−アルミニウム
合金中に10重量%以下の範囲でSi、 A1.03、
REz(h等を加えることも可能である。
According to the present invention, Si, A1.03,
It is also possible to add REz(h, etc.).

本発明において用いられる窒化珪素質焼結体としては、
特に限定されるものではなく、公知の焼結体が採用し得
る。例えば窒化珪素を主成分とし、他の成分として、イ
ツトリウム等の周期律表IIIa族元素の酸化物、窒化
物、あるいは5iOz、Al2O2、MgO% ZrO
,等の酸化物等の従来から知られる焼結助剤を含む系の
他、サイアロン等が挙げられる。
The silicon nitride sintered body used in the present invention includes:
There are no particular limitations, and any known sintered body may be used. For example, silicon nitride is the main component, and other components include oxides and nitrides of Group IIIa elements of the periodic table such as yttrium, or 5iOz, Al2O2, MgO% ZrO.
In addition to systems containing conventionally known sintering aids such as oxides such as oxides such as oxides such as oxides such as oxides such as oxides such as oxides such as

発明を以下の例で説明する。The invention is illustrated by the following example.

実施例 第1表に示す組成のma族金属−アルミニウム合金から
なる合金箔(0,1mm)をSi:+N492χ、Y2
O55%、A1□033zの組成から成る窒化珪素質焼
結体の中に挿入し、1気圧の窒素雰囲気中で1時間、第
1表の温度にて熱処理を行った。
Example Alloy foil (0.1 mm) consisting of a Ma group metal-aluminum alloy having the composition shown in Table 1 was prepared by Si: +N492χ, Y2
It was inserted into a silicon nitride sintered body having a composition of 55% O and A1□033z, and heat-treated at the temperature shown in Table 1 for 1 hour in a nitrogen atmosphere of 1 atmosphere.

得られた接合体は、JISl?1601に基づき、4点
曲げにて室温(RT)、1000℃、1200℃での接
合強度を第1表 第1表からも明らかなように、本発明のサンプル阻1乃
至5はいずれも高い接合強度を示し、特に1200℃で
も10Kg/mm2以上の抗折強度が確保できた。
The obtained zygote was JISl? As is clear from Table 1, samples 1 to 5 of the present invention all had high bonding strengths at room temperature (RT), 1000°C, and 1200°C in four-point bending based on 1601. In particular, even at 1200°C, a bending strength of 10 Kg/mm2 or more was secured.

これに対し、I[[a族金属の量の多い隘6は室温での
強度は本発明とかわらないが、高温強度が劣っていた。
On the other hand, No. 6, which had a large amount of group I[[a metal, had the same strength at room temperature as the present invention, but was inferior in high temperature strength.

逆に^1が多いN11L7では、いずれの温度でも十分
な強度が得られず、1000℃、1200℃ではほとん
ど測定できなかった。
On the contrary, N11L7, which has a large amount of ^1, could not obtain sufficient strength at any temperature, and could hardly be measured at 1000°C and 1200°C.

(発明の効果) 以上、述べたように本発明によれば、周期律表IIIa
族金属とアルミニウムとの合金を介在させて、窒素雰囲
気で熱処理することにより、接合強度、特に高温時にお
ける接合強度を向上させることができることから、複雑
形状の耐熱材料として、例えば、ガスタービン等の内熱
機関、大型部品等の幅広い分野に亘り応用できるもので
ある。
(Effect of the invention) As described above, according to the present invention, periodic table IIIa
By interposing an alloy of a group metal and aluminum and heat-treating it in a nitrogen atmosphere, it is possible to improve the bonding strength, especially the bonding strength at high temperatures. It can be applied to a wide range of fields such as internal heat engines and large parts.

Claims (1)

【特許請求の範囲】[Claims] (1)接合すべき窒化珪素質焼結体間に、周期律表III
a族金属の1種あるいは2種以上を1乃至60重量%含
有するアルミニウム合金を介在させて窒素雰囲気中で1
000乃至1800℃の範囲で加熱することを特徴とす
る窒化珪素質焼結体の接合方法。
(1) Between the silicon nitride sintered bodies to be joined,
1 in a nitrogen atmosphere with an aluminum alloy containing 1 to 60% by weight of one or more group A metals.
A method for joining silicon nitride sintered bodies, the method comprising heating in a range of 000 to 1800°C.
JP23428285A 1985-10-18 1985-10-18 Method for joining silicon nitride sintered bodies Expired - Lifetime JPH0635344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23428285A JPH0635344B2 (en) 1985-10-18 1985-10-18 Method for joining silicon nitride sintered bodies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23428285A JPH0635344B2 (en) 1985-10-18 1985-10-18 Method for joining silicon nitride sintered bodies

Publications (2)

Publication Number Publication Date
JPS6296372A true JPS6296372A (en) 1987-05-02
JPH0635344B2 JPH0635344B2 (en) 1994-05-11

Family

ID=16968532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23428285A Expired - Lifetime JPH0635344B2 (en) 1985-10-18 1985-10-18 Method for joining silicon nitride sintered bodies

Country Status (1)

Country Link
JP (1) JPH0635344B2 (en)

Also Published As

Publication number Publication date
JPH0635344B2 (en) 1994-05-11

Similar Documents

Publication Publication Date Title
US4938922A (en) Gold-nickel-titanium brazing alloy
EP0146024A2 (en) Method for bonding ceramics to metals
JPS6296372A (en) Method of joining silicon nitride base sintered body
JPH02108493A (en) Ceramics joining material
JP3081256B2 (en) Alloy for metallizing ceramics and metallizing method
JP3154771B2 (en) Silicon nitride ceramic bonding agent
JPS6032648A (en) Method of metallizing ceramics and alloy foil for metallizing ceramics
JP2729751B2 (en) Joining method of alumina ceramics and aluminum
JPS6345194A (en) Aluminum nitride sintered body with metallized surface and manufacture
JP2822200B2 (en) Ceramics for aluminum alloy diffusion bonding
JPS6177681A (en) Method of bonding nitride ceramics
JPS63170279A (en) Ceramic joining method
KR0179194B1 (en) High-temperature brazing alloys for ceramic metal joints
JPS63206365A (en) Joined body of ceramic and metal
JPS6077181A (en) Ceramic-metal bonded body
JPS60180968A (en) Insert material for bonding nitride ceramic
JPS61209965A (en) Method of bonding silicon nitride ceramic to aluminum
JPH05148050A (en) Joining agent for silicon nitride ceramics
JPS61101474A (en) Ceramic soldering method
JPS5895669A (en) Method of bonding ceramics and metals
JPS6317267A (en) Solder material for joining ceramics each other or ceramic and metal
JPH05148049A (en) Joining agent for silicon nitride ceramics
JPS60137876A (en) Metallization of nitride ceramic surface
JPS61209967A (en) Method of bonding silicon nitride ceramic to metal
JPS59121171A (en) Method of joining ceramic member and metal member