JPS6296338A - Production of optical fiber preform - Google Patents

Production of optical fiber preform

Info

Publication number
JPS6296338A
JPS6296338A JP23556285A JP23556285A JPS6296338A JP S6296338 A JPS6296338 A JP S6296338A JP 23556285 A JP23556285 A JP 23556285A JP 23556285 A JP23556285 A JP 23556285A JP S6296338 A JPS6296338 A JP S6296338A
Authority
JP
Japan
Prior art keywords
sol
core
raw material
clad
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23556285A
Other languages
Japanese (ja)
Inventor
Haruo Nagafune
長船 晴夫
Sadao Kanbe
貞男 神戸
Masatake Matsuo
誠剛 松尾
Masanobu Motoki
元木 正信
Yoshitaka Ito
嘉高 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP23556285A priority Critical patent/JPS6296338A/en
Publication of JPS6296338A publication Critical patent/JPS6296338A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/016Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by a liquid phase reaction process, e.g. through a gel phase

Abstract

PURPOSE:To form an integrated dry gel free from delamination at the interface between a clad and a core, by gelatinizing a raw material sol for clad and pouring a raw material sol for core into the hollow part of the clad material within a specific period. CONSTITUTION:A raw material sol for clad composed mainly of silicone alkoxide is gelatinized under rotation in a rotary vessel and a raw material sol for clad is poured into the hollow part of the gelatinized clad material and left at rest. As an alternative method, the poured sol for core is gelatinized under rotation to obtain an integrated gel of clad and core. The above process is carried out in a manner to satisfy the formula Tint<5Tg wherein Tint is period from the gelatinization of the raw material sol for clad to the pouring of the raw material sol for core and Tg is time required for the gelatinization of the raw material sol for clad. An integrated dry gel free from delamination at the interface between a clad and a core can be produced in high yield and a high-quality optical fiber can be produced from the dry gel at a low cost.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ゾル−ゲル法による光ファイバー母材の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing an optical fiber preform by a sol-gel method.

〔発明の概要〕[Summary of the invention]

本発明はシリコンアルコキシドを主原料とするゾル−ゲ
ル法による光ファイバー母材の製造方法において、クラ
ッド用原料ゾルを回転容器中で回転させながらゲル化さ
せた後、中空部にコア用原料ゾルを流し込んで静置、あ
るいは回転させながらゲル化させクラッド−コア一体化
ゲルを作る過程で、クラッド用原料ゾルがゲル化した後
、コア用原料ゾルを流し込むまでの時間が、クラッド用
原料ゾルがゲル化に要した時間の5倍以下であるような
方法でゲルを作り、これを乾燥、焼結し透明ガラス体と
する光ファイバー母材の製造方法である。
The present invention is a method for manufacturing an optical fiber base material using a sol-gel method using silicon alkoxide as the main raw material, in which the raw material sol for the cladding is gelled while rotating in a rotating container, and then the raw material sol for the core is poured into the hollow part. In the process of making a cladding-core integrated gel by allowing it to gel while standing still or rotating it, the time from when the raw material sol for the cladding gels until the raw material sol for the core is poured is the time required for the raw material sol for the cladding to gel. This is a method for producing an optical fiber base material, in which a gel is prepared in a time less than five times the time required for the process, and the gel is dried and sintered to form a transparent glass body.

〔従来の技術〕[Conventional technology]

ゾル−ゲル法による光ファイバー母材の製法がいくつか
報告されている。ゾル−ゲル法は原料の精製が容易なこ
と、材料の選択性が広いこと、転移点以下で透明ガラス
体が得られるため製造コストが低いことなどの長所を有
しておシ、高品質で安価にしかも大量に光7アイパー母
材を提供し得る方法として、注目を集めている。
Several methods for producing optical fiber preforms using the sol-gel method have been reported. The sol-gel method has the advantages of easy purification of raw materials, wide selection of materials, and low manufacturing costs because transparent glass bodies can be obtained below the transition point. This method is attracting attention as a method that can provide Hikari 7 Eyeper base material in large quantities at low cost.

例えば(特開昭57−22137)  引き抜きSt−
備えた管状容器中にクラッド用原料であるアルキルシリ
ケートの加水分## ′t−gし入nゲル化させた後、
引き抜き婦を引き抜き、中空部にドーパントヲ含むアル
キルシリケートの加水分s/#at入れてゲル化させ、
コアークラッド一体化ゲルを作シ乾燥、焼結して光ファ
イバー用母材とする方法がある。また、円筒容器中に原
料[−入れ、回転させながらゲル化させる方法を用いて
も、光ファイバー母材の製造法が報告されている(特開
昭58−99134)。最近になって、ゾル−ゲル法に
よ妙大型の光ファイバー母材が製造できる画期的な方法
が報告された(当社特許整理A20671)。
For example (Unexamined Japanese Patent Publication No. 57-22137) Pulling St-
After the hydrolysis of the alkyl silicate, which is the raw material for the cladding, was poured into a tubular container equipped with the gel,
Pull out the pulled woman, add hydrolyzed water s/#at of alkyl silicate containing dopant into the hollow part, and gel it.
There is a method of producing, drying, and sintering a core-clad integrated gel to use as a base material for optical fibers. Furthermore, a method for producing an optical fiber preform has been reported in which the raw material is placed in a cylindrical container and gelated while being rotated (Japanese Patent Laid-Open No. 58-99134). Recently, an epoch-making method for producing a fairly large optical fiber base material using the sol-gel method has been reported (our patent arrangement A20671).

この方法を簡単に説明すると、アルキルシリケートの酸
性触媒による加水分解液と、同じくアルキルシリケート
のアンモニア触媒による加水分解によって得られる微粒
子シリカとを混合したものを原料ゾルとし、PH調整を
した後、円筒容器に流し入れ回転させながらゲル化させ
た後、中空部に屈折率調整用のドーパントを含むゾルを
流し入れ同様に回転しながらゲル化させ、必要ならばさ
らに同様の操作を行なうことによ勺、クラッド−コア一
体化ゲルを作シ、これを乾燥、焼結して光ファイバー母
材とするものである。このような方法においては、内部
に比較的大きい細孔を有しながらも、粒子間結合の強い
ドライゲルを作ることができ、従って火星の光ファイバ
ー母材を製造することが可能である。
To briefly explain this method, a raw material sol is a mixture of a hydrolysis solution of an alkyl silicate using an acid catalyst and fine particle silica obtained by hydrolysis of an alkyl silicate using an ammonia catalyst. After pouring into the container and gelling it while rotating, pour the sol containing a dopant for adjusting the refractive index into the hollow part and gelling it while rotating in the same way. - A core-integrated gel is produced, dried and sintered to form an optical fiber base material. In such a method, it is possible to create a dry gel with strong interparticle bonding even though it has relatively large pores inside, and therefore it is possible to manufacture a Mars optical fiber base material.

〔発明が解決しようとする問題点および目的〕ところで
、上記発明において、ドライゲルの歩留りを著しく低下
させる現象として、クラッドゲルとコアゲルの剥離現象
がめる。その原因としてクラッド用ゾルがゲル化した後
、コア用ゾルを流し込む間に表面の活性度が低下するこ
とが考えられる。本発明における原料ゾルは、シリカ粒
子間あるいは内部で脱水組合反応を起こしつつゲル化し
、ゲル化後も徐々に縮合反応が進む。つまシ、ゲル化直
後は少なくとも表面においては未が縮合反応を起こして
いない活性種、すなわち自由水配基が多数存在するが、
時間の経過とともに縮合反応が進みその数は徐々に減少
していく。これにしたがい、ゲル表面が他のゲルと結合
するための活性も徐々に失なわれていくものと考えられ
る。
[Problems and Objects to be Solved by the Invention] In the above invention, a peeling phenomenon between the clad gel and the core gel is recognized as a phenomenon that significantly reduces the yield of dry gel. A possible cause of this is that after the cladding sol gels, the surface activity decreases while the core sol is poured. The raw material sol in the present invention gels while causing a dehydration combination reaction between or within the silica particles, and even after gelation, the condensation reaction gradually progresses. Immediately after gelation, at least on the surface, there are many active species that have not yet undergone a condensation reaction, that is, free water groups.
As time passes, the condensation reaction progresses and the number gradually decreases. Accordingly, it is thought that the activity of the gel surface to bond with other gels is gradually lost.

本発明は、従来のゾル−ゲル法による光ファイバー母材
の製造方法の上記問題点?解決するもので、その目的は
、クラッド−コア間で剥離現象のない一体化ドライゲル
を歩留シ良く製造する方法全提供することにある。
The present invention solves the above-mentioned problems of the conventional sol-gel method for manufacturing optical fiber preforms. The purpose of the present invention is to provide a method for producing an integrated dry gel with a high yield without peeling between the cladding and the core.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のゾル−ゲル法による光ファイバー母材の製造方
法は、クラッド用ゾルを同表容器中で回転させガからゲ
ル化させた後、クラッドゲルの内表面が充分活性状態に
ある間にコア用ゾルを流し込みs #’lsあるいは回
転させながらゲル化させることにより、クラッド−コア
界面の結合力の強固な一体化ドライゲルを作ることを特
徴とする。
In the method of manufacturing an optical fiber base material by the sol-gel method of the present invention, the sol for the cladding is rotated in the same container to form a gel, and then, while the inner surface of the cladding gel is in a sufficiently active state, the sol for the core is It is characterized by creating an integrated dry gel with strong bonding force at the cladding-core interface by gelling it while pouring it or rotating it.

ゲル表面の活性は脱水縮合反応速度に依存しており、反
応速度が遅い程、ゲルの表面活性度も長く保存されるも
のと考えられる。また縮合反応速度はゾルのゲル化時間
を規定するため、クラッド用ゾルのゲル化時間がゲル化
後の表面活性時間、すなわちコア用ゾルを流し込むまで
の有効な時間を決める目安となり得る。クラッド用ゾル
のゲル化後、コア用ゾルt−gし込むまでの時間(Ti
nt)が、クラッド用ゾルがゲル化に要した時間(Tg
)の5倍を越えるとクラッドゲルとコアゲルは結合しな
い。すなわち、クラッドゲルとコアゲルが剥離しない条
件はTint (5Tgであるが、好ましくはTint
 (37g 1さらに好ましくはTint (Tgであ
る。
The activity of the gel surface depends on the dehydration condensation reaction rate, and it is thought that the slower the reaction rate, the longer the gel surface activity will be preserved. Furthermore, since the condensation reaction rate determines the gelation time of the sol, the gelation time of the cladding sol can serve as a guideline for determining the surface activation time after gelation, that is, the effective time until the core sol is poured. Time from gelation of sol for cladding to penetration of core sol t-g (Ti
nt) is the time required for the cladding sol to gel (Tg
), the clad gel and core gel will not bond. That is, the conditions under which the clad gel and core gel do not separate are Tint (5Tg, but preferably Tint
(37g 1 More preferably Tint (Tg).

なおs Tgが長いと、長時間表面活性度が保存される
という点では有利でめるが、ゲルそのものの強度が長時
間向上せず、回転答器全止めると自重でつぶれてしまう
など製造効率が低下するだめ仕込み時の操作性等と考え
合わせて最]値″、f−選択する必要がある。
A long Tg is advantageous in that the surface activity is preserved for a long time, but the strength of the gel itself does not improve for a long time and the gel collapses under its own weight when the rotation reactor is completely stopped, resulting in poor production efficiency. It is necessary to select the highest value f, taking into account the operability during preparation, etc.

〔実施例1〕 ■ アンモニア合成シリカ(アンモシール)の調製 精製した市販のエチルシリケー) 10509にエタノ
ール4500/アンモニア水(29%)3582、水3
632を加え2時間攪拌した後、−夜静+itした。こ
れにより、平均校区α15μmのシリカ微粒子がき成さ
れた。ロータリーエバポレーターと112!用し、上記
合成液全シリカ濃度が(L4(1/(:IC!になるま
で減圧濃縮した。これに2規定塩酸を滴下し、PH′f
:4.50に調整した(体積860rat ) ■ クラッド用ゾル調製 精製した市販のエチルシリケート687fに[L02規
定塩漬268vを混合して攪拌し、加水分pf!に行な
った。前記アンモジル′WL688.gi加えて、クラ
ッド用ゾルとした。
[Example 1] ■ Preparation of ammonia synthetic silica (Ammosil) Purified commercially available ethyl silica) 10509, ethanol 4500/ammonia water (29%) 3582, water 3
After adding 632 and stirring for 2 hours, the mixture was stirred. As a result, fine silica particles having an average area α of 15 μm were formed. Rotary evaporator and 112! The above synthetic solution was concentrated under reduced pressure until the total silica concentration became (L4(1/(:IC!). 2N hydrochloric acid was added dropwise to this, and the PH'f
: Adjusted to 4.50 (volume 860 rat) ■Preparation of sol for cladding 687f of purified commercially available ethyl silicate was mixed with 268v of [L02 normal salting], stirred, and hydrolyzed pf! I went to Said Ammodyl'WL688. In addition, it was used as a sol for cladding.

(リ コア用ゾル調整 精製した市販のエチルシリケー)、160Fに(102
規定遠d21’s :”夕/−ル55 fを加え攪拌し
、エチルシリケートの部分加水分解を行なった。これに
テトラエトギシゲルマニ9ム(T K G)10.8f
とエタノール9.5fの混合濡液を滴下して加え約50
分攪拌した後(LO2規定塩[4αorを加えて攪拌し
加水分解を完全に終了させた。これにF¥ri記アンモ
ジル液172−?加えてコア用ゾルとした。
(commercially available ethyl silica prepared and purified with sol for recore), 160F (102
Specified distance d21's: 55 f of alcohol was added and stirred to perform partial hydrolysis of ethyl silicate. To this, 10.8 f of tetraethyl silicate was added.
Add a wet mixture of ethanol and 9.5 f of ethanol dropwise for about 50 minutes.
After stirring for 1 minute, (LO2 normal salt [4αor) was added and stirred to complete hydrolysis. To this was added 172-? of ammodyl solution according to F\ri to obtain a core sol.

■ 予備笑験 PH値によってゲル化時間が異なることを利用して、ク
ラッド用ゾルをr:1.2規定アンモニア水によ#)櫨
々のPHに、14tFLポリエチレン製ビーカに入れ、
各ゾルがそれぞれのゲル化時間でゲル化後、その上にコ
ア用ゾルt−gし入れでゲル化させた。
■ Preliminary experiment Taking advantage of the fact that gelation time differs depending on the pH value, put the sol for cladding into a 14t FL polyethylene beaker at a pH of 1.2 normal ammonia water.
After each sol was gelled at its own gelation time, the core sol t-g was placed on top of the gel to form a gel.

このときクラット用ゾルがゲル化後からコア用ゾル全流
し込むまでの時間を種々変えた。それぞれアルミはくで
フタ倉しピンホールを開け、60℃の恒温室内で乾燥さ
せた。ピンホールの穴の数など乾燥条件はすべて同一と
し念。乾燥完了までのそれぞれのゲルについて、界面で
の剥離状態を以下にまとめた。
At this time, the time from when the sol for the crat was gelled to when the sol for the core was completely poured was varied. Each lid was covered with aluminum foil, a pinhole was drilled, and the mixture was dried in a thermostatic chamber at 60°C. Make sure that all drying conditions, such as the number of pinholes, are the same. The state of peeling at the interface for each gel until completion of drying is summarized below.

◎・・・・・・乾朦後完全ンこ一体化 ○・・・・・・乾燥後部分的に剥離 Δ・・・・・・乾燥中に剥離 ×・・・・・・ゲル死後2日以内に剥離■ クラッド−
コア一体化ゲルの作製 ■と同様に調整したクラッド用ゾルi0.2規定アンモ
ニア水を用いてP 115.OOに調整し、水を加えて
最終体積を2000m1にした。回転容器として内径5
.am長さ102備の円筒容器に上記クラット用ゾル1
886mtkMtL込れ、シリコーンゴム装のフタをし
て図1に示すI!!1転装置lにとりつけた。
◎・・・・・・Completely integrated after drying ○・・・・・・Partially peeled off after drying Δ・・・・・・Peeled during drying×・・・・・・2 days after gel death Peeling within ■ Cladding
Preparation of core integrated gel P115. Adjusted to OO and added water to a final volume of 2000 ml. Internal diameter 5 as a rotating container
.. The above Krat sol 1 is placed in a cylindrical container with a length of 102 am.
886mtkMtL included and a silicone rubber cap as shown in Figure 1. ! I attached it to the 1st transfer device.

これを回転数1500φmで回転させ、SO外分後モニ
ターサンプルがゲル化したことを確認した上でさらに5
分間回転させゲルの強度がある程度高くなったところで
、回転装置よシとシはすし、中空部にPHを4.80.
最終体fRt−saa−に調整したコア用ゾルを流し入
れてゲル化させた。この時、クラッド用ゾルがゲル化し
てからコア用ゾルt−流し入れるまでの時間は20分で
あった。
This was rotated at a rotational speed of 1500φm, and after confirming that the monitor sample had gelled after being separated from the SO, an additional 5
Rotate for a minute, and when the strength of the gel has increased to a certain extent, remove the rotating device and set the pH of the hollow part to 4.80.
The prepared core sol was poured into the final product fRt-saa- and gelled. At this time, the time from when the cladding sol gelled to when the core sol was poured was 20 minutes.

■ 乾燥 上記方法で作製したゲルを、アクリル製箱型容器(タテ
f2GcNXヨコ1o譚×高さ25cWt)に移し替え
、開口541%のフタをして、60℃に保持した恒温室
内で乾燥させた。
■Drying The gel prepared by the above method was transferred to an acrylic box-shaped container (vertical f2GcNX horizontal x 10 cm x height 25 cWt), covered with a lid with an opening of 541%, and dried in a thermostatic chamber maintained at 60°C. .

20日後、上記ゲルは、クラッド−コア界面で剥離をお
こすことなく完全な形で乾燥が終了した。
After 20 days, the gel was completely dried without peeling at the cladding-core interface.

(外径五250×長さ65G) の 焼結 上記ドライゲルをガス雰囲炉で以下のプログラムに従い
焼結を行なった。
The above-mentioned sintered dry gel (outer diameter: 5250×length: 65G) was sintered in a gas atmosphere furnace according to the following program.

室温から200℃まで30℃/ h rで昇温しその温
度で10時間保持した後、300℃まで50’C/hr
で昇温し、その温度で10時間保持した。
Raise the temperature from room temperature to 200°C at a rate of 30°C/hr, hold at that temperature for 10 hours, then increase the temperature to 300°C at a rate of 50'C/hr.
The temperature was raised at 100° C. and maintained at that temperature for 10 hours.

さらに60℃/ hrで900℃まで昇温し5時間保持
した。以上の焼結はすべて窒素と酸素の混合雰囲気(N
t:O!==4 : 1 )で行なった。次に、900
℃のままでヘリウムと塩素の混合雰囲気(ae:cz、
=1o:1)に替へ1時間保持した後、60℃/hrで
1000℃に昇温し、そこで2時間保持した。次に、酸
素だけを流して60℃/hrで1100℃に昇温し20
時間保持した。次にヘリウムだけを流して、30℃/h
rで1250℃まで昇温し5時間保持したところで、ガ
ス雰囲気炉より試料をとり出し、箱型の電気炉に移し、
60’C/hrで1400℃まで昇温、1時間保持した
ところ、タララド−コア構造をもつ透明ガラス体の光フ
ァイバー母材(外径2.35.X長さ47cIn%クラ
ッド径/コア径=571)が得られた。
The temperature was further increased to 900°C at a rate of 60°C/hr and held for 5 hours. All of the above sintering was performed in a mixed atmosphere of nitrogen and oxygen (N
t:O! ==4:1). Next, 900
A mixed atmosphere of helium and chlorine (ae: cz,
= 1o:1) and held for 1 hour, the temperature was raised to 1000°C at 60°C/hr and held there for 2 hours. Next, the temperature was raised to 1,100°C at a rate of 60°C/hr while only oxygen was flowing, and the temperature was increased to 1100°C for 20
Holds time. Next, flow only helium at 30℃/h.
When the temperature was raised to 1250 °C with R and held for 5 hours, the sample was taken out from the gas atmosphere furnace and transferred to a box-shaped electric furnace.
When the temperature was raised to 1400°C at 60'C/hr and held for 1 hour, an optical fiber base material of transparent glass body with Talarado core structure (outer diameter 2.35. )was gotten.

またプリ7オームアナライサンによシ屈折率分布を測定
したところΔn;α5Xのステップ型分布をしているこ
とが判明し九。
Furthermore, when the refractive index distribution was measured using a pre-7 ohm analyzer, it was found that it had a step-type distribution with Δn; α5X.

■ 線引き、損失粁価 上記光ファイバー母材の外周を研磨した後、市販の石英
ガラス管をジャケットして線引きすることにより、クラ
ツド径125μmコア径10μmのシングルモードファ
イバーとした。また同時にシリコーン樹脂をコーティン
グしファイバーを補強した。
(2) Drawing and Loss After polishing the outer periphery of the optical fiber base material, a commercially available quartz glass tube was jacketed and drawn to obtain a single mode fiber with a cladding diameter of 125 μm and a core diameter of 10 μm. At the same time, the fibers were reinforced by coating them with silicone resin.

カットバック法によシ光損失波長特性を調べたところ、
185μmで2.54B/Km、  t 56 μmで
14 dB/Kmであった。
When we investigated the optical loss wavelength characteristics using the cutback method, we found that
It was 2.54 B/Km at 185 μm and 14 dB/Km at t 56 μm.

〔発明の効果〕〔Effect of the invention〕

以上、説明したように、ゾル−ゲル法による光ファイバ
ー母材の製造方法において、クラッド用ゾルがゲル化に
要した時間の5倍以下の時間で、コア用ゾルをクラッド
用ゲル中空部に流し込みゲル化させ乾燥させることによ
シ、クラッド−コア界面での剥離のない一体化ドライグ
ルができる。
As explained above, in the method for manufacturing an optical fiber base material by the sol-gel method, the core sol is poured into the hollow part of the cladding gel in a time less than five times the time required for the cladding sol to gel. By drying and drying, an integrated dry glue without peeling at the cladding-core interface can be obtained.

また、これにより得られる元ファイバーの特性は、V、
AD法等に比しても遜色のないものであシ、今後大きな
需要が予測される光通信用として、安価で高品質の光フ
ァイバーが提供できる方法となろう。
In addition, the characteristics of the original fiber obtained by this are V,
This method is comparable to the AD method, etc., and will be a method that can provide inexpensive, high-quality optical fibers for optical communications, for which demand is expected to be large in the future.

また、このような異種ゲル同志の接合に関しては、例え
はゾル−ゲル法により光導波路等の作製にも応用できる
Furthermore, such bonding of different types of gels can be applied to the production of optical waveguides and the like, for example, by the sol-gel method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は管状ゲル作成に使用する回転装置の概略図。 1・・・・・・円筒形容器 2・・・・・・モーター 5・・・・・・軸受け 4・・・・・・固定治具 5・・・・・・ガイドレール 6・・・・・・支持台。 以上 1・・・円部カ容蓄 2・・・ L−ター 3・・・軸争は 生11.固自刃具 号、、、−tr’イ冒し−1し ら10.シ井目 1゛だ〒゛1シイ繁J羨゛1:使用73回転装置の概略
図 第1図
FIG. 1 is a schematic diagram of a rotating device used to create a tubular gel. 1...Cylindrical container 2...Motor 5...Bearing 4...Fixing jig 5...Guide rail 6... ...Support stand. Above 1... Circular power capacity 2... L-tar 3... Axis conflict is raw 11. Gunji tool number...-tr'i-Ikashi-1 Shira 10. This is the 1st page of the series.1: Schematic diagram of the 73 rotating device used Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)シリコンアルコキシドを主原料とするゾル−ゲル
法による光ファイバー母材の製造方法において、クラッ
ド用原料ゾルを回転容器中で回転させながらゲル化させ
た後、中空部にコア用原料ゾルを流し込んで静置、ある
いは回転させながらゲル化させクラッド−コア一体化ゲ
ルを作る過程で、クラッド用原料ゾルがゲル化した後、
コア用原料ゾルを流し込むまでの時間が、クラッド用原
料ゾルがゲル化に要した時間の5倍以下であることを特
徴とする光ファイバー母材の製造方法。
(1) In a method for manufacturing an optical fiber base material using a sol-gel method using silicon alkoxide as the main raw material, the raw material sol for the cladding is gelled while rotating in a rotating container, and then the raw material sol for the core is poured into the hollow part. After the raw material sol for the cladding is gelled in the process of making a cladding-core integrated gel by allowing it to gel while standing still or rotating,
A method for producing an optical fiber base material, characterized in that the time required to pour the core raw material sol is five times or less the time required for the cladding raw material sol to gel.
JP23556285A 1985-10-22 1985-10-22 Production of optical fiber preform Pending JPS6296338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23556285A JPS6296338A (en) 1985-10-22 1985-10-22 Production of optical fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23556285A JPS6296338A (en) 1985-10-22 1985-10-22 Production of optical fiber preform

Publications (1)

Publication Number Publication Date
JPS6296338A true JPS6296338A (en) 1987-05-02

Family

ID=16987826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23556285A Pending JPS6296338A (en) 1985-10-22 1985-10-22 Production of optical fiber preform

Country Status (1)

Country Link
JP (1) JPS6296338A (en)

Similar Documents

Publication Publication Date Title
CA1139102A (en) Method of producing mother rods for optical fibers
US4680046A (en) Method of preparing preforms for optical fibers
JPH06122530A (en) Refractive index gradient type glass and sol-gel method for manufacture thereof
US4902650A (en) Gradient-index glass
US5919280A (en) Method for fabricating silica glass
JPS6296338A (en) Production of optical fiber preform
US8763430B2 (en) Method for manufacturing grin lens
JPS6296339A (en) Production of optical fiber preform
JP2818707B2 (en) Method for producing quartz glass base material
JPH09202652A (en) Production of refractive distribution type optical element
JPS62288130A (en) Production of preform for quartz based optical fiber
JP2512294B2 (en) Optical fiber and manufacturing method thereof
JPS62100446A (en) Production of base material for rod in tube optical fiber
JPS6296340A (en) Production of optical fiber preform
JPS6081034A (en) Manufacture of base material for optical fiber
JPS6096533A (en) Preparation of quartz glass tube
JPS62292651A (en) Production of base material for quartz optical fiber
JPS60215539A (en) Manufacture of optical fiber preform
JPS62288117A (en) Production of doped silica glass
JPS61106433A (en) Production of optical fiber base material
JPS62246835A (en) Production of base material for quartz glass optical fiber
JPS62187131A (en) Method for preparing base material for quartz optical fiber
JPS62265140A (en) Production of cylindrical optical fiber base material
JPS62278139A (en) Production of optical fiber preform
JPS63144137A (en) Production of optical fiber preform