JPS6295866A - Manufacture of photosensor - Google Patents

Manufacture of photosensor

Info

Publication number
JPS6295866A
JPS6295866A JP60235146A JP23514685A JPS6295866A JP S6295866 A JPS6295866 A JP S6295866A JP 60235146 A JP60235146 A JP 60235146A JP 23514685 A JP23514685 A JP 23514685A JP S6295866 A JPS6295866 A JP S6295866A
Authority
JP
Japan
Prior art keywords
film
transparent electrode
ito
sputtering
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60235146A
Other languages
Japanese (ja)
Other versions
JPH0712078B2 (en
Inventor
Yasuo Tanaka
靖夫 田中
Hideaki Yamamoto
英明 山本
Akira Sasano
笹野 晃
Toshihisa Tsukada
俊久 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60235146A priority Critical patent/JPH0712078B2/en
Publication of JPS6295866A publication Critical patent/JPS6295866A/en
Publication of JPH0712078B2 publication Critical patent/JPH0712078B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer

Abstract

PURPOSE:To realize deposition of film by providing the target mainly composed of indium oxide at the planar magnetron cathode and executing high frequency magnetron sputtering in the manufacture of transparent electrode mainly composed of indium oxide. CONSTITUTION:A lower metal electrode pattern 1 is formed on an insulating substrate 5 and a-Si:H photoconductive pattern 2 is then formed. Next, the In2O3 system transparent electrode 3 is deposited by the sputtering method. For the In2O3 system target, the ITO target in the composition of In2O3 91mol% + SnO2 9mol% is used. For the sputtering, a planar magnetron type sputtering device comprising a magnet for discharge focusing on the cathode at which the target is provided is used. Finally, a sensor is formed by applying of the transparent passivation film 4, formation of metal wiring pattern by the vacuum deposition of mask and mounting of an IC for driving.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はファクシミIJやOCRなどの画像読取装置に
用いられるセンサの透明電極に係り、特に、光導電膜と
して水素化非晶質シリコン(a−8i:H)を用い、透
明電極としてI To (Indium TinQxi
de)等酸化インジウム(I nzOs)k主体とした
透明電極を用いた場合の透明電極の形成方法に関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to a transparent electrode of a sensor used in an image reading device such as a facsimile IJ or OCR. 8i:H) and I To (Indium TinQxi) as a transparent electrode.
de) A method for forming a transparent electrode using a transparent electrode mainly composed of indium oxide (InzOs).

〔発明の背景〕[Background of the invention]

従来、非晶質水素化シリコンと酸化インジウム系の酸化
物透明電極とは良好な整流性のきテロ接合を形成し、撮
像デバイス、ファクシミリ用の密着形−次元センサ、O
CR等に応用されている。
Conventionally, amorphous hydrogenated silicon and indium oxide-based oxide transparent electrodes form a terojunction with good rectification properties, and are used in imaging devices, contact-type dimensional sensors for facsimiles, O
It is applied to CR, etc.

センサの受光素子部分の構造の一例を第1図(平面図)
および第2図(断面図)で示す。これらのセンサに用い
られる受光素子は、通常、5jHJ系のガスを用いたグ
ロー放電CVD法あるいはSiをAr  H2系の放電
ガス中で反応性スパッタリングすることにより形成し*
a−8i:H膜2を光導゛電膜として用いている。光導
電膜の構造はa−8i:H膜でn層(燐ドープ)、1層
(ドープ無)、p層(硼素ドープ)の順よりなるnip
ミルダイオード成し%  IntOs膜3は単に透明電
極の役割だけを果たすタイプとa−8i:H(i)層上
に直接IntOs透明電極を形成し、a−8i :H/
 IntOs界面に電子注入阻止型のショットキー接合
を形成するタイプの二種に大別できる。これらは例えば
、電子通信学会技報ED−83−64やED−84−8
1等に記載されている。前者は受光素子の特性がIn2
O3膜の膜質に依存せず安定な素子特性を得やすい利点
?有するが、比較的、低抵抗のnm、り層が存在するた
め、−次元センサを実現するためには、a−8iHH膜
の画素分離が必須である。また、このEtLa−8i:
Hパターン段差部において、エツチング速度の遅いp層
が”ひさし”状に残って、その上部に堆積するInzO
s系透明電極のパターン化を困難にする(段差部6にお
いて切れ込み等を生じ易い)という欠点を有する。
Figure 1 (top view) shows an example of the structure of the light-receiving element part of the sensor.
and FIG. 2 (cross-sectional view). The light receiving elements used in these sensors are usually formed by glow discharge CVD using a 5jHJ gas or by reactive sputtering of Si in an Ar H2 gas.
a-8i: H film 2 is used as a photoconductive film. The structure of the photoconductive film is an a-8i:H film consisting of an n layer (phosphorus doped), a single layer (undoped), and a p layer (boron doped) in this order.
Mill diode composition % IntOs film 3 is of the type that simply plays the role of a transparent electrode, and a-8i:H(i) layer in which an IntOs transparent electrode is formed directly on the a-8i:H/
It can be roughly divided into two types: one type that forms an electron injection blocking Schottky junction at the IntOs interface. These are, for example, IEICE Technical Report ED-83-64 and ED-84-8.
It is listed as 1st place. In the former, the characteristics of the light receiving element are In2
Is it an advantage that it is easy to obtain stable device characteristics without depending on the film quality of the O3 film? However, in order to realize a -dimensional sensor, pixel separation of the a-8iHH film is essential because there is a layer with relatively low resistance. Also, this EtLa-8i:
In the step part of the H pattern, the p layer with a slow etching rate remains in the shape of an "eaves", and the InzO layer deposited on top of it remains.
This has the disadvantage that it makes it difficult to pattern the s-based transparent electrode (cuts, etc. are likely to occur at the stepped portion 6).

一方、後者は光導電膜が比較的高抵抗のa−8i:H(
i)層のみを使用しているため、8本/rtan程度の
比較的低解像度の密着読み取シセンサを実現するために
は、必ずしも、第1図、第2図に示すようなa−8i:
H膜2の画素分離を必要としない。従って、このタイプ
のセンサの製造プロセスは前者に比し、簡略であるとい
う利点を有する。また、8本/w以上の高解像度センサ
を実現するために、第1図および第2図に示すような画
素分離を行った場合でも、a−8i:Hパターンの段差
部の形状が前者のようにオーパノ・ングしないため、上
部に堆積したITO透明電極パターンの加工も若干容易
となる。しかし、このタイ  。
On the other hand, in the latter case, the photoconductive film has a relatively high resistance a-8i:H(
i) Since only layers are used, in order to realize a close-contact reading sensor with relatively low resolution of about 8 lines/rtan, it is not necessary to use a-8i as shown in Figures 1 and 2:
Pixel separation of the H film 2 is not required. Therefore, the manufacturing process for this type of sensor has the advantage of being simpler than the former. Furthermore, even when pixel separation is performed as shown in Figures 1 and 2 in order to realize a high-resolution sensor with 8 pixels/w or more, the shape of the stepped part of the a-8i:H pattern is different from that of the former. Since there is no opening-up, processing of the ITO transparent electrode pattern deposited on the top becomes somewhat easier. But this Thailand.

プの受光素子はa−8i :H/ I nlo!界面近
傍の電子注入阻止型のショットキー接合を利用している
ため、InzOs膜3の膜質やInzOs膜を堆積する
時の膜堆積粂件によって、逆方向電流値が10”A/ 
ctdから10−’A/mの範囲で変動し、暗電流特性
の再現性が悪いという問題点があった。画像情報の濃淡
に対応して階調のとれる密着読み取りセンナを実現する
ためには、受光素子の高感度化が必要である。その為に
は、1lftfN、値を出来るだけ低い値に抑制して、
S/N比を高める必要がめる。
The photo-receiving element is a-8i:H/I nlo! Since an electron injection blocking type Schottky junction near the interface is used, the reverse current value may be 10"A/3 depending on the quality of the InzOs film 3 and the film deposition conditions when depositing the InzOs film.
There was a problem in that the dark current characteristics fluctuated in the range from ctd to 10-'A/m, and the reproducibility of dark current characteristics was poor. In order to realize a close-contact reading sensor that can adjust the gradation according to the density of image information, it is necessary to increase the sensitivity of the light-receiving element. To do this, suppress the value of 1lftfN to the lowest possible value,
It is necessary to increase the S/N ratio.

従って、暗電流値f 10−”A/Iyd台に安定して
抑制するInzOs膜の作製方法を確立することが必要
となった。
Therefore, it has become necessary to establish a method for producing an InzOs film that stably suppresses the dark current value f10-''A/Iyd.

′!り、先に述べfcITo膜の加工性についてもセン
サの長尺化に伴ない、大面積に亘ってよ・り加工性の良
好な膜質のInzOs膜の堆積方法の確立が必要となっ
た。
′! Regarding the workability of the fcITo film as mentioned above, as sensors have become longer, it has become necessary to establish a method for depositing an InzOs film with good workability over a large area.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記の問題点を改善し、a−8i :
 H/ I nzOsへテロ接合特性の再現性を高め、
かつ、In2O3透明電極の加工性も向上させるための
、InzOs系透明電極の作製方法を提供することにあ
る。
The purpose of the present invention is to improve the above-mentioned problems and a-8i:
Improves the reproducibility of H/InzOs heterojunction characteristics,
Another object of the present invention is to provide a method for manufacturing an InzOs-based transparent electrode that also improves the workability of the In2O3 transparent electrode.

〔発明の概要〕[Summary of the invention]

第1図および第2図は本発明に係る一次元センサの受光
素子部分を平面図および断面図で示したものである。こ
のセンサは第1図および郊2図に示す如く、絶縁性基板
5上に、下部金属電極パターン1を形成し、次に、a−
3i:H光導電膜パター72を形成し、更に、■TO透
明電極パターン3を形成する。最後に、透明なバックべ
一7ヨン膜4をコーティングし、上記金属配線パターン
をマスク蒸着法により形成し、駆動用ICを搭載してセ
ンサが完成する。基板5には、8i0z系のガラス基板
、At2Os系のセラミック基板などを用いる。下部金
属電極lはCr、 MO,’l’a、 Ti、 Ptな
どの金属をスパッタリング法あるいは真空蒸着法で堆積
し、通常のホトエツチング法でパターン化して用いる。
FIGS. 1 and 2 are plan views and cross-sectional views of a light receiving element portion of a one-dimensional sensor according to the present invention. As shown in FIGS. 1 and 2, this sensor consists of forming a lower metal electrode pattern 1 on an insulating substrate 5, and then forming a lower metal electrode pattern 1 on an insulating substrate 5.
3i: An H photoconductive film pattern 72 is formed, and a TO transparent electrode pattern 3 is further formed. Finally, a transparent backplane film 4 is coated, the metal wiring pattern is formed by mask vapor deposition, and a driving IC is mounted to complete the sensor. For the substrate 5, an 8i0z glass substrate, an At2Os ceramic substrate, or the like is used. The lower metal electrode 1 is formed by depositing a metal such as Cr, MO, 'l'a, Ti, or Pt by sputtering or vacuum evaporation, and patterning it by ordinary photoetching.

a−3i:)(光導電膜2にシラン系のガス(S I 
nHtn*z : n = 1〜3 )を用いたグロー
放電CVD法あるいはAr−山系放電ガスとSiターゲ
ットを用いた反応性スパッタリング法によシ堆積し、C
F4カスを用いたドライエツチングあるいはヒドラジン
水溶液を用いにウェットエツチング法によシバターン化
する。a−3i:)(光導電膜は用途に応じて、下部型
1極側に微量の燐をドープしたn層を介在させる。また
、上部のInzOs系透明電極側には微量の硼素をドー
プしfcpiを介在させることもある。
a-3i:) (A silane-based gas (SI) is applied to the photoconductive film 2.
C is deposited by a glow discharge CVD method using nHtn*z: n = 1 to 3) or a reactive sputtering method using an Ar-mountain discharge gas and a Si target.
Shiba patterning is performed by dry etching using F4 residue or wet etching using a hydrazine aqueous solution. a-3i:) (Depending on the purpose of the photoconductive film, an n layer doped with a trace amount of phosphorus is interposed on the single pole side of the lower mold. Also, a trace amount of boron is doped on the upper InzOs-based transparent electrode side. fcpi may also be used.

次に、1nzo3系透明電極をスパッタリング法によす
堆積する。IntOs系ターゲットには通常I nzo
s 91 mo 1%十SnO29m0t%組成のIT
Oターゲットを用いるっスパッタリングには、ターゲッ
トを設置するカソードに放電集束用のマグネットを具備
したプレーナマグネトロン型のスパッタリング装置を用
いる。従来型のスパッタリング装置を用いて、a−8i
:)(膜上にITO膜を堆積すると、スパッタリング初
期に高エネルギーのAr”イオン、その他のイオン種に
よりa−!9i:)(表面がダメージを受け、良好なa
−8i :H/ ITo へテロ接合が形成されないこ
とは一般に知られた現象である。これに対して、プレー
ナマグネトロン型のカソードを使用すると放電がITO
ターゲット側に集中する友め、センサ基板を設置し九基
板ホルダー電極でのAr+イオンなどによるダメージが
若干軽減されることが知られている。本センサは一般に
10crn角以上の大面積の基板上に形成する。
Next, a 1nzo3-based transparent electrode is deposited by sputtering. For IntOs type targets, Inzo is usually used.
IT with composition of s 91 mo 1% and SnO29m0t%
For sputtering using an O target, a planar magnetron type sputtering apparatus is used, which has a discharge focusing magnet on the cathode on which the target is placed. Using conventional sputtering equipment, a-8i
:) (When an ITO film is deposited on a film, the surface is damaged by high-energy Ar" ions and other ion species during the early stage of sputtering, resulting in a good a-!9i:)
It is a generally known phenomenon that -8i:H/ITo heterojunctions are not formed. On the other hand, if a planar magnetron type cathode is used, the discharge will be ITO.
It is known that damage caused by Ar+ ions and the like at the nine-substrate holder electrode can be slightly reduced by installing a sensor substrate that concentrates on the target side. This sensor is generally formed on a large-area substrate of 10 crn square or more.

従って、−バッチ当りの生産量を上げるために、回転式
の基板ホルダー電極に10枚前後の基板を装着し、・基
板ホルダー電極を回転させながら口℃膜の堆8tヲ行う
。この几め、−基板当りのITO膜の堆積速度は一基板
を固定して堆積し定時の堆積速度と比較して1/lO程
度となる。プレーナマグネトロンカソードを用い7’m
場合、従来型のカソードよりも約1桁程度堆積速度が向
上するので、マグネトロンスパッタリング装置を使用す
ることに生産性の点から必須である。そこで、マグネト
ロンスパッタ装置を用いて、可能な限り堆積速度を上げ
、かつ、受光素子の特性も劣化させない方法の確立が必
要となつ友。
Therefore, in order to increase the production amount per batch, approximately 10 substrates are mounted on a rotating substrate holder electrode, and 8 tons of film is deposited while rotating the substrate holder electrode. Due to this method, the deposition rate of the ITO film per substrate is about 1/1O compared to the deposition rate at a fixed time when one substrate is fixed. 7'm using planar magnetron cathode
In this case, the deposition rate is about an order of magnitude higher than that of a conventional cathode, making it essential for productivity to use a magnetron sputtering device. Therefore, it is necessary to establish a method using a magnetron sputtering device that increases the deposition rate as much as possible and does not deteriorate the characteristics of the light-receiving element.

第3図はマグネトロンスパッタリング装置を用いて、基
板ホルダー電極を回転させなからITO膜を堆積した時
の高周波出力密度とITO堆積速度との関係を示した図
でるる。第3図から実線の範囲内で出力密度と堆積速度
は直線関係にある。
FIG. 3 is a diagram showing the relationship between high frequency power density and ITO deposition rate when an ITO film is deposited using a magnetron sputtering device without rotating the substrate holder electrode. From FIG. 3, there is a linear relationship between the power density and the deposition rate within the range of the solid line.

高周波出力密度は1.5W/ff1以上にすると異常グ
ローが発生して、安定な放電が保てなくなったり、極端
な場合にはターゲットが破損したりすることがある。ま
た0、25W/−以下でも長時間安定に放電を維持する
ことが困難になる。そこで、実線で示した領域で膜堆積
を行うと、センサ用の透明電極として必要な膜厚500
0人を得るために少なくとも1時間以上のスパッタ17
7グが必要となることがわかる。
If the high frequency power density is set to 1.5 W/ff1 or more, abnormal glow will occur, making it impossible to maintain stable discharge, and in extreme cases, the target may be damaged. Furthermore, if the power is below 0.25 W/-, it becomes difficult to maintain stable discharge for a long time. Therefore, if the film is deposited in the area shown by the solid line, the film thickness will be 500%, which is necessary for the transparent electrode for the sensor.
Sputtering for at least 1 hour to get 0 people 17
It can be seen that 7g is required.

第4図は高周波出力密度に対するa−8i:H/ITO
へテロ接合の逆方向電流値を示した図である。逆方向電
流値はダメージの効果を緩和するために空気中で200
’C,1hrQ熱処理を行った後の値である。ITO@
のスパッタリング条件は放電ガスとしてArto、3%
02の混合カスを用い、基板温度200C,放電ガス圧
5X10−sTorr、基板ホルダー電極の回転数4r
pmである。第4図から明らかなように、ITO透明電
極に一5■印加時の逆方向電流値は高周波出力密度に対
して、斜線を施した領域内でバラライた。本センサでは
、画像情報の濃淡に応じて十分な階調のとれる高解像度
、高感度のセンサを目的としており、逆方向電流の仕様
値は16−10A /−以下が必要である。
Figure 4 shows a-8i:H/ITO versus high frequency power density.
It is a figure showing the reverse direction current value of a heterojunction. The reverse current value is 200% in air to reduce the effect of damage.
'C, is the value after 1 hrQ heat treatment. ITO@
The sputtering conditions are Arto, 3% as discharge gas.
Using the mixed waste of No. 02, the substrate temperature was 200C, the discharge gas pressure was 5X10-sTorr, and the rotation speed of the substrate holder electrode was 4r.
It is pm. As is clear from FIG. 4, the reverse current value when 15cm was applied to the ITO transparent electrode varied within the shaded area with respect to the high frequency output density. This sensor is intended to be a high-resolution, high-sensitivity sensor that can provide sufficient gradation depending on the density of image information, and requires a reverse current specification value of 16-10 A/- or less.

その条件を満足するためには第4図からO665W/i
以下の出力密度でなければならないことが判明した。
In order to satisfy that condition, from Figure 4, O665W/i
It turns out that the power density must be:

次に、このようにして堆積し7jI’ro膜の加工性を
検討した。第1図および第2図で示した構造から明らか
なように、a−8i:l(光導電膜2が一画素毎に分離
してパターン化されたセンサでは、ITOtetは第1
図の6で示した場所において、a−8iH)lパターン
外周の段差と交叉する形でパターン化しなければならな
い。ITO膜は第1図の6で示した場所においても、ホ
トエツチングの際に切れ込みなどの不良を生じないよう
な膜質であることが必要である。切れ込みが進行すると
ITOは断線する。第5図は高周波出力密度とHCt 
HNO3H20系エツチング液に対するエツチング速度
との関係を示したものである。エツチング液の組成なH
(、t:HNO3:HzO=lO,08:lである。液
温は45rである。ITO膜のエツチング速度は第5図
に示す如く、高周波出力密度に対して、大別して三種の
領域に分類できる。領域■の膜は低い高周波出力密度で
形成される膜でエツチング速度が非常に早い。領域■は
高い高周波出力密度で形成される膜でエツチング速度が
遅い膜である。領域■は両者の中間的な性質を示すIT
O膜である。これらの三種の膜について、第1図で示し
た構造のセンサの試作を行って、6の場所における段差
切れの発生を調べた。まず、領域Iの膜は基板全体の平
均したエツチング速度が非常に早い膜であるが、大面積
の基板上に堆積すると基板の中心部分から先にエツチン
グが完了し、基板周辺部分がリング状に残されるという
不均一なエツチングのされ方をすることが判明した。こ
の場合、リング状に残された部分までエツチングを行う
と、今度は基板中央部分のITOパターンの6の位置に
段差切れを生じた。領域■の膜はエツチング速度の遅い
膜であるが、下地のガラス基板5との間に極めてエツチ
ング速度の遅い薄いITO皮膜が形成された。この薄い
皮膜を過剰のオーバエツチングを行って除去するとホト
レジ膜のエツチング液に対する耐性が劣化して、6の場
所において段差切れが発生した。これらに対して、領域
■に含まれるITO膜は、エツチング時間が制御しやす
い範囲にあり、ガラス基板上にエツチングの困難なIT
O薄皮が残らず、適当量のオーバエッチが可能になって
、加工性の優れた膜であることが判明した。このような
加工性の良好な’ITO膜を得るためには、第5図から
、高周波出力密度が0.3〜0.65W/cm2の範囲
に含まれる条件で堆積することが必要であることがわか
った。
Next, the workability of the 7jI'ro film deposited in this manner was examined. As is clear from the structure shown in FIG. 1 and FIG.
At the location shown by 6 in the figure, the pattern must be formed so as to intersect with the step on the outer periphery of the a-8iH)l pattern. The ITO film must have a quality that does not cause defects such as notches during photo-etching even at the locations indicated by 6 in FIG. As the notch progresses, the ITO becomes disconnected. Figure 5 shows high frequency power density and HCt.
This figure shows the relationship between the etching rate and the HNO3H20-based etching solution. Composition of etching solution
(, t:HNO3:HzO=lO, 08:l. The liquid temperature is 45r. As shown in Figure 5, the etching rate of the ITO film is roughly divided into three regions with respect to the high frequency output density. The film in region (■) is a film formed at a low high-frequency power density and has a very fast etching rate.The film in region (2) is a film formed at a high high-frequency power density and has a slow etching speed. IT exhibiting intermediate characteristics
It is an O film. For these three types of films, a sensor having the structure shown in FIG. 1 was prototyped and the occurrence of step breakage at location 6 was investigated. First, the film in region I has a very fast etching rate on average over the entire substrate, but when deposited on a large area substrate, etching is completed first from the center of the substrate, leaving a ring-like pattern around the substrate. It was found that the etching was done unevenly, leaving some parts behind. In this case, when etching was performed to the remaining ring-shaped portion, a step break occurred at position 6 of the ITO pattern in the center of the substrate. Although the film in region (3) has a slow etching rate, a thin ITO film with an extremely slow etching rate was formed between it and the underlying glass substrate 5. When this thin film was removed by excessive overetching, the resistance of the photoresist film to the etching solution deteriorated, and step breakage occurred at location 6. On the other hand, for the ITO film included in region
It was found that the film had excellent processability, with no O thin film left behind and a suitable amount of over-etching possible. In order to obtain such an ITO film with good workability, it is necessary to deposit it under conditions where the high frequency output density is within the range of 0.3 to 0.65 W/cm2, as shown in Figure 5. I understand.

従って、本発明のセンサは第1図および第2図に示す如
く、絶縁性基板5上に金属下部電極パターン1およびa
−8i:H光導電膜パターン2を順次形成し、次に、I
TO膜をマグネトロンスパッタリング法にて堆積する。
Therefore, as shown in FIGS. 1 and 2, the sensor of the present invention has a metal lower electrode pattern 1 and a
-8i:H photoconductive film patterns 2 are sequentially formed, and then I
A TO film is deposited by magnetron sputtering.

この時のI’I’0&堆条件はプレーナマグネトロンカ
ソードへ0.3〜0.65W/crAの出力密度の範囲
内に入るように調整する必要があるつまた、基板ホルダ
ー電極は回転式で赤外線ランプによる基板加熱とITO
膜堆積を交互に行いながら膜堆積を行う。この様にして
堆積したITO膜を前述のホトエツチング法でパターン
化してITO透明市極3とする。パッシベーション膜4
工程、上部金属配線パターン工程、駆動用IC接続工程
を経て一次元密着形センサが完成する。
The I'I'0 & deposition conditions at this time must be adjusted so that the output density to the planar magnetron cathode is within the range of 0.3 to 0.65 W/crA. Substrate heating and ITO using lamps
Film deposition is performed while alternately performing film deposition. The ITO film thus deposited is patterned by the photoetching method described above to form an ITO transparent electrode 3. Passivation film 4
A one-dimensional contact type sensor is completed through a manufacturing process, an upper metal wiring pattern process, and a driving IC connection process.

以下、本発明を実施例によυ説明する。The present invention will be explained below with reference to Examples.

〔発明の実施例〕[Embodiments of the invention]

実施例1 テンパックスガラス基板5上に金属Crをスパッタリン
グ法により、厚さ2000人に堆積する。
Example 1 Metal Cr is deposited to a thickness of 2000 mm on a Tempax glass substrate 5 by sputtering.

硝酸第2セリウムアンモニウム水溶液をエツチング液と
して用いた通常のホトエツチング工程にてCrt極パタ
ーン11を形成する。次に、100%8jH4ガスを用
いたグロー放電CVD法にて、a−8i : 、[((
i)膜を基板温度200C,ガス圧0.2Torr、高
周波パワー40Wで1μmの厚さに堆積する。この膜を
抱水ヒドラジンーイソグロビルアルコールー水系のエツ
チング液を用いたホトエツチング法にて、a−8i:H
光導電膜パターン゛2とする。この基板をマグネトロン
スパッタ装置の基板ホルダー電極(陽極)に設置し、プ
レーナマグネトロンカソード(陰極)上にI T O(
I ntos91mO1%+SnO29mot%)ター
ゲットを設置して、2X10−”l’orrの真空度に
排気する。0,3%のO雪を含むArガスをlXl0−
”l’orrスパッタ室内に導入し、主バルブにて5 
X 10−”[’o r rKp節する。先づ、プリス
パッタリングを行ってITOターゲットの吸蔵ガスを脱
着させる。引き続いて、13.56MH2,高周波出力
100W/6’φ、出力密度0.56W/cm2の高周
波マグネトロンスパッタを3時間行い、膜厚5000A
のITO膜を堆積する。基板ホルダー電極は回転式であ
、!:l、ITOターゲットと赤外線加熱ヒータは基板
ホルダー電極の回転軸に対して対称の位置に設置され、
■TO膜堆積と基板加熱を交互に行う。基板加熱温度は
200〜250Cである。
The CRT electrode pattern 11 is formed by a normal photoetching process using an aqueous ceric ammonium nitrate solution as an etching solution. Next, a-8i: , [((
i) A film is deposited to a thickness of 1 μm at a substrate temperature of 200 C, a gas pressure of 0.2 Torr, and a high frequency power of 40 W. This film was photoetched using a hydrazine hydrate-isoglobil alcohol-water based etching solution.
This is referred to as photoconductive film pattern "2". This substrate was placed on the substrate holder electrode (anode) of a magnetron sputtering device, and an ITO (
Intos91mO1% + SnO29mot%) target is set up and evacuated to a vacuum of 2X10-"l'orr. Ar gas containing 0.3% O snow is
``l'orr'' is introduced into the sputtering chamber, and the main valve
X 10-"['o r rKp section. First, pre-sputtering is performed to desorb the occlusion gas of the ITO target.Subsequently, 13.56MH2, high frequency output 100W/6'φ, power density 0.56W/ cm2 high frequency magnetron sputtering for 3 hours to obtain a film thickness of 5000A.
Deposit an ITO film. The substrate holder electrode is rotatable! :l, The ITO target and the infrared heater are installed at symmetrical positions with respect to the rotation axis of the substrate holder electrode,
■TO film deposition and substrate heating are performed alternately. The substrate heating temperature is 200 to 250C.

この様にして堆積したITO膜をHC1−HNOs−H
1O系のエツチング液にてホトエツチングを行い、透明
電極パターン3を形成する。エツチング液の組成はHC
4:HNOs:HzO=1 : 0.08 : 1 (
体積比)であり、液温は45Cである。この時のエツチ
ング時間は約8分であった。
The ITO film deposited in this way is HC1-HNOs-H
Photoetching is performed using a 1O-based etching solution to form a transparent electrode pattern 3. The composition of the etching solution is HC.
4:HNOs:HzO=1 : 0.08 : 1 (
volume ratio), and the liquid temperature is 45C. The etching time at this time was about 8 minutes.

次に、ポリイミド系樹脂からなるパッシベーション膜を
塗布し、所定の形状14にパターン化する。
Next, a passivation film made of polyimide resin is applied and patterned into a predetermined shape 14.

さらに、NiCr/Au導体配線パターンをマスク蒸着
法にて形成し、駆動用ICを搭載して密着読み取り一次
元センサが完成する。
Further, a NiCr/Au conductor wiring pattern is formed by a mask evaporation method, and a driving IC is mounted to complete a contact reading one-dimensional sensor.

実施例2 実施例1と同様に膜厚0.1μmのCr下部電極パター
ンを形成し、次に、100%5i14ガスを用いたグロ
ー放電CVD法にて、a−8iHH膜からなるi/p層
を堆積する。iNの堆積条件は実施例1と同様であるが
、p層は100%SiH4ガス中に0,04%のB2H
6ガスをドープすることにより形成する。この時、p層
の膜厚は光感度の低下とパターン化した時の“ひさし”
の張り出しを極力抑えるため、150A程度の薄い膜厚
にする必要がある。次に、実施例1と同様の方法でa−
8i:)(膜をパターン化する。
Example 2 A Cr lower electrode pattern with a film thickness of 0.1 μm was formed in the same manner as in Example 1, and then an i/p layer consisting of an a-8iHH film was formed by glow discharge CVD using 100% 5i14 gas. Deposit. The iN deposition conditions were the same as in Example 1, except that the p-layer was formed using 0.04% B2H in 100% SiH4 gas.
It is formed by doping with 6 gas. At this time, the thickness of the p layer is determined by the decrease in photosensitivity and the "eaves" when patterned.
In order to suppress the overhang as much as possible, it is necessary to make the film thickness as thin as about 150A. Next, a-
8i:) (Pattern the membrane.

次に、ITO膜を実施例1と同様の方法でマグネトロン
スパッタリング法により堆積する。この構造の受光素子
はa−8i : H(i)/iiとITO透明電極の間
にa−8i:Hφ)@が介在するために、逆方向電流値
に与えるITO膜堆積時のダメージの効果は実施例1の
場合と比較して少ない。一方、段差部の1ひさし”につ
いては1層パターン単独のものよりも強調されている。
Next, an ITO film is deposited by magnetron sputtering in the same manner as in Example 1. In the light receiving element of this structure, since a-8i:Hφ)@ is interposed between a-8i:H(i)/ii and the ITO transparent electrode, the effect of damage during ITO film deposition on the reverse current value is is smaller than that in Example 1. On the other hand, the "1 eave" of the stepped portion is more emphasized than in the single layer pattern alone.

従って、ITO(7)パターン化は実施例1よシも困難
である。しかし、本実施例のITO膜を使用して、実施
例1と同様の方法でパターン化したところ、段差部分に
おける切れ込みは問題とならない程度であった。
Therefore, ITO (7) patterning is also difficult as in Example 1. However, when the ITO film of this example was patterned in the same manner as in Example 1, the notches at the step portions were not a problem.

以下、実施例1と同様の後工程を経て、密着読取シー次
元センサとした。
Thereafter, the same post-process as in Example 1 was performed to obtain a close-contact reading sea-dimensional sensor.

〔発明の効果〕〔Effect of the invention〕

本発明のITO透明電極を用いた受光素子では、a−8
i :H/ITOヘテロ接合界面において、安定な電子
注入阻止型のショットキー接合が形成され、逆バイアス
方向の暗電流値が10”A/ffl以下に安定に抑制で
きる。一方、ITO膜堆積初期に形成される異常にエラ
チン速度の遅い皮膜の発生がないのでa−8i:Hパタ
ーン段差部におけるITO膜パターンの切れ込み不良も
起きない。また、基板中央付近のエツチング速度の非常
に早い膜と基板周囲付近のエツチング速度の比較的遅い
膜とが混在したITO膜が形成されることにより発生す
る段差切れも発生しない。本発明のITO膜堆積方法1
ti i / p 2層構造からなるa−8i:)lパ
ターンの段差に生ずる”ひさし”の強調された段差に対
しても、段差切れの発生しない膜であることは言うまで
もない。
In the light receiving element using the ITO transparent electrode of the present invention, a-8
i: A stable electron injection blocking Schottky junction is formed at the H/ITO heterojunction interface, and the dark current value in the reverse bias direction can be stably suppressed to 10"A/ffl or less. On the other hand, in the early stage of ITO film deposition, Since there is no formation of a film with an abnormally slow etching rate that is formed in the etching process, there is no problem of notch defects in the ITO film pattern at the stepped portions of the a-8i:H pattern. There is also no step breakage that occurs when an ITO film is formed that is mixed with a film with a relatively slow etching rate near the periphery.ITO film deposition method 1 of the present invention
Needless to say, the film does not cause step breakage even when the step of the a-8i:)l pattern with a ti i /p two-layer structure has an accentuated "eaves".

以上の効果の結果、階調のとれる高い光感度を有し、光
応答特性も良好で、かつ、高解像度の受光素子が実現で
きる。
As a result of the above effects, it is possible to realize a light-receiving element that has high photosensitivity with adjustable gradations, good photoresponse characteristics, and high resolution.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のセンサの受光素子部分の平面図、第2
図は第1図x−x’線断面図である。第3図は高周波出
力密度とITO膜堆積速度の関係を示した図、第4図は
高周波出力密度と受光素子の逆方向電流値との関係を示
しだ図、第5図は高周波出力密度とITO膜のエツチン
グ速度との関係を示した図である。 l・・・金属下部電極、2・・・a−81:H光4電膜
、3・・・ITO透明電極、4・・・パッシベーション
膜、5・・・絶縁性基板、6・・・a−8iHl(パタ
ーンとITOパターンとが交叉する位置。
FIG. 1 is a plan view of the light receiving element portion of the sensor of the present invention, and FIG.
The figure is a sectional view taken along the line xx' in FIG. 1. Figure 3 shows the relationship between high frequency output density and ITO film deposition rate, Figure 4 shows the relationship between high frequency output density and reverse current value of the light receiving element, and Figure 5 shows the relationship between high frequency output density and ITO film deposition rate. FIG. 3 is a diagram showing the relationship between the etching rate of the ITO film and the etching rate of the ITO film. l...metal lower electrode, 2...a-81: H-light 4 electrical film, 3...ITO transparent electrode, 4...passivation film, 5...insulating substrate, 6...a -8iHl (position where the pattern intersects with the ITO pattern).

Claims (1)

【特許請求の範囲】 1、基板上に金属下部電極、非晶質水素化シリコン、酸
化インジウムを主体とする酸化物透明電極およびパッシ
ベーション膜を順次形成してなる受光素子において、該
酸化インジウムを主体とする透明電極の製造方法が該酸
化インジウムを主体としたターゲットをプレーナマグネ
トロンカソードに設置し、0.30〜0.65W/cm
^2の範囲の出力密度で高周波マグネトロンスパッタリ
ングを行うことにより膜堆積を行うことを特徴とする受
光素子の製造方法。 2 上記の酸化インジウムを主体とする透明電極のスパ
ッタリング工程において、該受光素子基板が回転式の基
板ホルダー電極に設置され、赤外線ランプアニールとI
TO膜堆積を交互に行なう工程であることを特徴とする
特許請求範囲第一項記載の受光素子の製造方法。
[Claims] 1. A light-receiving element in which a metal lower electrode, amorphous silicon hydride, an oxide transparent electrode mainly composed of indium oxide, and a passivation film are sequentially formed on a substrate, in which the indium oxide is mainly formed. A method for manufacturing a transparent electrode includes setting a target mainly composed of indium oxide on a planar magnetron cathode,
1. A method of manufacturing a light-receiving element, characterized in that film deposition is performed by high-frequency magnetron sputtering at a power density in the range of ^2. 2 In the sputtering process of the transparent electrode mainly composed of indium oxide, the light receiving element substrate is placed on a rotating substrate holder electrode, and infrared lamp annealing and I
A method for manufacturing a light receiving element according to claim 1, characterized in that the step is a step of alternately depositing TO films.
JP60235146A 1985-10-23 1985-10-23 Manufacturing method of light receiving element Expired - Lifetime JPH0712078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60235146A JPH0712078B2 (en) 1985-10-23 1985-10-23 Manufacturing method of light receiving element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60235146A JPH0712078B2 (en) 1985-10-23 1985-10-23 Manufacturing method of light receiving element

Publications (2)

Publication Number Publication Date
JPS6295866A true JPS6295866A (en) 1987-05-02
JPH0712078B2 JPH0712078B2 (en) 1995-02-08

Family

ID=16981734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60235146A Expired - Lifetime JPH0712078B2 (en) 1985-10-23 1985-10-23 Manufacturing method of light receiving element

Country Status (1)

Country Link
JP (1) JPH0712078B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009054748A (en) * 2007-08-27 2009-03-12 Sanyo Electric Co Ltd Solar cell module, solar cell, and method for manufacturing these
JP2013055117A (en) * 2011-09-01 2013-03-21 Fujifilm Corp Method of manufacturing photoelectric conversion element, and method of manufacturing imaging element
CN108242392A (en) * 2016-12-26 2018-07-03 东京毅力科创株式会社 Substrate and its processing method, device, system and control device, manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5984525A (en) * 1982-11-08 1984-05-16 Hitachi Ltd Manufacture of thin film element
JPS59143362A (en) * 1983-02-03 1984-08-16 Fuji Xerox Co Ltd Passivation film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5984525A (en) * 1982-11-08 1984-05-16 Hitachi Ltd Manufacture of thin film element
JPS59143362A (en) * 1983-02-03 1984-08-16 Fuji Xerox Co Ltd Passivation film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009054748A (en) * 2007-08-27 2009-03-12 Sanyo Electric Co Ltd Solar cell module, solar cell, and method for manufacturing these
JP2013055117A (en) * 2011-09-01 2013-03-21 Fujifilm Corp Method of manufacturing photoelectric conversion element, and method of manufacturing imaging element
CN108242392A (en) * 2016-12-26 2018-07-03 东京毅力科创株式会社 Substrate and its processing method, device, system and control device, manufacturing method
CN108242392B (en) * 2016-12-26 2023-12-22 东京毅力科创株式会社 Substrate, processing method, processing device, processing system, control device and manufacturing method of substrate

Also Published As

Publication number Publication date
JPH0712078B2 (en) 1995-02-08

Similar Documents

Publication Publication Date Title
CA1232051A (en) Semiconductor device and method of manufacturing the same
EP0724183B1 (en) Liquid crystal display device and method of fabricating the same
CN107871753A (en) Array base palte and preparation method thereof
US6558986B1 (en) Method of crystallizing amorphous silicon thin film and method of fabricating polysilicon thin film transistor using the crystallization method
JPH06128743A (en) Transparent electrically conductive film, production and target used therefor
US5306653A (en) Method of making thin film transistors
CN103996618B (en) Manufacturing method for TFT electrode lead
JPS6295866A (en) Manufacture of photosensor
CN106684122B (en) Conducting layer, thin film transistor, manufacturing method of thin film transistor, array substrate and display device
CN112103246A (en) TFT array substrate structure and manufacturing method
CN212991099U (en) TFT array substrate structure
JP2854363B2 (en) Manufacturing method of light receiving element
KR100225729B1 (en) Photoelectric conversion device
JPS62122282A (en) Light receiving element
CA1305398C (en) Method for producing high yield electrical contacts to n _amorphous silicon
JP2811765B2 (en) Semiconductor device and manufacturing method thereof
JPH0214790B2 (en)
JP3424751B2 (en) Method of forming metal oxide film by sputtering method
JP2630195B2 (en) Thin film field effect transistor and method of manufacturing the same
JPH0419650B2 (en)
WO1988007767A1 (en) Charge-coupled device with dual layer electrodes
JPS6081876A (en) Amorphous semiconductor photosensor
JP2000147535A (en) Transparent conductive film
JPS63119259A (en) Amorphous silicon photodiode array
JPH02196470A (en) Thin film transistor and manufacture thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term