JPS6295461A - Reliability guarantee testing method for high-temperature long-life strength of ceramic parts - Google Patents

Reliability guarantee testing method for high-temperature long-life strength of ceramic parts

Info

Publication number
JPS6295461A
JPS6295461A JP23517885A JP23517885A JPS6295461A JP S6295461 A JPS6295461 A JP S6295461A JP 23517885 A JP23517885 A JP 23517885A JP 23517885 A JP23517885 A JP 23517885A JP S6295461 A JPS6295461 A JP S6295461A
Authority
JP
Japan
Prior art keywords
temperature
strength
stress
ceramic
static fatigue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23517885A
Other languages
Japanese (ja)
Other versions
JPH0690124B2 (en
Inventor
Saburo Usami
三郎 宇佐美
Ichiro Takahashi
一郎 高橋
Takashi Machida
隆志 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23517885A priority Critical patent/JPH0690124B2/en
Publication of JPS6295461A publication Critical patent/JPS6295461A/en
Publication of JPH0690124B2 publication Critical patent/JPH0690124B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To secure the reliability of the high-temperature long-life strength of a ceramic component without any nondestructive inspection by taking a guarantee test which utilizes a static fatigue limit at in-use test and the defect size dependency of low-temperature, short-time strength. CONSTITUTION:When a guarantee test of the root part 2 of the ceramic component 1 is taken, a temperature raising means 3 heats the ceramic components 1 uniformly up to 800 deg.C where this material has almost no static fatigue. A solenoid valve 5 is opened and pressurized water is blown to the root part 2 from a porous nozzle 6. The stress reaches 405MPa while the solenoid valve 5 is left open, but when the solenoid valve 5 is closed when the stress reaches 330MPa slightly higher than 320MPa, the stress decreases speedily. If no breaking sound is detected by an acoustic emission sensor 9 in the process of this guarantee test, the component is acceptable and when a sound is detected, the component is defective.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はセラミックス部品に対する高温長寿命強度の信
頼性保証試験法に係り、特に運転中における高温静疲労
破壊の防止に好適な信頼性保証試験法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a reliability assurance test method for high-temperature long-life strength of ceramic parts, and is particularly suitable for preventing high-temperature static fatigue fracture during operation. Regarding.

〔発明の背景〕[Background of the invention]

従来のセラミック部品に対する高温長寿命強度の信頼性
保証試験法については、窯業協会編集委員会講座小委員
会編のセラミックスの機械的性質(昭54)の第96〜
99頁における[材料破壊とフラクチャーメカニックス
」の項に述べられている。この方法は、静疲労き裂の成
長速度Vは応力拡大係数Kに依存してVはKの増大とと
もにべき東側に従って上昇することを仮定し、保証試験
の負荷はオーバースピードテストなどの運転応力状態を
過酷にする方法が一般的であった。
Regarding the reliability assurance test method for high-temperature long-life strength for conventional ceramic parts, see Mechanical Properties of Ceramics (1972), Volume 96--edited by the Ceramics Association Editorial Committee Course Subcommittee.
It is described in the section "Material fracture and fracture mechanics" on page 99. This method assumes that the growth rate V of a static fatigue crack depends on the stress intensity factor K, and that V increases according to the power east as K increases, and that the load of the guarantee test is determined by operating stress conditions such as an overspeed test. A common method was to make the conditions harsher.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、静疲労き裂の挙動についての下記のよ
うな新たな発見に基づき、簡単かつ確実なセラミック部
品に対する高温長寿命強度の信頼性保証試験法を提供す
ることにある。
The purpose of the present invention is to provide a simple and reliable test method for high-temperature long-life strength of ceramic components, based on the following new findings regarding the behavior of static fatigue cracks.

〔発明の概要〕[Summary of the invention]

セラミック部品の高温静疲労破壊は含有する欠陥から発
生する。そこで、窒化珪素に種々の欠陥を付して100
0℃で静疲労試験を実施した。その結果を#1図に示す
。いずれの欠陥においても、103〜10’secまで
は、時間の増大とともに静疲労強度は低下するが、それ
以上では低下せず、静疲労限度を示す。この静疲労限度
をセラミックが有することは従来明らかではなかった。
High temperature static fatigue failure of ceramic parts occurs from contained defects. Therefore, we added various defects to silicon nitride and
A static fatigue test was conducted at 0°C. The results are shown in Figure #1. In any of the defects, the static fatigue strength decreases with increasing time up to 103 to 10' seconds, but does not decrease beyond that, indicating the static fatigue limit. It was not previously clear that ceramics had this static fatigue limit.

第2図には、直径が700μrrlのビッカース圧痕き
裂について、tooo℃の静疲労過程におけるき裂の進
展挙動を!′I?1llIシた結果を示す。初期応力拡
大係数に量が4 、0 M P a JMの場合は急速
に進展して破断に至ったが、それよりも低い、3 、0
 MP * 5の場合は初期に進展速度を減じたあと再
び速度を増して破断に至った。KIが2.4MPaJ”
’;’rの場合は、進展速度が弔詞に減少して停留に至
った。
Figure 2 shows the propagation behavior of a Vickers indentation crack with a diameter of 700 μrr during the static fatigue process at too high a temperature. 'I? The results are shown below. When the initial stress intensity factor was 4 and 0 MPa JM, it rapidly progressed to fracture, but when it was lower than that, 3 and 0
In the case of MP*5, the propagation speed was initially reduced and then increased again, leading to fracture. KI is 2.4MPaJ”
In the case of ';'r, the rate of progress decreased to a eulogy and reached a stagnation.

K1をさらに低くすると停留に至るき裂の寸法は小さく
なるが、いずれもき裂が若干進展したあと停留している
。き裂が進展するとに=fn5](f:き裂の形状補正
係数)で表わさ九る応力拡大係数Iくは増大するが、き
裂進展速度が減速したり停留することは、き裂進展速度
が応力拡大係数に依存し、でいないことを意味している
7このきにJの挙動は大気中と真空中で同様であ1)、
表面欠陥と内部欠陥でも同様であった。そのため、この
き裂の減速現象は、進展によって新たに生じた活性の高
いき裂先端での自己蒸発が治癒効果を生じたためと考え
られる。
When K1 is further lowered, the size of the crack that reaches stasis becomes smaller, but in all cases, the crack grows a little and then stagnates. As a crack propagates, the stress intensity factor I expressed as =fn5] (f: crack shape correction coefficient) increases, but if the crack propagation rate slows down or stops, the crack propagation rate This means that J depends on the stress intensity factor and is not 7. At this time, the behavior of J is the same in air and vacuum1),
The same was true for surface defects and internal defects. Therefore, this crack deceleration phenomenon is thought to be due to self-evaporation at the newly generated highly active crack tip due to propagation, which produced a healing effect.

第1図に示した実験結果から見られる初期欠陥寸法と静
疲労限度の関係を第3図に示す。欠陥寸法は、無限板中
での等価なき裂半長である等価き裂寸法aeで表してい
る。等価き裂寸法aeは欠陥の応力拡大係数にと応力σ
とからae = (K/σ)z/πなる関係から求めら
れ、深さaの引掻き傷ではae=1.258a、直径り
の表面半円欠陥ではa e ” 0 、25 Dである
。第3図には室温と1000℃における脆性破壊強度を
併せて示すが、これらは互にほぼ等しく、大きなき裂に
対する破壊靭性値Krcは約4.3MParである。静
疲労限度も脆性破壊強度と類似の欠陥寸法依存性を有し
ており、初期等価き裂寸法aeが約200μm以下の欠
陥では、欠陥が小さくなるほど臨界の応力拡大係数Ks
pythは低下し、応力拡大係数を用いた線形破壊力学
が有効でなくなることを表している。大きいき裂のKS
F、 thは約2 、7 M P a仄でKICの63
%であるが、等価き裂寸法asが約10μmの微小欠陥
では47%と低下が大きい。
FIG. 3 shows the relationship between the initial defect size and static fatigue limit seen from the experimental results shown in FIG. 1. The defect size is expressed as an equivalent crack size ae, which is the equivalent half length of a crack in an infinite plate. The equivalent crack size ae is the stress intensity factor of the defect and the stress σ
It is determined from the relationship ae = (K/σ)z/π, and for a scratch with depth a, ae = 1.258a, and for a surface semicircular defect with diameter, ae '' 0, 25 D. Figure 3 also shows the brittle fracture strength at room temperature and 1000°C, which are almost equal, and the fracture toughness value Krc for large cracks is approximately 4.3 MPar.The static fatigue limit is also similar to the brittle fracture strength. For defects with an initial equivalent crack size ae of approximately 200 μm or less, the smaller the defect, the smaller the critical stress intensity factor Ks.
pyth decreases, indicating that linear fracture mechanics using stress intensity factors is no longer effective. KS with large crack
F, th is about 2.7 MPa and KIC's 63
%, but for micro defects with an equivalent crack size as of approximately 10 μm, the decrease is as large as 47%.

第4図には、直径が700μmの圧痕き裂を有する窒化
珪素について、種々の温度で静疲労試験を行った結果を
示す。いずれの温度においても静疲労限度が存在してい
る。第5図には、2種のサイアロン、窒化珪素及び炭化
珪素について求めた初期等価き裂寸法aeと1000℃
での静疲労限度の関係を示す。材料により強度は異なる
が、いずれも類似の欠陥寸法依存性を有している。
FIG. 4 shows the results of static fatigue tests conducted at various temperatures on silicon nitride having an indentation crack with a diameter of 700 μm. A static fatigue limit exists at all temperatures. Figure 5 shows the initial equivalent crack dimensions ae obtained for two types of sialon, silicon nitride and silicon carbide, and the temperature at 1000°C.
This shows the relationship between static fatigue limits at Although the strength differs depending on the material, they all have similar defect size dependence.

セラミック材料は欠陥寸法と温度に対応して静疲労限度
を有することが明らかとなった。そのため、高温域にお
いて引張負荷を長時間に亘って受けるセラミック部品の
長寿命強度の信頼性を保証するためには、部品の各所に
使用時に発生する応力に対応する疲労限度の許容欠陥寸
法を第6図のように求め、超音波探傷検査や放射線透過
検査等の非破壊検査によって、各所に含有する欠陥寸法
を許容欠陥寸法以下となるように管理するのが良い。し
かし、この許容欠陥寸法は、1000℃で使用する窒化
珪素の場合、第6図に示すように、発生応力が180M
Paでは35μmと小さく、非破壊検査で確実に検出す
るのは困難である。
It has been found that ceramic materials have static fatigue limits that depend on defect size and temperature. Therefore, in order to guarantee the reliability of the long-life strength of ceramic parts that are subjected to tensile loads for long periods of time in high-temperature ranges, it is necessary to set the allowable defect size of the fatigue limit corresponding to the stress that occurs in each part of the part during use. It is preferable to obtain the defects as shown in Fig. 6 and manage them by non-destructive inspection such as ultrasonic flaw detection or radiographic inspection so that the defect size contained in each place is below the allowable defect size. However, in the case of silicon nitride used at 1000°C, the generated stress is 180M as shown in Figure 6.
Pa is as small as 35 μm, and it is difficult to reliably detect it by non-destructive testing.

本発明は、第6図に示すような、使用温度の静疲労限度
と低温短時間強度の欠陥寸法依存性を利用した保証試験
を行うことにより、非破壊検査を行うことなく、セラミ
ック部品の高温長寿命強度の信頼性を確保するものであ
る。すなわち、低温での短時間強度に比して静疲労強度
が低くなる高温域において引張負荷を長時間に亘って受
けるセラミック部品に対し、その材料における欠陥寸法
と低温短時間強度の関係及び欠陥寸法と使用温度での静
疲労限度の関係をあらかじめ求めておき。
As shown in FIG. 6, the present invention enables high-temperature testing of ceramic parts without nondestructive testing by performing a guarantee test that utilizes the static fatigue limit of the operating temperature and the defect size dependence of low-temperature short-term strength. This ensures long-life strength and reliability. In other words, for ceramic parts that are subjected to tensile loads for long periods in high temperature ranges where static fatigue strength is lower than short-time strength at low temperatures, the relationship between defect size and low-temperature short-term strength in the material and defect size Determine in advance the relationship between the static fatigue limit and the static fatigue limit at the operating temperature.

使用温度において前記部品の局所に発生する応力に対応
する静疲労限度の欠陥寸法から、その欠陥寸法に対応す
る低温短時間強度を求め、この強度よりも高い引張応力
を低温にて前記局所に発生させるものである。この保証
試験で破壊が発生しなければ、その局所に疲労限度の許
容欠陥寸法以上の欠陥は存在せず、長期間使用してもそ
の部分から静疲労破壊には至らないことが保証できる。
From the defect size of the static fatigue limit corresponding to the stress generated locally in the part at the operating temperature, find the low temperature short-time strength corresponding to the defect size, and generate a tensile stress higher than this strength in the local area at low temperature. It is something that makes you If no fracture occurs in this guarantee test, there is no defect larger than the allowable defect size of the fatigue limit in that local area, and it can be guaranteed that static fatigue failure will not occur from that part even after long-term use.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第6図ないし第8図により説
明する。セラミック部品1は窒化珪素製の発電用ガスタ
ービンの植込型動翼であり、燃焼ガス流入側のダブテー
ルへの買付根部2には運転温度の1000℃において遠
心力のため180 M P aの応力が長時間作用する
。昇温手段3は複数個の集光型赤外線輻射ヒータから成
り、セラミツク部品1全体を昇温する。局所冷却手段4
は電磁弁5を介して加圧水を導き多孔ノズル6により加
圧水を噴霧状にして前記付根部2の表面に吹きつけるも
のである。破壊検出手段7は、セラミック部品1に接触
する耐熱セラミック製導波捧8、その先端に取付けられ
たアコースティック・エミッションセンサ9及び冷却音
を除去して高周波の破壊音のみを検出するその信号増幅
器10とからなり、セラミック部品1内での破壊の発生
を検出するものである。温度差計測手段11は、セラミ
ック部品の平均的温度と前記付根部2表面の温度を計測
する2個の微小焦点型赤外線温度計12.13およびそ
れら温度計12.13の計測値の差を計算してその差が
設定値に至ると前記局所冷却手段4の電磁弁5を閉じさ
せる制御器14とからなる。
Hereinafter, one embodiment of the present invention will be described with reference to FIGS. 6 to 8. The ceramic component 1 is a implantable rotor blade of a gas turbine for power generation made of silicon nitride, and the root part 2 attached to the dovetail on the combustion gas inflow side is subjected to a centrifugal force of 180 MPa at an operating temperature of 1000°C. Stress acts for a long time. The temperature raising means 3 consists of a plurality of condensing infrared radiation heaters, and raises the temperature of the entire ceramic component 1. Local cooling means 4
Pressurized water is introduced through a solenoid valve 5, and is sprayed onto the surface of the root portion 2 through a porous nozzle 6. The destruction detection means 7 includes a waveguide 8 made of heat-resistant ceramic that contacts the ceramic component 1, an acoustic emission sensor 9 attached to the tip thereof, and a signal amplifier 10 thereof that removes cooling noise and detects only high-frequency destruction noise. This detects the occurrence of breakage within the ceramic component 1. The temperature difference measuring means 11 calculates the difference between the average temperature of the ceramic component and the temperature of the surface of the root portion 2 by two microfocus infrared thermometers 12.13 and the measured values of these thermometers 12.13. and a controller 14 that closes the solenoid valve 5 of the local cooling means 4 when the difference reaches a set value.

以上の構成で、セラミック部品1の付根部2に対する信
頼性保証試験法を以下に示す。この窒化珪素における欠
陥寸法と低温短時間強度の関係及び欠陥寸法と1000
℃での静疲労限度の関係は第3図および第6図に示すと
おりである。付根部2には1000℃で180 M P
 aの応力が長期間発生する。
With the above configuration, a reliability guarantee test method for the root portion 2 of the ceramic component 1 will be described below. The relationship between defect size and low-temperature short-time strength in silicon nitride, and the relationship between defect size and 1000
The relationship between static fatigue limits at °C is as shown in Figures 3 and 6. 180 MP at 1000℃ for root part 2
Stress a occurs for a long period of time.

第6図から、この状態に対応する1000℃での静疲労
限度の等価き裂寸法a8は35μm、それに対応する低
温短時間強度は320 M P aと得られる。
From FIG. 6, the equivalent crack size a8 of the static fatigue limit at 1000° C. corresponding to this state is 35 μm, and the corresponding low-temperature short-time strength is 320 MPa.

このセラミック部品1の付根部2を冷却した場合に付根
部に発生する引張応力σは次式で得られる。
When the root portion 2 of this ceramic component 1 is cooled, the tensile stress σ generated at the root portion is obtained by the following equation.

ここに、Eは縦弾性係数でこの材料では310G P 
a、αは線膨張係数でこの材料では2.6×10−8/
’C1νはポアソン比でこの材料では0.28である。
Here, E is the longitudinal elastic modulus and is 310G P for this material.
a and α are linear expansion coefficients of 2.6×10-8/ for this material.
'C1ν is Poisson's ratio and is 0.28 for this material.

八Tは部品1の平均温度と付根部2表面温度の差であり
、βは形状係数でこの状態についての熱応力解析結果か
ら0.85 と得られている。したがって、付根部2に
320 M P aの引張応力を発生させるためには温
度差ΔTを430℃とする必要がある。
8T is the difference between the average temperature of the part 1 and the surface temperature of the root part 2, and β is the shape factor, which is obtained as 0.85 from the thermal stress analysis results for this state. Therefore, in order to generate a tensile stress of 320 MPa in the root portion 2, the temperature difference ΔT needs to be 430°C.

セラミック部品1の付根部2に対し′C保証試験を実施
させるには、第7図のように各機器を配置して、昇温手
段3により、この材料が静疲労現象を殆んど生じない温
度の800℃にまでセラミック部品1を一様に昇温する
。つぎに、電磁弁5を開けて多孔ノズル6により圧力水
を付根部2に吹きつける。第8図には、温度計12..
13の測定値から制御器14によって計算された付根部
2の応力の時間変化を示す。電磁弁5を開放したままの
状態では応力が405 M P aに至る。応力が前記
の320 M P aよりも若干高い330 M P 
aに至った時点で電磁弁5を閉傾すると応力は急速に低
下する。この保証試験の過程でアコースティック・エミ
ッション・センサ9に破を音が検出されない場合は合格
で、検出された場合は不合格となる。
In order to carry out the 'C guarantee test on the root part 2 of the ceramic part 1, each device is arranged as shown in Fig. 7, and the temperature raising means 3 is used to ensure that this material hardly causes any static fatigue phenomenon. The ceramic component 1 is uniformly heated to a temperature of 800°C. Next, the solenoid valve 5 is opened and the porous nozzle 6 sprays pressurized water onto the root portion 2. FIG. 8 shows a thermometer 12. ..
13 shows a change in stress in the root portion 2 over time calculated by the controller 14 from the measured values in FIG. When the solenoid valve 5 remains open, the stress reaches 405 MPa. The stress is 330 MPa, which is slightly higher than the above 320 MPa.
When the solenoid valve 5 is closed at the point a, the stress rapidly decreases. During this guarantee test, if no sound is detected by the acoustic emission sensor 9, the test is passed; if any sound is detected, the test is failed.

本実施例においては、単体の植込翼に熱応力を負荷して
保証試験を行うため、実機に組上げてオーバスピード試
験を行う場合に比して他の部分に過大な負荷がかかった
り、翼が破損してアンバランスのため他の部分も破損す
ることなどは防止できる。
In this example, a guarantee test is performed by applying thermal stress to a single implanted blade, so compared to when assembled into an actual aircraft and an overspeed test is performed, there is no possibility that excessive loads will be applied to other parts or the blade It is possible to prevent other parts from being damaged due to damage and imbalance.

本発明の他の実施例を第9図に示す。セラミック部品1
は同じく窒化珪素製の自動車用一体型ガスタービンロー
タであり、買付根部2には大きな遠心応力が発生する。
Another embodiment of the invention is shown in FIG. Ceramic parts 1
is an integrated gas turbine rotor for automobiles also made of silicon nitride, and a large centrifugal stress is generated in the base portion 2 of the rotor.

保証試験を行うに当っては。When conducting warranty tests.

セラミック部品1を恒温炉中に設置し、小口径の+p孔
ノズル6によって付根部2を冷却する。部品1全体の温
度は変化しないため、温度差計測手段11は付根部2の
温度を計測する微小焦点型赤外線温度計13のみである
。また1局所冷却手段4の弁5は手動弁で、温度計13
の値を読取りながら調節を行うようにしである。
The ceramic component 1 is placed in a constant temperature furnace, and the root portion 2 is cooled by a small-diameter +p-hole nozzle 6. Since the temperature of the entire component 1 does not change, the temperature difference measuring means 11 is only a microfocus type infrared thermometer 13 that measures the temperature of the root portion 2. Further, the valve 5 of the local cooling means 4 is a manual valve, and the thermometer 13 is a manual valve.
Make adjustments while reading the value.

第10図に示す本発明の他の実施例は、自動車用排気ガ
スターボチャージャロータの買付根部2に対するもので
ある。居所冷却手段4は容器に冷却水を入れたもので、
その容器には破壊検出手段7が固定されている。この方
法は、第8図に示した電磁弁解放の場合と同様に、最高
到達応力を利用するもので、冷却水の温度とセラミック
部品1の昇温温度とを適切に選ぶ必要がある。本例の場
合は、水温は50℃で、セラミック部品1の昇温温度は
600℃であった。また、容器の内径は小さくして負荷
応力の小さい翼先端では熱応力が小さくなるようにしで
ある。セラミック部品1は焼結後の余熱を利用して、6
50℃の時点で焼結炉から取出し、冷却水内に吊持する
ことにより保証試験を実施した。
Another embodiment of the present invention, shown in FIG. 10, is directed to a base 2 of an exhaust gas turbocharger rotor for an automobile. The residence cooling means 4 is a container filled with cooling water,
A break detection means 7 is fixed to the container. This method utilizes the maximum stress as in the case of opening the solenoid valve shown in FIG. 8, and requires appropriate selection of the temperature of the cooling water and the temperature at which the ceramic component 1 is heated. In the case of this example, the water temperature was 50°C, and the heating temperature of the ceramic component 1 was 600°C. In addition, the inner diameter of the container is made small so that the thermal stress is reduced at the tip of the blade where the applied stress is small. Ceramic part 1 uses the residual heat after sintering to
A guarantee test was carried out by taking it out from the sintering furnace at 50° C. and suspending it in cooling water.

第11図は高温金属用押出しダイへの適用例である。セ
ラミック部品1であるダイは押出し中に内圧により内周
部に引張応力が発生する。本実施例においては、熱電対
15.16を内周側と外周側に取付け、制御器14の温
度測定部の零接点側に内局側熱電対15を結線して温度
差が直読できるようにしである。この場合の冷却材は圧
縮空気であり、ノズル6からダイの大口径部から吹付け
ている。
FIG. 11 shows an example of application to an extrusion die for high-temperature metals. During extrusion, tensile stress is generated in the inner circumference of the die, which is the ceramic component 1, due to internal pressure. In this embodiment, thermocouples 15 and 16 are installed on the inner and outer sides, and the inner thermocouple 15 is connected to the zero contact side of the temperature measurement section of the controller 14 so that the temperature difference can be directly read. It is. The coolant in this case is compressed air, which is sprayed from the large diameter portion of the die through the nozzle 6.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば1gN単かつ確実
にセラミック部品に対して高温寿命強度の信頼性を試験
することができる。
As explained above, according to the present invention, it is possible to test the reliability of high-temperature life strength of ceramic parts easily and reliably using 1 gN.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第11図は本発明に係わる試験法の説明図で
、第1図はセラミックの破断時間と応力との関係図、第
2図はセラミックの負荷時間とき裂長さの関係図、第3
図は初期等価き裂寸法、引掻き傷の深さ及び表面半円欠
陥の直径と応力の関、偶因、第4図はセラミックの破断
時間と初期応力拡大係数の関係図、第5図は初期等価き
裂寸法。 引掻き傷の深さ及び表面半円欠陥の直径と静疲労限度の
関係図、第6図はセラミックの等価き裂寸法と応力の関
係図、第7図は本発明一実施例の斜視ブロック図、第8
図はその応力履歴の説明図、第9図は本発明の他の実施
例の斜視ブロック図。 第10図は本発明のさらに他の実施例の説明図、第11
図は本発明のさらに他の実施例の説明図である。 1・・・セラミック部品、2・・・付根部、3・・・昇
温手段、4・・・局所冷却手段、5・・・電磁弁、6・
・・ノズル、7・・・破壊検出手段、8・・・導波棒、
9・・・アコースティック・エミッション・センサ、1
1・・・温度差計測手段、12.13・・・温度計、1
4・・・制御器。
Figures 1 to 11 are explanatory diagrams of the test method according to the present invention. Figure 1 is a diagram of the relationship between ceramic rupture time and stress, Figure 2 is a diagram of the relationship between ceramic load time and crack length, and Figure 2 is a diagram of the relationship between ceramic rupture time and stress. 3
The figure shows the relationship between the initial equivalent crack size, the scratch depth, the diameter of the surface semicircular defect, and stress, due to contingencies. Figure 4 shows the relationship between ceramic rupture time and initial stress intensity factor. Figure 5 shows the relationship between the initial Equivalent crack size. A diagram showing the relationship between the depth of a scratch, the diameter of a surface semicircular defect, and the static fatigue limit, FIG. 6 is a diagram showing the relationship between the equivalent crack size and stress in ceramic, and FIG. 7 is a perspective block diagram of an embodiment of the present invention. 8th
The figure is an explanatory diagram of the stress history, and FIG. 9 is a perspective block diagram of another embodiment of the present invention. FIG. 10 is an explanatory diagram of still another embodiment of the present invention, and FIG.
The figure is an explanatory diagram of still another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Ceramic part, 2... Root part, 3... Temperature raising means, 4... Local cooling means, 5... Solenoid valve, 6...
... Nozzle, 7... Destruction detection means, 8... Waveguide rod,
9...Acoustic emission sensor, 1
1... Temperature difference measuring means, 12.13... Thermometer, 1
4...Controller.

Claims (1)

【特許請求の範囲】 1、低温での短時間強度に比して静疲労強度が低くなる
高温域において引張負荷を長時間に亘つて受けるセラミ
ック部品に対し、その材料における欠陥寸法と低温短時
間強度の関係及び欠陥寸法と使用温度での静疲労限度の
関係をあらかじめ求めておき、使用温度において前記部
品の局所に発生する応力に対応する静疲労限度の欠陥寸
法から、その欠陥寸法に対応する低温短時間強度を求め
、この強度よりも高い引張応力を低温にて前記局所に発
生させることを特徴とするセラミック部品に対する高温
長寿命強度の信頼性保証試験法。 2、特許請求の範囲第1項の方法において、昇温手段、
局所冷却手段及び破壊検出手段を有し、セラミック部品
を昇温の後、局所を冷却してその部分に低温にて前記引
張応力を発生させるとともに、その時点における破壊発
生の有無を検出するようにしたことを特徴とするセラミ
ック部品に対する高温長寿命強度の信頼性保証試験法。 3、特許請求の範囲第2項の方法において、局所と部品
の他の部分との温度差測定手段を有し、この温度差測定
手段によつて局所冷却手段の作動を制御することにより
前記引張応力を設定値に到達させるようにしたことを特
徴とするセラミック部品に対する高温長寿命強度の信頼
性保証試験法。
[Claims] 1. For ceramic parts that are subjected to tensile load for a long time in a high temperature range where the static fatigue strength is lower than the short-time strength at low temperatures, the defect size in the material and the short-time strength at low temperatures The relationship between the strength and the defect size and the static fatigue limit at the working temperature is determined in advance, and the defect size is determined based on the static fatigue limit defect size corresponding to the stress generated locally in the component at the working temperature. A reliability assurance test method for high-temperature long-life strength for ceramic parts, characterized by determining low-temperature short-time strength and generating a tensile stress higher than this strength locally at low temperature. 2. In the method according to claim 1, the heating means;
It has a local cooling means and a fracture detection means, and after raising the temperature of the ceramic component, locally cools it to generate the tensile stress in that part at a low temperature, and detects whether or not fracture has occurred at that point. A reliability assurance test method for high-temperature long-life strength for ceramic parts. 3. The method according to claim 2, which includes means for measuring a temperature difference between the local part and other parts of the part, and by controlling the operation of the local cooling means by the temperature difference measuring means, the tension is reduced. A reliability assurance test method for high-temperature long-life strength for ceramic parts, characterized by making the stress reach a set value.
JP23517885A 1985-10-23 1985-10-23 High-temperature long-life strength reliability assurance test method for ceramic parts Expired - Lifetime JPH0690124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23517885A JPH0690124B2 (en) 1985-10-23 1985-10-23 High-temperature long-life strength reliability assurance test method for ceramic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23517885A JPH0690124B2 (en) 1985-10-23 1985-10-23 High-temperature long-life strength reliability assurance test method for ceramic parts

Publications (2)

Publication Number Publication Date
JPS6295461A true JPS6295461A (en) 1987-05-01
JPH0690124B2 JPH0690124B2 (en) 1994-11-14

Family

ID=16982219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23517885A Expired - Lifetime JPH0690124B2 (en) 1985-10-23 1985-10-23 High-temperature long-life strength reliability assurance test method for ceramic parts

Country Status (1)

Country Link
JP (1) JPH0690124B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007503127A (en) * 2003-08-21 2007-02-15 ユニシス コーポレイシヨン A temperature control system that sprays liquid refrigerant droplets on an IC module and directs radiation.
CN110245391A (en) * 2019-05-28 2019-09-17 上海发电设备成套设计研究院有限责任公司 A method of based on artificial neural network with the Hardness Prediction service life

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007503127A (en) * 2003-08-21 2007-02-15 ユニシス コーポレイシヨン A temperature control system that sprays liquid refrigerant droplets on an IC module and directs radiation.
CN110245391A (en) * 2019-05-28 2019-09-17 上海发电设备成套设计研究院有限责任公司 A method of based on artificial neural network with the Hardness Prediction service life
CN110245391B (en) * 2019-05-28 2023-07-18 上海发电设备成套设计研究院有限责任公司 Method for predicting service life based on hardness of artificial neural network

Also Published As

Publication number Publication date
JPH0690124B2 (en) 1994-11-14

Similar Documents

Publication Publication Date Title
US5647667A (en) Proof test for ceramic parts
Panda et al. Thermal shock and thermal fatigue study of ceramic materials on a newly developed ascending thermal shock test equipment
Jian et al. Thermal shock and fatigue resistance evaluation of functionally graded coating for gas turbine blades by laser heating method
Lancaster et al. A review of thermo-mechanical fatigue behaviour in polycrystalline nickel superalloys for turbine disc applications
Takeuchi et al. Thermal fracture of multilayer ceramic thermal barrier coatings
Bhattachar Thermal fatigue behaviour of nickel-base superailoy 263 sheets
Vedula et al. Test methodology for the thermal shock characterization of ceramics
Kuwabara et al. THERMAL‐MECHANICAL LOW‐CYCLE FATIGUE UNDER CREEP‐FATIGUE INTERACTION ON TYPE 304 STAINLESS STEELS
JPS6295461A (en) Reliability guarantee testing method for high-temperature long-life strength of ceramic parts
TW200925600A (en) Method for determining the thermal shock robustness and material strength of brittle failure materials
Kim et al. Microstructural analysis of TMF failure mechanism of GTD-111 applied to gas turbine blades
Beck et al. Thermo‐mechanical fatigue–the route to standardisation (“TMF‐Standard” project)
Seifert et al. A New Device for Measuring Hot Thermal Shock, Thermal Cycling and Other High Temperature Properties of Refractories
Lamon et al. Thermal stress failure of ceramics under repeated rapid heatings
Baroody et al. Effect of shape on thermal fracture
Kawasaki et al. Thermal shock fracture mechanism of metal/ceramic functionally gradient materials
RU2430351C1 (en) Procedure for evaluation of strength properties of heat shielding coating and device for its implementation
Ammann et al. The thermal fatigue behavior of hot pressed silicon nitride
Lai et al. Development of a thermal fatigue test bench for cylinder head materials
JP2008215933A (en) State evaluation method of measuring object
JPH0674951A (en) Creep damage evaluating method for ferrite heat resistant steel
JPH10170416A (en) Method for evaluating creep life of high-temperature device material
JP4801295B2 (en) Temperature estimation method for thermal barrier coating
Rettig et al. Characterization of fatigue mechanisms of thermal barrier coatings by a novel laser-based test
Chuck et al. High‐Temperature Tension‐Tension Cyclic Fatigue for an HIP'ed Silicon Nitride