JPH10170416A - Method for evaluating creep life of high-temperature device material - Google Patents

Method for evaluating creep life of high-temperature device material

Info

Publication number
JPH10170416A
JPH10170416A JP8333391A JP33339196A JPH10170416A JP H10170416 A JPH10170416 A JP H10170416A JP 8333391 A JP8333391 A JP 8333391A JP 33339196 A JP33339196 A JP 33339196A JP H10170416 A JPH10170416 A JP H10170416A
Authority
JP
Japan
Prior art keywords
stress
creep life
consumption rate
creep
effective stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8333391A
Other languages
Japanese (ja)
Other versions
JP3372437B2 (en
Inventor
Masashi Ozaki
政司 尾崎
Nobuhiko Nishimura
宣彦 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP33339196A priority Critical patent/JP3372437B2/en
Publication of JPH10170416A publication Critical patent/JPH10170416A/en
Application granted granted Critical
Publication of JP3372437B2 publication Critical patent/JP3372437B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce the amount of a material to be collected and evaluate a creep life in a short time accurately, by measuring an effective stress of the collected material and calculating a creep life consumption rate on the basis of a relation diagram of the effective stress and creep life consumption rate investigated and formed beforehand for the material. SOLUTION: A material collected from an optical part of a high-temperature device is processed to an effective stress test piece 1 and heated to a predetermined temperature in a test container 2. A tensile stress as an initial stress is applied to the test piece 1 (weights 3, 4 are loaded). Approximately 10% of the loaded stress is removed from the test piece 1 being deformed due to a creep (the weight 4 is removed). When a distortion of the test piece 1 is received to not smaller than a distortion immediately after the stress is rapidly reduced, approximately 10% of the load is again removed. The procedures are repeated several times. An effective stress is measured in this manner, and a creep life consumption rate is calculated on the basis of a diagram of a relation of the effective stress and creep life consumption rate investigated and formed beforehand for the martial.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は少ない試料により、
短時間に精度よくクリープ寿命消費率を測定することが
できる高温機器材料のクリープ寿命評価方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a method using a small number of samples.
The present invention relates to a method for evaluating the creep life of high-temperature equipment materials, which can accurately measure the creep life consumption rate in a short time.

【0002】[0002]

【従来の技術】高温機器材料のクリープ寿命消費率や余
寿命の評価方法は、非破壊試験法と破壊試験法の2つに
大別される。非破壊検査法には染色浸透探傷法、磁気探
傷法又は超音波探傷法等により表面及び内部の亀裂、欠
陥の有無の調査を行う欠陥検査と対象部位からレプリカ
を採取してクリープボイドの生成状況、析出物の分布状
況及び形態変化から寿命消費率を推定する金属組織学的
評価法とがある。一方、破壊試験法では高温機器におい
て長時間使用された部位よりミニチュアクリープ試験片
を採取し、任意の応力及び温度で長時間のクリープ破断
試験を行い、余寿命を推定していた。
2. Description of the Related Art Methods for evaluating the creep life consumption rate and remaining life of high-temperature equipment materials are roughly classified into two methods: a nondestructive test method and a destructive test method. Non-destructive inspection methods include the use of dye penetrant inspection, magnetic inspection, or ultrasonic inspection to check for cracks and defects on the surface and inside, defect inspection, and the creation of creep voids by collecting replicas from the target site. And a metallographic evaluation method for estimating the life consumption rate from the distribution state and morphological change of precipitates. On the other hand, in the destructive test method, a miniature creep test piece was sampled from a portion used for a long time in a high-temperature device, and a long-term creep rupture test was performed at an arbitrary stress and temperature to estimate a remaining life.

【0003】[0003]

【発明が解決しようとする課題】これらの従来技術の高
温機器材料のクリープ寿命消費率及び余寿命評価法にお
ける問題点は以下のとおりである。 (1)染色浸透探傷法、磁気探傷法又は超音波探傷法等
による非破壊検査法においては、欠陥の有無を調査する
のみでクリープ寿命消費率の定量化は困難である。 (2)金属組織学的評価法は、クリープ寿命評価におい
てもっとも活発に行われており有用な方法であるが、ク
リープボイドの生成数が少ない寿命前半において精度の
高い寿命評価が困難である。 (3)実機より採取した材料を用いてクリープ破断試験
を行う破壊試験方法は、余寿命を推定するにはもっとも
有用であるが、試験期間が長期にわたり、また、数条件
での試験を実施するため、高温機器からの材料採取量数
を多く必要とする。
The problems in the creep life consumption rate and remaining life evaluation methods of these prior art high temperature equipment materials are as follows. (1) In a nondestructive inspection method such as a dye penetration inspection method, a magnetic inspection method, or an ultrasonic inspection method, it is difficult to quantify the creep life consumption rate only by investigating the presence or absence of a defect. (2) The metallographic evaluation method is the most active and useful method in creep life evaluation, but it is difficult to evaluate the life with high accuracy in the first half of the life when the number of creep voids generated is small. (3) The destructive test method of conducting a creep rupture test using a material collected from an actual machine is most useful for estimating the remaining life, but the test is performed over a long period of time and under several conditions. Therefore, a large number of materials must be collected from high-temperature equipment.

【0004】本発明は上記従来技術の実状に鑑み、実機
からの材料採取量が少なくてすみ、短時間で精度のよい
評価が可能な高温機器材料のクリープ寿命評価方法を提
供しようとするものである。
The present invention has been made in view of the above circumstances of the prior art, and has as its object to provide a creep life evaluation method for high-temperature equipment materials that requires a small amount of material to be collected from an actual machine and enables accurate evaluation in a short time. is there.

【0005】[0005]

【課題を解決するための手段】本発明は高温機器より採
取した材料を用いてクリープ寿命を評価する方法におい
て、高温機器の任意の測定対象部位から採取した材料の
有効応力を測定し、予めその材料について有効応力とク
リープ寿命消費率との関係を調べて作成した関係図に基
づいてクリープ寿命消費率を算出することを特徴とする
高温機器材料のクリープ寿命評価方法である。
According to the present invention, there is provided a method for evaluating the creep life using a material collected from a high-temperature device. In this method, the effective stress of a material collected from an arbitrary portion to be measured of the high-temperature device is measured. A creep life evaluation method for a high-temperature equipment material, wherein a creep life consumption rate is calculated based on a relationship diagram created by examining a relationship between an effective stress and a creep life consumption rate of a material.

【0006】[0006]

【発明の実施の形態】有効応力とは負荷されている応力
のうち、材料が変形するのに寄与する応力(転位を動か
すのに有効に働いている応力)であり、有効応力と負荷
応力との間には有効応力=負荷応力−内部応力の関係が
ある。内部応力とは負荷された応力に対し逆向きに働く
逆応力であり、材料自身が有する変形抵抗力を表すもの
である。この内部応力は析出物の分布状態や転位組織に
よって決まり、析出物が微細に分散しているほど、ま
た、サブグレイン(亜結晶粒)サイズが小さく、サブグ
レインバウンダリ(亜結晶粒界)の方位差が大きいほど
内部応力は大きくなる。
BEST MODE FOR CARRYING OUT THE INVENTION An effective stress is a stress that contributes to the deformation of a material (a stress effectively acting to move dislocations) among applied stresses. There is a relationship between effective stress = load stress−internal stress. The internal stress is a reverse stress acting in the opposite direction to the applied stress, and represents the deformation resistance of the material itself. The internal stress is determined by the distribution of the precipitates and the dislocation structure. The finer the precipitates are dispersed, the smaller the subgrain (subcrystal grain) size, and the orientation of the subgrain boundary (subcrystal grain boundary). The greater the difference, the greater the internal stress.

【0007】本発明は材料の有効応力とクリープ寿命消
費率との間に一定の関係があり、特定の材料について予
備試験を行い、予め両者の関係を示す関係図(検量線)
を作成しておくことにより、材料の有効応力を測定する
だけでクリープ寿命の評価を行うことができることを見
出した結果に基づくものである。本発明の方法によれ
ば、実際に運転されている高温機器から採取した材料を
用いて、その材料の有効応力を測定することにより、例
えば500〜650程度の高温で使用されている高温機
器材料のクリープ寿命評価を行うことができる。
In the present invention, there is a certain relationship between the effective stress of the material and the creep life consumption rate. A preliminary test is performed on a specific material, and a relationship diagram (calibration curve) showing the relationship between the two in advance is shown.
Is based on the finding that creep life can be evaluated only by measuring the effective stress of the material. According to the method of the present invention, by measuring the effective stress of a material using a material collected from a high-temperature device actually operated, for example, a high-temperature device material used at a high temperature of about 500 to 650 is used. Can be evaluated.

【0008】本発明の方法においては、特定の材料につ
いて数段階のクリープ寿命消費率の試料(例えば10%
寿命消費材、20%寿命消費材、・・・)を作製する。
ここでいうクリープ寿命消費率は、その温度、応力にお
けるクリープ破断時間の10%の時間だけ応力を負荷さ
せたものを10%寿命消費材とし、例えば、破断時間1
000時間の材料であれば応力を負荷させた状態で10
0時間経過した時点で応力を除荷したものを試料とす
る。そして、これらの試料を用いて後述の応力急減試験
を行い、有効応力を測定し、得られた有効応力と用いた
試料のクリープ寿命消費率との関係図を作成する。
In the method of the present invention, a sample having a creep life consumption rate of several steps for a specific material (for example, 10%
Life-consuming material, 20% life-consuming material,...).
Here, the creep life consumption rate is defined as a 10% life consumption material obtained by applying a stress for 10% of the creep rupture time at that temperature and stress.
If the material is 000 hours, 10
The sample from which the stress was unloaded at the time when 0 hour had passed was used as a sample. Then, a stress drop test described later is performed using these samples to measure the effective stress, and a relation diagram between the obtained effective stress and the creep life consumption rate of the used sample is created.

【0009】実機から採取した試料のクリープ寿命評価
を行うに当たっては、予めその材料について作成した有
効応力とクリープ寿命消費率との関係図を使用すること
により、試料の有効応力を測定するだけでクリープ寿命
評価を行うことができる。なお、前記のとおり有効応力
は負荷応力から内部応力を引いた値となるので、応力が
変化すれば有効応力も変化する。本発明では内部応力の
変化に伴う有効応力の増減でクリープ寿命評価を行うの
で、関係図の作成時及び実機から採取した試料の測定時
の負荷応力は一定にしておくことが必要である。
In evaluating the creep life of a sample taken from an actual machine, creep life is measured only by measuring the effective stress of the sample by using a relationship diagram between the effective stress and the creep life consumption rate prepared in advance for the material. Life evaluation can be performed. As described above, since the effective stress is a value obtained by subtracting the internal stress from the applied stress, if the stress changes, the effective stress also changes. In the present invention, the creep life is evaluated based on the increase and decrease of the effective stress due to the change of the internal stress. Therefore, it is necessary to keep the applied stress constant at the time of creating the relationship diagram and at the time of measuring the sample taken from the actual machine.

【0010】次に有効応力の測定法を図1によって説明
する。図1(a)は測定に使用した試験片の寸法、形状
を示す図であり、図1(b)は測定方法を示す説明図で
ある。測定は次の手順によって実施する。 (1)高温機器における任意の部位より採取した材料を
有効応力測定用試験片1に加工し、試験容器2内で所定
の温度(通常は実機使用温度付近の温度あるいは加速試
験のために実機使用温度よりも若干高い温度とする)ま
で加熱する。 (2)加熱した試験片に初期応力として任意の引張応力
(通常は有効応力を測定する試験温度における試験材の
耐力の50%程度の応力)を負荷する(おもり3及び4
を負荷する)。 (3)クリープ変形中の試験片から初期の負荷応力の1
0%程度を瞬間的に除荷する(除荷用おもり4の一つを
除荷する)。除荷後の金属材料は、弾性変位分の歪みが
減少した後、即座にクリープ変形を始めるか、変形が滞
留するか、もしくは引張応力を負荷しているにもかかわ
らず歪みが一定期間減少し、その後増加し始めるかであ
る。 (4)除荷された試験片の歪みが応力急減直後の歪み以
上まで回復したら、再度10%程度の応力を除荷する
(除荷用おもり4の二つ目を除荷する)。 (5)この手順を数回繰り返す(すなわち、10%程度
の応力の除荷を数段階行う)。
Next, a method for measuring the effective stress will be described with reference to FIG. FIG. 1A is a diagram showing dimensions and shapes of test pieces used for measurement, and FIG. 1B is an explanatory diagram showing a measurement method. The measurement is performed according to the following procedure. (1) A material collected from an arbitrary portion of a high-temperature device is processed into a test piece 1 for measuring an effective stress, and a predetermined temperature (usually a temperature near the actual use temperature or use of the actual device for an acceleration test) in the test container 2 Temperature slightly higher than the temperature). (2) An arbitrary tensile stress (usually a stress of about 50% of the proof stress of the test material at the test temperature at which the effective stress is measured) is applied as an initial stress to the heated test piece (weights 3 and 4).
Load). (3) The initial load stress from the test piece during creep deformation is 1
Instantly unload about 0% (unload one of the unloading weights 4). After unloading, the metal material starts creep deformation immediately after the elastic displacement decreases, the deformation stays, or the strain decreases for a certain period despite applying tensile stress. , Then begin to increase. (4) When the strain of the unloaded test piece recovers to a level equal to or higher than the strain immediately after the sharp decrease in stress, the stress of about 10% is unloaded again (the second unloading weight 4 is unloaded). (5) This procedure is repeated several times (that is, several steps of unloading a stress of about 10%).

【0011】図2に9%Cr鋼の応力急減後の歪みの変
化の1例を示す。応力急減後、試験片の歪みは一定期間
減少し、その後増加し始める。ここでは応力急減後の歪
みまで試験片の歪みが回復するまでの時間(変形滞留時
間)を測定する。なお、図2のグラフは連続的なグラフ
(の最終的な歪みの大きさがの出発点に一致する)
となるものであるが、図2には変形滞留時間が測定でき
る範囲までを記載してある。この例では除荷前の歪みよ
り高い歪みまで回復した後、次の除荷を行っている。
FIG. 2 shows an example of a change in strain after a sharp decrease in stress of 9% Cr steel. After the stress drop, the strain on the specimen decreases for a period of time and then begins to increase. Here, the time (deformation residence time) until the strain of the test piece recovers to the strain after the stress suddenly decreases is measured. Note that the graph of FIG. 2 is a continuous graph (the magnitude of the final distortion corresponds to the starting point).
FIG. 2 shows the range up to the range where the deformation residence time can be measured. In this example, the next unloading is performed after the strain is recovered to a strain higher than the strain before unloading.

【0012】図3は有効応力の決定法を示したものであ
る。ここで、横軸に変形滞留時間の1/2乗を、縦軸に
応力減少率すなわち(除荷応力)/(初期応力)の値を
とってプロットする。両者の間には直線関係が成り立
ち、変形滞留時間が0となる応力が有効応力となる。す
なわち、クリープ変形中の材料に負荷している応力の一
部を急減させると、その急減量によって歪みは次のよう
な挙動をとる。(1) 応力急減量が有効応力と等しい場合
は材料中の転位に作用する力は0となり、変形は滞留す
る。(2) 応力急減量が有効応力を上回ると材料中の転位
に負の力が作用し、逆方向のクリープ変形が認められる
(歪みが減少する)。(3) 応力急減量が有効応力を下回
ると材料中の転位に正の力が作用した状態が続くため、
応力急減後即座に歪みが増加する。したがって、変形滞
留時間が0となる応力が有効応力となる。この有効応力
は負荷されている応力のうち、材料が変形するのに実際
に寄与する応力であり、高温応力下で材料を使用すると
内部逆応力すなわち材料の変形抵抗が減少するため、有
効応力は増加する。図3のデータは図2に対応したもの
であり、変形滞留時間が0となる位置では除荷応力/初
期応力=0.06なので、有効応力は0.06×140
(MPa)、すなわち8.4MPaとなる。
FIG. 3 shows a method for determining the effective stress. Here, the abscissa plots the 乗 power of the deformation residence time and the ordinate plots the stress reduction rate, that is, the value of (unloading stress) / (initial stress). A linear relationship is established between the two, and the stress at which the deformation residence time becomes zero is the effective stress. That is, when a part of the stress applied to the material undergoing the creep deformation is suddenly reduced, the strain behaves as follows due to the sudden decrease. (1) When the sudden decrease in stress is equal to the effective stress, the force acting on dislocations in the material becomes zero, and the deformation stays. (2) When the amount of sudden decrease in stress exceeds the effective stress, a negative force acts on dislocations in the material, and creep deformation in the opposite direction is observed (strain is reduced). (3) If the amount of sudden decrease in stress falls below the effective stress, the state in which positive force acts on dislocations in the material continues.
Immediately after the stress suddenly decreases, the strain increases. Therefore, the stress at which the deformation residence time becomes zero is the effective stress. This effective stress is the stress that actually contributes to the deformation of the material among the applied stresses.Using a material under high temperature stress reduces the internal reverse stress, that is, the deformation resistance of the material. To increase. The data in FIG. 3 corresponds to FIG. 2. Since the unloading stress / initial stress = 0.06 at the position where the deformation residence time is 0, the effective stress is 0.06 × 140.
(MPa), that is, 8.4 MPa.

【0013】次に、寿命と有効応力の関係図の作成法に
ついて説明する。まず、定荷重クリープ破断試験機によ
って数段階のクリープ寿命消費材を作製する。その後、
それらの材料(各寿命消費材)を用いて前述の手順で応
力急減試験によって有効応力を測定し、有効応力とクリ
ープ寿命消費率の関係図を求める。
Next, a description will be given of a method for creating a relationship diagram between life and effective stress. First, a creep life consuming material of several stages is produced by a constant load creep rupture tester. afterwards,
The effective stress is measured by a stress drop test using the above materials (each life consuming material) in the above-described procedure, and a relationship diagram between the effective stress and the creep life consumption rate is obtained.

【0014】このようにして求めた9%Cr耐熱鋼にお
けるクリープ寿命消費率と有効応力の関係図を図4に示
す。前記図2及び図3の実験データは10%寿命消費材
の実験結果であり、図4におけるクリープ寿命消費率1
0%のプロットに相当する。前述のように有効応力は負
荷されている応力のうち、材料が変形するのに実際に寄
与する応力であり、高温応力下で材料を使用すると内部
逆応力すなわち材料の変形抵抗が減少するため、有効応
力は増加する。したがって、このような関係図を予め作
成しておくことによって、その金属の寿命消費率及び余
寿命を評価することができる。
FIG. 4 is a graph showing the relationship between the creep life consumption rate and the effective stress of the 9% Cr heat-resisting steel thus obtained. The experimental data shown in FIGS. 2 and 3 are experimental results of a 10% life consuming material.
This corresponds to a plot of 0%. As described above, the effective stress is the stress that actually contributes to the deformation of the material among the applied stress, and the use of the material under high temperature stress reduces the internal reverse stress, that is, the deformation resistance of the material, Effective stress increases. Therefore, by preparing such a relation diagram in advance, the life consumption rate and the remaining life of the metal can be evaluated.

【0015】図4中に示した破線は、火力発電所ボイラ
の伝熱管として長時間使用された9%Cr系耐熱鋼の有
効応力を示したものである。実機で使用された材料の有
効応力は37MPaであるから、図4の関係図から求め
たこの材料のクリープ寿命消費率は約50%ということ
になる。実機で使用された同じ材料について600℃、
140MPaでクリープ破断試験を実施した結果、48
00時間で破断した。今回測定対象とした9%Cr系耐
熱鋼の未使用材の600℃、140MPaでの平均破断
時間は約10000時間であり、従来方法でもっとも確
実な破壊試験法で得たクリープ寿命消費率は100×
(10000−4800)/10000=52%とな
る。このように本発明の方法で得られたクリープ寿命消
費率と従来法で得られたそれは略同様であり、本発明の
方法により高い精度でクリープ寿命評価が可能であるこ
とがわかる。
The dashed line in FIG. 4 shows the effective stress of 9% Cr heat-resistant steel which has been used for a long time as a heat transfer tube of a thermal power plant boiler. Since the effective stress of the material used in the actual machine is 37 MPa, the creep life consumption rate of this material determined from the relation diagram of FIG. 4 is about 50%. 600 ° C for the same material used in the actual machine,
As a result of conducting a creep rupture test at 140 MPa, 48
It broke in 00 hours. The average fracture time at 600 ° C. and 140 MPa of an unused material of 9% Cr heat-resistant steel measured this time is about 10,000 hours, and the creep life consumption rate obtained by the most reliable fracture test method by the conventional method is 100. ×
(10000-4800) / 10000 = 52%. As described above, the creep life consumption rate obtained by the method of the present invention is substantially the same as that obtained by the conventional method, and it can be seen that the creep life evaluation can be performed with high accuracy by the method of the present invention.

【0016】[0016]

【発明の効果】本発明の方法によれば次のような効果が
ある。 (1)従来の破壊試験法よりも短時間で結果が出るた
め、実機へのフィードバックが迅速に行える。また、試
験時間が短時間であるため、コスト的にも有利である。 (2)有効応力の測定は1本の試験片で行えるため、高
温機器対象部位からの材料の採取量が少量でよい。この
ため、材料の採取後の補修溶接等の作業が簡便になる。
According to the method of the present invention, the following effects can be obtained. (1) Since the result is obtained in a shorter time than the conventional destructive test method, feedback to the actual machine can be performed quickly. In addition, since the test time is short, it is advantageous in terms of cost. (2) Since the measurement of the effective stress can be performed with one test piece, the amount of material collected from the high-temperature equipment target portion may be small. For this reason, work such as repair welding after material collection is simplified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】有効応力の測定方法の概要を示す説明図。FIG. 1 is an explanatory diagram showing an outline of a method for measuring an effective stress.

【図2】有効応力測定試験結果の1例を示す説明図。FIG. 2 is an explanatory diagram showing an example of a result of an effective stress measurement test.

【図3】有効応力の測定結果から有効応力を算出する手
法を示す説明図。
FIG. 3 is an explanatory diagram showing a method of calculating an effective stress from a measurement result of the effective stress.

【図4】有効応力とクリープ寿命消費率との関係を示す
関係図。
FIG. 4 is a relationship diagram showing a relationship between effective stress and creep life consumption rate.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高温機器より採取した材料を用いてクリ
ープ寿命を評価する方法において、高温機器の任意の測
定対象部位から採取した材料の有効応力を測定し、予め
その材料について有効応力とクリープ寿命消費率との関
係を調べて作成した関係図に基づいてクリープ寿命消費
率を算出することを特徴とする高温機器材料のクリープ
寿命評価方法。
In a method for evaluating creep life using a material collected from a high-temperature device, an effective stress of a material collected from an arbitrary measurement target portion of the high-temperature device is measured, and the effective stress and the creep life of the material are measured in advance. A creep life evaluation method for a high temperature equipment material, wherein a creep life consumption rate is calculated based on a relation diagram created by examining a relation with a consumption rate.
JP33339196A 1996-12-13 1996-12-13 Creep life evaluation method for high temperature equipment materials Expired - Fee Related JP3372437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33339196A JP3372437B2 (en) 1996-12-13 1996-12-13 Creep life evaluation method for high temperature equipment materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33339196A JP3372437B2 (en) 1996-12-13 1996-12-13 Creep life evaluation method for high temperature equipment materials

Publications (2)

Publication Number Publication Date
JPH10170416A true JPH10170416A (en) 1998-06-26
JP3372437B2 JP3372437B2 (en) 2003-02-04

Family

ID=18265601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33339196A Expired - Fee Related JP3372437B2 (en) 1996-12-13 1996-12-13 Creep life evaluation method for high temperature equipment materials

Country Status (1)

Country Link
JP (1) JP3372437B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003004626A (en) * 2001-06-19 2003-01-08 Kyushu Electric Power Co Inc Method for evaluating residual lifetime of metal material utilizing creep strain ratio
JP2009145185A (en) * 2007-12-13 2009-07-02 Chugoku Electric Power Co Inc:The Creep lifetime evaluating method
CN101625351A (en) * 2008-07-08 2010-01-13 华东理工大学 Method for converting creep data into material high-temperature stress relaxation data
JP2013061222A (en) * 2011-09-13 2013-04-04 Mitsubishi Heavy Ind Ltd Damage evaluation method and formulation method of maintenance evaluation index
CN104483255A (en) * 2014-11-12 2015-04-01 江苏大学 Steel wire accelerated corrosion test device and test method under stress action
WO2019123792A1 (en) * 2017-12-21 2019-06-27 三菱日立パワーシステムズ株式会社 Service life evaluating device and service life evaluating method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003004626A (en) * 2001-06-19 2003-01-08 Kyushu Electric Power Co Inc Method for evaluating residual lifetime of metal material utilizing creep strain ratio
JP4638621B2 (en) * 2001-06-19 2011-02-23 九州電力株式会社 Evaluation method of remaining life of metallic materials using creep strain rate
JP2009145185A (en) * 2007-12-13 2009-07-02 Chugoku Electric Power Co Inc:The Creep lifetime evaluating method
CN101625351A (en) * 2008-07-08 2010-01-13 华东理工大学 Method for converting creep data into material high-temperature stress relaxation data
JP2013061222A (en) * 2011-09-13 2013-04-04 Mitsubishi Heavy Ind Ltd Damage evaluation method and formulation method of maintenance evaluation index
US9689789B2 (en) 2011-09-13 2017-06-27 Mitsubishi Hitachi Power Systems, Ltd. Damage evaluation method and maintenance evaluation index decision method
CN104483255A (en) * 2014-11-12 2015-04-01 江苏大学 Steel wire accelerated corrosion test device and test method under stress action
WO2019123792A1 (en) * 2017-12-21 2019-06-27 三菱日立パワーシステムズ株式会社 Service life evaluating device and service life evaluating method
JP2019113345A (en) * 2017-12-21 2019-07-11 三菱日立パワーシステムズ株式会社 Lifetime evaluation device, and lifetime evaluation method

Also Published As

Publication number Publication date
JP3372437B2 (en) 2003-02-04

Similar Documents

Publication Publication Date Title
Curà et al. A new iteration method for the thermographic determination of fatigue limit in steels
US8209133B2 (en) Rapid determination of fatigue failure based on temperature evolution
US9222865B2 (en) Fatigue assessment
Tan et al. Comparison of creep crack initiation and growth in four steels tested in HIDA
WO2020199235A1 (en) Method for calculating fracture toughness using indentation method
CN101126799A (en) Method for monitoring fatigue damage using ferromagnetic materials surface stray magnetic field signal
CA1302122C (en) Method of predicting remaining lifetime of metal material
JP3372437B2 (en) Creep life evaluation method for high temperature equipment materials
Lacarac et al. Prediction of the growth rate for fatigue cracks emanating from cold expanded holes
JPH09195795A (en) Remaining life evaluation method for gas turbine stationary blade and device thereof
JP2004144549A (en) Non-breaking high-temperature creep damage evaluation method
JPH0634625A (en) High temperature damage evaluation of austenitic heat resistant steel
JP3015599B2 (en) Creep damage evaluation method for ferritic heat-resistant steel
JPH075086A (en) Method for estimating superposed damage of creep and fatigue of high-temperature structure material
JPH10170503A (en) Evaluation method for creep life of tempered martensite heat-resisting steel
JPH0635971B2 (en) Method for predicting remaining life of metallic materials
JPH04240552A (en) Method for evaluating residual life of metal welding member under high temperature stress
RU2238535C2 (en) Method of determining resistance of material to damaging
DOI et al. Estimation of creep constitutive equation by creep indentation test using cylindrical indenter
JPH11108921A (en) Evaluation of secular damage of austenite stainless material
WO2003054521A2 (en) Method for tasting structural materials fatigue
JPH08145864A (en) Method for measuring creep life consumption rate of material of high-temperature device
Merah et al. Calibration of DC potential technique using an optical image processing system in LCF testing
Devine et al. Magnescope: Applications in nondestructive evaluation
Rummel Transfer of POD performance capabilities from simple shapes to complex shapes

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021015

LAPS Cancellation because of no payment of annual fees