JP4638621B2 - Evaluation method of remaining life of metallic materials using creep strain rate - Google Patents

Evaluation method of remaining life of metallic materials using creep strain rate Download PDF

Info

Publication number
JP4638621B2
JP4638621B2 JP2001184314A JP2001184314A JP4638621B2 JP 4638621 B2 JP4638621 B2 JP 4638621B2 JP 2001184314 A JP2001184314 A JP 2001184314A JP 2001184314 A JP2001184314 A JP 2001184314A JP 4638621 B2 JP4638621 B2 JP 4638621B2
Authority
JP
Japan
Prior art keywords
creep
life
evaluation
rate
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001184314A
Other languages
Japanese (ja)
Other versions
JP2003004626A (en
Inventor
弘之 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
Original Assignee
Kyushu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc filed Critical Kyushu Electric Power Co Inc
Priority to JP2001184314A priority Critical patent/JP4638621B2/en
Publication of JP2003004626A publication Critical patent/JP2003004626A/en
Application granted granted Critical
Publication of JP4638621B2 publication Critical patent/JP4638621B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、金属材料のクリープ余寿命評価方法に関し、より詳しくは、クリープひずみ速度を利用した金属材料の余寿命評価方法に関する。
【0002】
【従来の技術】
従来より、クリープ余寿命評価方法としては、組織変化や硬さ変化等をもとにした評価方法が提案され、実用化されているが、これらの評価因子は寿命消費率の前半に大きく変化するが、寿命消費率の後半に達した場合、変化が少なく寿命消費率後半の余寿命評価精度が低いという問題点がある(入門講座「発電設備の予防保全と余寿命診断」:火力原子力発電Vol..51 No.523 P104)。
【0003】
また、クリープひずみはクリープ現象そのものであり、特に寿命消費率の後半に変化が著しいため余寿命評価精度を向上させる指標として有効であるが、クリープひずみの測定では初期寸法データが必要であるのに対し、初期寸法データが得られない等の問題がある。
【0004】
また、クリープ余寿命評価方法としては、クリープ破断試験による余寿命評価が最も精度の高い手法と考えられているが、試験には数千時間を要し、余寿命の評価結果を出すのに時間がかかる。また、クリープ破断試験は実機温度、応力条件を加速した条件で実施されるため、試験応力、温度の実機応力、温度への外挿や、温度―時間パラメータによる実機温度へのクリープ破断時間の換算において、外挿の仕方や換算係数の値が実機破断時間の推定に及ぼす影響が大きく、推定値の信頼性に問題があった。
【0005】
【発明が解決しようとする課題】
上述の問題に鑑み、本発明は、クリープひずみ速度に着目し、寿命消費率の後半においても余寿命評価精度の高い、金属材料の余寿命評価方法を提供することを課題としている。
【0006】
【課題を解決するための手段】
本発明ではクリープ試験結果から寿命消費率φとクリープひずみεの関係が、クリープ試験温度、応力によらずほとんど同一であることを利用したもので、あらかじめ、寿命消費率φとクリープひずみεの関係のマスターカーブを求めておき、評価材のある評価時点での寿命消費率とその後の評価時点での寿命消費率との間におけるクリープひずみ変化の勾配(Δε/Δφ)が、前記マスターカーブ上の勾配と一致するような全寿命を求め、評価時点での余寿命を求めることを特徴とするものである。
【0007】
これにより、評価時点間の平均クリープひずみ速度Δε/Δφと評価時点の使用時間tさえわかれば、寿命消費率φとクリープひずみεとの関係のマスターカーブの勾配dε/dφの変化に着目し、その勾配dε/dφと一致する評価材の全寿命t0を求め、評価時点での寿命消費率φ(φ=t/t0)及び余寿命tr(tr=t0−t)を得ることができる。
【0008】
また、本発明では寿命消費率φと寿命消費率φの変化に対するクリープひずみεの変化率との関係が、クリープ試験温度、応力によらずほとんど同一であることを利用したもので、あらかじめ、寿命消費率φとクリープひずみεの関係を求め、寿命消費率φと寿命消費率φの変化に対するクリープひずみεの変化率(dε/dφ)との関係のマスターカーブを求めておき、評価材の評価時点でのクリープひずみ速度(dε/dt)から、前記マスターカーブに載るような全寿命を求め、評価時点での余寿命を求めることを特徴とするものである。
【0009】
さらに、評価材の評価時点でのクリープひずみ速度(dε/dt)を、評価材の使用温度、使用応力、組織及び硬さの情報から算出し、この算出したクリープひずみ速度(dε/dt)から、前記マスターカーブに載るような全寿命を求め、評価時点での余寿命を求めることもできる。この場合において、評価材の使用温度は、新材のクリープ破断強度曲線を用いて前記使用温度と全寿命を関係づけ、前記マスターカーブに載ような温度を求め、評価時点での余寿命を求めることもできるし、評価材の使用応力は、新材のクリープ破断強度曲線を用いて前記使用応力と全寿命を関係づけ、前記マスターカーブに載るような応力を求め、評価時点での余寿命を求めることもできる。
【0010】
これにより、評価時点でのクリープひずみ速度dε/dtと評価時点までの使用時間tさえわかれば、寿命消費率φと寿命消費率の変化に対するクリープひずみの変化率dε/dφとの関係のマスターカーブを利用し、そのマスターカーブに載る評価材の全寿命を求め、評価時点での寿命消費率と余寿命を得ることができる。
【0011】
ここで、寿命消費率φの変化に対するクリープひずみεの変化率dε/dφは、dε/dφ=dε/ (dt /t0) =t0(dε/dt ) となり、全寿命(t0)とクリープひずみ速度(dε/dt )の積である。
【0012】
さらに本発明では、あらかじめ、寿命消費率φとクリープひずみεの関係を求め、寿命消費率φと寿命消費率φの変化に対するクリープひずみの変化率(dε/dφ)との関係のマスターカーブを求めておき、評価材のクリープ試験にて測定したクリープひずみ速度(dε/dt)と任意に設定した新材のクリープ破断時間とから、前記マスターカーブに載るような評価材のクリープ破断時間を、クリープ破断試験途中段階で精度よく求めることもでき、試験時間の短縮が可能である。
【0013】
また、設定する新材のクリープ破断時間を、あらかじめ新材のクリープ破断試験から求めておくか、新材のクリープ破断強度曲線を用いて求めておけば、精度よく寿命消費率を求めることができる。
【0014】
これにより、評価時点までの使用時間と評価材のクリープ試験中のクリープひずみ速度さえわかれば、寿命消費率φと寿命消費率の変化に対するクリープひずみの変化率(dε/dφ)との関係のマスターカーブを利用し、そのマスターカーブに載る点から評価材のクリープ破断時間を求め、評価材の余寿命を短時間で予測することを可能とする。
【0015】
【発明の実施の形態】
以下に、本発明の実施の形態を実施例に基づき説明する。
【0016】
【実施例1】
寿命消費率φとクリープひずみεの関係は、例えば、JISSTBA28材の単軸引張りクリープ試験を実機で使用され得る応力10kg/mm2以下の応力の範囲で行った結果、応力、温度に係らず一致することから、あらかじめ寿命消費率φとクリープひずみεの関係のマスターカーブを求めておく。このマスターカーブの一例を図1に示す。
【0017】
なお、実機では評価材が内圧の負荷された筒状であることが多いため、この場合、単軸クリープ試験より得られた寿命消費率―クリープひずみの曲線を公知の理論式(例えば、平、大谷:材料の高温強度論 第142頁1980年オーム社発行)を用いて寿命消費率と外径の変化の関係に変換したものを用いるか、実際に内圧クリープ試験を行い寿命消費率―クリープひずみ曲線を求め、これをマスターカーブとして使用することができる。
【0018】
ここで、ある評価時点t1(10万時間)で測定した寸法L1(502mm)とあるインターバルΔT(5万時間)後の評価時点のt2(15万時間)に測定した寸法L2(505mm)の差からt1‐t2間のクリープひずみの変化Δεは、t1、t2時点でのクリープひずみをそれぞれε1、ε2とすると、Δε=ε2―εである。
【0019】
初期寸法をL0(500mm)とするとt1時点でのクリープひずみε1
ε1=ln(L1/L0)=ln(502/500)
と表される。同様にt2時点でのクリープひずみε2
ε2=ln(L2/L0)=ln(505/500)
と表されることから、t1‐t2間のクリープひずみの変化Δεは
Δε= ln(L2/L1)=ln(505/502)=0.00596
となり初期寸法の値がなくてもクリープひずみ変化Δεが得られる。
【0020】
このΔεからt時点の寿命消費率φ1(=t1/t0=10万時間/t0)とt2(15万時間)時点での寿命消費率φ(=t2/t0=15万時間/t0)間のクリープひずみ変化の勾配dε/dφ(=t0×dε/ (t2‐t1)=t0×0.00596/5万時間)が、マスターカーブ上のφ1(=t 1/t0=10万時間/t0)とφ(=t2/t0=15万時間/t0)間の勾配と一致する全寿命t0をトライアンドエラーで求めると例えば全寿命t0=25万時間となる。これにより、t(10万時間)時点、t2(15万時間)時点での寿命消費率はそれぞれt1/t0 (=10万時間/25万時間=0.4)、t2/t0 (=15万時間/25万時間=0.6)となり、t時点、t時点での余寿命はそれぞれt0‐t1(=25万時間−10万時間=15万時間)、t0‐t2=25万時間−15万時間=10万時間)で求められる。(図2参照)
【0021】
【実施例2】
寿命消費率φと寿命消費率φの変化に対するクリープひずみεの変化率dε/dφの関係は、例えば、JISSTBA28材の単軸引張りクリープ試験を実機で使用され得る応力10kg/mm2以下の応力の範囲で行った結果、応力、温度に係らず一致することから、あらかじめ寿命消費率φと寿命消費率φの変化に対するクリープひずみεの変化率dε/dφとの関係のマスターカーブ(以下「φ―dε/dφマスターカーブ」と呼ぶ。)を求めておく。このφ―dε/dφマスターカーブの一例を図3に示す。
【0022】
ここで、寿命消費率φの変化に対するクリープひずみεの変化率dε/dφは
dε/dφ=dε/ (dt /t0) =t0(dε/dt )
となり全寿命t0とクリープひずみ速度dε/dt の積で表される。
【0023】
なお、実機では評価材が内圧の負荷された筒状であることが多いため、この場合、単軸クリープ試験より得られた寿命消費率φ―クリープひずみεの曲線を公知の理論式を用いて寿命消費率φと外径の変化の関係に変換するか、実際に内圧クリープ試験を行い寿命消費率―クリープひずみ曲線を求めることで、φ―dε/dφマスターカーブを得ることができる。
【0024】
次に、評価材の寸法をある評価時点t1(10万時間)とあるインターバル後の評価時点t2(15万時間)に測定し、t1(10万時間)とt2(15万時間)間の平均クリープひずみ速度dε/dtを実施例1と同様に得ておき、t1(10万時間)時点とt2(15万時間)時点の中間時間(12.5万時間)での寿命消費率(12.5万時間/t0)とt1(10万時間)とt2(15万時間)間の平均クリープひずみ速度dε/dt(0.00596/5万時間)と全寿命t0の積(t0×0.00596/5万時間)の関係がφ―dε/dφマスターカーブ(図3)に載る全寿命t0をトライアンドエラーで求める。全寿命t0を求めると例えば全寿命t0=25万時間になるとすると、これにより、t(10万時間)時点、t2(15万時間)時点での寿命消費率はそれぞれt1/t0 (=10万時間/25万時間=0.4)、t2/t0 (=15万時間/25万時間=0.6)となり、t時点、t時点での余寿命はそれぞれt0‐t1(=25万時間−10万時間=15万時間)、t0‐t2=25万時間−15万時間=10万時間)で求められる。(図4参照)
【0025】
【実施例3】
実施例2と同様に、あらかじめφ―dε/dφマスターカーブを求めておく(図3)。
【0026】
また、あらかじめ、組織、硬さと各温度、応力における転位密度と転位の移動速度とを関連づけておく。転位密度は、実測することも可能であるし、応力急変試験等により求めることも可能である。応力急変試験から転位密度を求める場合、転位の易動度の値が必要であるが、理論解の導出や、実測した転位密度とクリープひずみ速度の関係から逆算が可能である。(例えば、丸山公一、中島英治:高温強度の材料科学 第56頁1997年内田老鶴圃発行)
次に、評価部の評価時点tでのクリープひずみ速度を評価部の使用温度、使用応力、組織、硬さ、の情報から、転位の移動速度vとその密度ρを求め、クリープひずみ速度dε/dtを、dε/dt=Aρbv(A:定数、b:バーガースベクトルの大きさ)から算出する。そのクリープひずみ速度dε/dtと全寿命t0の積(t0×dε/dt)が、φ―dε/dφマスターカーブ(図3)に載る全寿命t0をトライアンドエラーで求める。例えば、評価時点tを10万時間、使用温度、使用応力、組織、硬さ、の情報から推定したクリープひずみ速度を10-6とすると、φ―dε/dφマスターカーブに載る全寿命t0が例えば20万時間となった。これにより、t(10万時間)時点での寿命消費率はt/t0 (=10万時間/20万時間=0.5)となり、t時点での余寿命はそれぞれt0‐t(=20万時間−10万時間=10万時間)で求められる。(図5(a)参照)。
【0027】
上記評価方法における評価材の使用温度が未知の場合でも、新材のクリープ破断強度曲線(応力と時間−温度パラメータの関係(図5(d)参照)を用いれば、全寿命は温度をパラメータとして関係づけられ、φ―dε/dφマスターカーブ(図3)に載る温度を求めることで全寿命t0を求めることができる。この場合、全寿命t0= 10((LMP/T)-20 で表される。ここで、LMP:T(20+log t0) =aσ2+bσ+c(T:使用温度(K)、t0:温度T,使用応力における新材の破断時間、a、b、c:定数)である(LMP:ラーソンミラーパラメータ)。
【0028】
ここで、使用応力4kg/mm2でのLMPは新材のクリープ破断強度曲線(LMP=aσ2+bσ+c)(図5(d))から21000となったとする。全寿命t0はt0=10(( 21000/T -20 となり、温度を変化させることで、図5(b)のようにφ―dε/dφマスターカーブに載る温度が例えば833Kとなった。これにより、全寿命t0はt0=10(( 21000/833 -20 =162000時間と計算され、評価時点t(10万時間)における寿命消費率(t/t0)は0.62となり、評価時点tにおける余寿命はそれぞれt0‐t(62000時間)で求められる(図5(b)参照)
一方、上記評価方法における評価部の使用応力が未知の場合でも、新材のクリープ破断強度曲線(LMP=aσ2+bσ+c)(応力と時間−温度パラメータの関係(図5(d))を用いれば、全寿命は応力σをパラメータとして関係づけられ、全寿命t0=10(LMP/T)-20 =10((a σ 2+b σ+c )/T)-20 で表される。使用温度は既知なので応力を変化させ、φ―dε/dφマスターカーブに載る応力を求めることで全寿命t0を求めることができる。例えば、使用温度833Kの時の全寿命t0はt0=10 ( a σ 2+b σ+c) /833)-20 となり、応力を変化させることで、図5(c)のようにφ―dε/dφマスターカーブに載る応力が例えば4kg/mm2となった。応力4kg/mm2での全寿命t0はt0=10 ( a σ 2+b σ+c) /833)-20 となり例えば162000時間となり、評価時点t(10万時間)における寿命消費率はt/t0は0.62となり、評価時点tにおける余寿命はそれぞれt0‐t(62000時間)で求められる(図5(c))
【0029】
【実施例4】
実施例2及び実施例3と同様に、あらかじめφ―dε/dφマスターカーブを求めておく(図3)。
【0030】
次に、評価材のクリープ試験を実施し、寿命消費率φにおける寿命消費率の変化に対するクリープひずみの変化率dε/dφは、その寿命消費率における評価材のクリープひずみ速度(dε/dt )と評価材の新材状態の同一クリープ条件でのクリープ破断時間t0との積で表されることを利用し、評価材のクリープ試験から遷移クリープ後のクリープひずみ速度dε/dt を測定し,評価材の新材状態時の同一クリープ試験条件でのクリープ破断時間に適当なto値を設定し、φ―dε/dφマスターカーブに載る評価材のクリープ破断時間trをトライアンドエラーで求める。
【0031】
例えば、JIS:STBA28新材を試験温度665℃,応力8kg/mm2でクリープ試験し、それぞれ寿命消費率▲1▼27%,▲2▼58%,▲3▼92%の予損傷を与えたものを評価材とし、690℃応力8kg/mm2でクリープ試験を実施した場合の評価材のクリープひずみ速度からφ―dε/dφマスターカーブに載るクリープ破断時間trを求めた。その予測結果を表1に示す。
【0032】
【表1】

Figure 0004638621
ここで、新材状態の同クリープ条件でのクリープ破断時間t0を設定すると寿命消費率φはφ=(t0―tr)/t0、dε/dφはdε/dφ=t0(dε/dt )となり、φ―dε/dφマスターカーブに載る評価材のクリープ破断時間trを評価材のクリープ試験における遷移クリープ後のクリープひずみ速度dε/dt から推定したものである。
【0033】
評価材のクリープ破断時間をクリープ破断試験時間の20%〜40%の時間で予測でき、予測結果は実際のクリープ破断時間とよく一致している(図6)。予測値の幅は新材状態の同クリープ条件でのクリープ破断時間t0の設定を60時間から500時間まで変えたときの予測値の変化幅であり、設定値にあまり依存しない。
【0034】
【実施例5】
実施例2〜実施例4と同様に、あらかじめφ―dε/dφマスターカーブを求めておく(図3)。
【0035】
実施例4と同様に、評価材のクリープ試験を実施し,寿命消費率φにおける寿命消費率の変化に対するクリープひずみの変化率dε/dφは、その寿命消費率における評価材のクリープひずみ速度(dε/dt )と評価材の新材状態の同一クリープ条件でのクリープ破断時間t0との積で表されることを利用し、評価材のクリープ試験から遷移クリープ後のクリープひずみ速度dε/dt を測定し、評価材の新材状態時の同一クリープ試験条件でのクリープ破断時間t0に新材の同一クリープ試験条件でのクリープ破断試験時間の値を設定し、寿命消費率φはφ=(t0―tr)/t0、dε/dφはdε/dφ=t0(dε/dt )であるから、φ―dε/dφマスターカーブに載る評価材のクリープ破断時間trを評価材のクリープ試験から得られた遷移クリープ後のクリープひずみ速度dε/dt から推定したものである。φ―dε/dφマスターカーブに載る評価材のクリープ破断時間trをトライアンドエラーで求めることにより寿命消費率φ=(t0 −tr)/t0 ,及び余寿命t((1/φ)-1) が求められる。
【0036】
なお、新材の同一クリープ試験条件でのクリープ破断時間t0は,公表されているクリープ破断データを用いるか,あるいは実際に新材をクリープ破断試験し求めることができる。これにより、精度の高い余寿命、寿命消費率を求めることができる。
【0037】
例えば、JIS:STBA28新材を試験温度665℃、応力8kg/mm2でクリープ試験し、それぞれ寿命消費率▲1▼27%,▲2▼58%,▲3▼92%の予損傷を与えたものを評価材とし,690℃応力8kg/mm2でクリープ試験を実施した場合の評価材のクリープひずみ速度から寿命消費率及び余寿命を評価した結果を表1に示す。
【0038】
ここで、新材状態の690℃応力8kg/mm2でのクリープ破断時間t0を実際にクリープ破断試験によって求めておき、その値133時間とその約倍の240時間、約1/2の60時間及び500時間の4ケースで設定した。寿命消費率φはφ=(t0―tr)/t0であり、φはtrによって変化する。一方、dε/dφはdε/dφ=t0(dε/dt )であり、dε/dtは予損傷材を690℃応力8kg/mm2でクリープ試験することにより求められることから φ―dε/dφマスターカーブに載る評価材のクリープ破断時間trが推定できる。
【0039】
これより、寿命消費率φ=(t0 −tr)/t0 及び余寿命t((1/φ)-1) が求められる。
【0040】
図7は、実際の寿命消費率と予測した寿命消費率とを比較したものであるが、新材のクリープ破断時間133時間を用いることで寿命消費率が精度よく予測できている。
【0041】
以上、各実施例を説明したが、クリープ試験でクリープひずみ速度が求められるのと同様に、スモールパンチクリープ試験でもクリープひずみ速度あるいは変位速度が求められることから、スモールパンチクリープ試験でも本発明を適用できる。
【0042】
【発明の効果】
本発明によれば、寿命消費率とクリープひずみの変化率の関係あるいは寿命消費率と寿命消費率の変化に対するクリープひずみの変化率との関係を利用することで、評価材のクリープひずみ速度さえわかれば寿命消費率の後半に余寿命評価精度の高い余寿命評価を可能とする。
【0043】
また、あるインターバルで評価材の寸法変化を測定するだけで寿命消費率の後半に余寿命評価精度の高い余寿命評価を可能とする。
【図面の簡単な説明】
【図1】 寿命消費率とクリープひずみの関係のマスターカーブの一例
【図2】 図1に示すマスターカーブから余寿命を評価する模式図
【図3】 寿命消費率と寿命消費率の変化に対するクリープひずみの変化率との関係のマスターカーブの一例
【図4】 図3に示すマスターカーブから余寿命を評価する模式図
【図5】 クリープひずみ速度を、評価材の使用温度、使用応力、組織及び硬さの情報から算出して余寿命を評価する模式図で、同図(a)は使用温度、使用応力が既知の場合、同図(b)は使用温度が未知の場合、同図(c)は使用応力が未知の場合の模式図であり、同図(d)はクリープ破断強度曲線の模式図
【図6】 クリープ試験途中のクリープひずみ速度を利用したクリープ破断時間予測結果を示す図
【図7】 クリープ試験途中のクリープひずみ速度による寿命消費率予測結果を示す図[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a creep remaining life evaluation method for a metal material, and more particularly relates to a remaining life evaluation method for a metal material using a creep strain rate.
[0002]
[Prior art]
Conventionally, as a creep remaining life evaluation method, an evaluation method based on a structural change or a hardness change has been proposed and put into practical use, but these evaluation factors greatly change in the first half of the life consumption rate. However, when it reaches the second half of the lifetime consumption rate, there is a problem that there is little change and the remaining life evaluation accuracy in the second half of the lifetime consumption rate is low (Introductory Lecture “Preventive maintenance and remaining life diagnosis of power generation facilities”: Thermal Power Generation Vol. .. 51 No.523 P104).
[0003]
In addition, creep strain is a creep phenomenon itself, and it is effective as an index to improve the remaining life evaluation accuracy because the change is remarkable in the latter half of the lifetime consumption rate, but initial dimension data is necessary for measuring creep strain. On the other hand, there is a problem that initial dimension data cannot be obtained.
[0004]
As the creep remaining life evaluation method, the remaining life evaluation by creep rupture test is considered to be the most accurate method, but the test takes several thousand hours, and it takes time to obtain the remaining life evaluation result. It takes. In addition, since the creep rupture test is performed under conditions where the actual machine temperature and stress conditions are accelerated, extrapolation of test stress, temperature to actual machine stress, temperature, and conversion of creep rupture time to actual machine temperature using temperature-time parameters However, the extrapolation method and the value of the conversion factor have a great influence on the estimation of the actual machine breakage time, and there is a problem in the reliability of the estimated value.
[0005]
[Problems to be solved by the invention]
In view of the above-described problems, the present invention focuses on the creep strain rate, and an object thereof is to provide a method for evaluating the remaining life of a metal material having high remaining life evaluation accuracy even in the latter half of the life consumption rate.
[0006]
[Means for Solving the Problems]
The present invention utilizes the fact that the relationship between the life consumption rate φ and the creep strain ε is almost the same regardless of the creep test temperature and stress from the creep test result, and the relationship between the life consumption rate φ and the creep strain ε in advance. The slope of the change in creep strain (Δε / Δφ) between the life consumption rate at a certain evaluation point of the evaluation material and the life consumption rate at the subsequent evaluation point of the evaluation material is determined on the master curve. It is characterized in that the total lifetime that matches the gradient is obtained, and the remaining lifetime at the time of evaluation is obtained.
[0007]
Thus, as long as the average creep strain rate Δε / Δφ between the evaluation points and the use time t at the evaluation point are known, the change in the slope dε / dφ of the master curve of the relationship between the life consumption rate φ and the creep strain ε is noticed. Obtaining the total life t 0 of the evaluation material that coincides with the gradient dε / dφ, and obtaining the life consumption rate φ (φ = t / t 0 ) and the remaining life tr (tr = t 0 -t) at the time of evaluation. it can.
[0008]
In the present invention, the relationship between the life consumption rate φ and the change rate of the creep strain ε with respect to the change in the life consumption rate φ is substantially the same regardless of the creep test temperature and stress. The relationship between the consumption rate φ and the creep strain ε is obtained, the master curve of the relationship between the change rate of the creep strain ε (dε / dφ) with respect to the change in the life consumption rate φ and the life consumption rate φ is obtained, and the evaluation material is evaluated. From the creep strain rate at the time (dε / dt), the total life as it is placed on the master curve is obtained, and the remaining life at the time of evaluation is obtained.
[0009]
Further, the creep strain rate (dε / dt) at the time of evaluation of the evaluation material is calculated from information on the use temperature, use stress, structure and hardness of the evaluation material, and from the calculated creep strain rate (dε / dt). It is also possible to obtain the total life as placed on the master curve and obtain the remaining life at the time of evaluation. In this case, the service temperature of the evaluation material is related to the service temperature and the total life using the creep rupture strength curve of the new material, the temperature as found on the master curve is determined, and the remaining life at the time of evaluation is determined. It is also possible to use the stress of the evaluation material by using the creep rupture strength curve of the new material to correlate the service stress with the total life, and obtain the stress that is placed on the master curve, and calculate the remaining life at the time of evaluation. You can ask for it.
[0010]
Thus, as long as the creep strain rate dε / dt at the time of evaluation and the use time t until the time of evaluation are known, the master curve of the relationship between the life consumption rate φ and the creep strain change rate dε / dφ with respect to the change in the life consumption rate Can be used to obtain the total life of the evaluation material placed on the master curve and obtain the life consumption rate and the remaining life at the time of evaluation.
[0011]
Here, the change rate dε / dφ of the creep strain ε with respect to the change in the life consumption rate φ is dε / dφ = dε / (dt / t 0 ) = t 0 (dε / dt), and the total life (t 0 ) It is the product of creep strain rate (dε / dt).
[0012]
Further, in the present invention, the relationship between the life consumption rate φ and the creep strain ε is obtained in advance, and a master curve of the relationship between the life consumption rate φ and the creep strain change rate (dε / dφ) with respect to the change in the life consumption rate φ is obtained. From the creep strain rate (dε / dt) measured in the creep test of the evaluation material and the creep rupture time of the new material arbitrarily set, the creep rupture time of the evaluation material placed on the master curve It can be obtained with high accuracy in the middle of the fracture test, and the test time can be shortened.
[0013]
In addition, if the creep rupture time of the new material to be set is obtained in advance from the creep rupture test of the new material or is obtained using the creep rupture strength curve of the new material, the life consumption rate can be obtained accurately. .
[0014]
As a result, as long as the usage time up to the evaluation time and the creep strain rate during the creep test of the evaluation material are known, the master of the relationship between the life consumption rate φ and the creep strain change rate (dε / dφ) with respect to the change in the life consumption rate. Using the curve, the creep rupture time of the evaluation material is obtained from the point on the master curve, and the remaining life of the evaluation material can be predicted in a short time.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described based on examples.
[0016]
[Example 1]
The relationship between the life consumption rate φ and creep strain ε is the same regardless of the stress and temperature, for example, as a result of conducting a uniaxial tensile creep test of JISSTBA28 material within a stress range of 10 kg / mm 2 or less that can be used with actual equipment. Therefore, a master curve of the relationship between the life consumption rate φ and the creep strain ε is obtained in advance. An example of this master curve is shown in FIG.
[0017]
In actual machines, the evaluation material is often in the form of a cylinder loaded with internal pressure. In this case, the life consumption rate-creep strain curve obtained from the uniaxial creep test is expressed by a known theoretical formula (for example, flat, Otani: Using the theory of high-temperature strength of materials (page 142, published by 1980 Ohm)), or using the one converted into the relationship between the change in life consumption rate and outer diameter, or actually conducting the internal pressure creep test, the life consumption rate-creep strain A curve can be determined and used as a master curve.
[0018]
Here, the dimension L 1 (502 mm) measured at a certain evaluation time t 1 (100,000 hours) and the dimension L 2 (measured at t 2 (150,000 hours) at the evaluation time after a certain interval ΔT (50,000 hours). change [Delta] [epsilon] of creep strain between t 1 -t 2 the difference of 505 mm) is, t 1, t respectively epsilon 1 creep strain at two time points, when epsilon 2, a Δε = ε 21.
[0019]
The initial dimensions When L 0 (500 mm) Creep strain epsilon 1 at time point t 1 is ε 1 = ln (L 1 / L 0) = ln (502/500)
It is expressed. Similarly, the creep strain ε 2 at time t 2 is ε 2 = ln (L 2 / L 0 ) = ln (505/500)
Therefore, the creep strain change Δε between t 1 and t 2 is Δε = ln (L 2 / L 1 ) = ln (505/502) = 0.00596
Thus, even if there is no initial dimension value, a creep strain change Δε can be obtained.
[0020]
The life consumption rate of time point t 1 from Δε φ 1 (= t 1 / t 0 = 10 thousand hours / t 0) and t 2 (15 thousand hours) life consumption rate at the time φ 2 (= t 2 / t 0 = 150,000 hours / t 0 ) The creep strain change gradient dε / dφ (= t 0 × dε / (t 2 −t 1 ) = t 0 × 0.00596 / 50,000 hours) is φ 1 on the master curve. When the total lifetime t 0 that matches the gradient between (= t 1 / t 0 = 100,000 hours / t 0 ) and φ 2 (= t 2 / t 0 = 150,000 hours / t 0 ) is determined by trial and error For example, the total lifetime t 0 = 250,000 hours. Thus, the lifetime consumption rates at t 1 (100,000 hours) and t 2 (150,000 hours) are t 1 / t 0 (= 100,000 hours / 250,000 hours = 0.4) and t 2 / t 0, respectively. (= 150,000 hours / 250,000 hours = 0.6), and the remaining life at t 1 and t 2 is t 0 -t 1 (= 250,000 hours-100,000 hours = 150,000 hours) and t 0- t 2 = 250,000 hours-150,000 hours = 100,000 hours). (See Figure 2)
[0021]
[Example 2]
The relationship between the life consumption rate φ and the change rate dε / dφ of the creep strain ε to the change in the life consumption rate φ is, for example, a stress of 10 kg / mm 2 or less that can be used in a uniaxial tensile creep test of JISSTBA28 As a result of performing in the range, the values agree with each other regardless of the stress and temperature. Therefore, a master curve (hereinafter referred to as “φ−”) of the relationship between the life consumption rate φ and the change rate dε / dφ of the creep strain ε with respect to the change of the life consumption rate φ in advance. (referred to as “dε / dφ master curve”). An example of this φ-dε / dφ master curve is shown in FIG.
[0022]
Here, the change rate dε / dφ of the creep strain ε with respect to the change in the life consumption rate φ is dε / dφ = dε / (dt / t 0 ) = t 0 (dε / dt).
And expressed by the product of the total lifetime t 0 and the creep strain rate dε / dt.
[0023]
In actual machines, the evaluation material is often in the form of a cylinder loaded with internal pressure. In this case, the life consumption rate φ-creep strain ε curve obtained from the uniaxial creep test is calculated using a known theoretical formula. A φ-dε / dφ master curve can be obtained by converting to the relationship between the life consumption rate φ and the change in outer diameter or by actually conducting an internal pressure creep test to obtain a life consumption rate-creep strain curve.
[0024]
Next, the dimensions of the evaluation material are measured at an evaluation time point t 1 (100,000 hours) and an evaluation time point t 2 (150,000 hours) after an interval, and t 1 (100,000 hours) and t 2 (150,000 hours). ) Average creep strain rate dε / dt during the same period as in Example 1 was obtained. Lifetime consumption at the intermediate time (125,000 hours) between t 1 (100,000 hours) and t 2 (150,000 hours) Product of the average creep strain rate dε / dt (0.00596 / 50,000 hours) between the rate (125,000 hours / t 0 ), t 1 (100,000 hours) and t 2 (150,000 hours) and the total lifetime t 0 (t 0 × 0.00596 / 50,000 hours) is obtained by a trial and error for the total life t 0 on the φ-dε / dφ master curve (FIG. 3). When the total lifetime t 0 is obtained, for example, when the total lifetime t 0 = 250,000 hours, the lifetime consumption rate at the time t 1 (100,000 hours) and the time t 2 (150,000 hours) is t 1 / t 0 (= 100,000 hours / 250,000 hours = 0.4), t 2 / t 0 (= 150,000 hours / 250,000 hours = 0.6), and the remaining life at time t 1 and time t 2 is t 0 − t 1 (= 250,000 hours−100,000 hours = 150,000 hours), t 0 −t 2 = 250,000 hours−150,000 hours = 100,000 hours). (See Figure 4)
[0025]
[Example 3]
As in Example 2, a φ-dε / dφ master curve is obtained in advance (FIG. 3).
[0026]
In addition, the dislocation density at each temperature and stress and the moving speed of dislocations are associated in advance. The dislocation density can be actually measured, or can be obtained by a stress sudden change test or the like. When obtaining the dislocation density from the stress sudden change test, the value of dislocation mobility is required, but a reverse calculation is possible from the derivation of the theoretical solution and the relationship between the measured dislocation density and the creep strain rate. (For example, Koichi Maruyama, Eiji Nakajima: Material Science of High Temperature Strength, page 56, 1997, published by Uchida Otsukuru)
Next, the creep strain rate at the evaluation time t of the evaluation part is obtained from the information on the use temperature, use stress, structure, and hardness of the evaluation part, and the moving speed v of the dislocation and its density ρ are obtained, and the creep strain rate dε / dt is calculated from dε / dt = Aρbv (A: constant, b: size of Burgers vector). Its creep strain rate d? / Dt and the product of the entire lifetime t 0 (t 0 × d? / Dt) is to determine the total lifetime t 0 which rests phi-d? / D.phi master curve (FIG. 3) by trial and error. For example, if the evaluation time point t is 100,000 hours, and the creep strain rate estimated from the information of operating temperature, operating stress, structure and hardness is 10 −6 , the total lifetime t 0 on the φ-dε / dφ master curve is For example, it was 200,000 hours. As a result, the lifetime consumption rate at time t (100,000 hours) is t / t 0 (= 100,000 hours / 200,000 hours = 0.5), and the remaining lives at time t are t 0 −t (= 200,000 hours). Time-100,000 hours = 100,000 hours). (See FIG. 5 (a)).
[0027]
Even when the operating temperature of the evaluation material in the above evaluation method is unknown, if the creep rupture strength curve of the new material (relationship between stress and time-temperature parameter (see FIG. 5D)) is used, the total lifetime is determined using the temperature as a parameter. The total lifetime t 0 can be determined by determining the temperature on the φ-dε / dφ master curve (Fig. 3), in which case the total lifetime t 0 = 10 ((LMP / T) -20 ) Where LMP: T (20 + log t 0 ) = aσ2 + bσ + c (T: operating temperature (K), t0: temperature T, breaking time of new material at operating stress, a, b, c : Constant) (LMP: Larson Miller parameter).
[0028]
Here, it is assumed that the LMP at a working stress of 4 kg / mm 2 is 21000 from the creep rupture strength curve (LMP = aσ2 + bσ + c) of the new material (FIG. 5 (d)). The total lifetime t0 is t0 = 10 (( 21000 / T ) -20 ) . By changing the temperature, the temperature on the φ-dε / dφ master curve becomes 833K, for example, as shown in FIG. 5B. Thus, the total lifetime t 0 is calculated as t 0 = 10 (( 21000/833 ) −20 ) = 162000 hours, and the lifetime consumption rate (t / t 0 ) at the evaluation time point t (100,000 hours) is 0.62. The remaining lifetimes at the evaluation time t are obtained by t 0 -t (62000 hours), respectively (see FIG. 5B).
On the other hand, even when the stress used in the evaluation part in the above evaluation method is unknown, the creep rupture strength curve (LMP = aσ2 + bσ + c) of the new material (relationship between stress and time-temperature parameter (FIG. 5 (d)) is used. The total life is related by using the stress σ as a parameter, and is expressed by the total life t0 = 10 (LMP / T) −20 ) = 10 (( aσ2 + bσ + c ) / T) −20 ) . Since the operating temperature is known, the total life t 0 can be obtained by changing the stress and obtaining the stress on the φ-dε / dφ master curve. For example, the total lifetime t 0 at a use temperature of 833 K is t 0 = 10 ( ( ( a σ 2 + b σ + c) / 833) -20 ) . By changing the stress, as shown in FIG. The stress placed on the φ-dε / dφ master curve was 4 kg / mm 2 , for example. All life t 0 at a stress 4 kg / mm 2 is t 0 = 10 (((a σ 2 + b σ + c) / 833) -20) and be for example, a 162,000 hour life consumption rate at the time of evaluation t (10 thousand hours) T / t 0 is 0.62, and the remaining lifetimes at the evaluation time t are obtained by t 0 -t (62000 hours), respectively (FIG. 5 (c)).
[0029]
[Example 4]
Similar to the second and third embodiments, a φ-dε / dφ master curve is obtained in advance (FIG. 3).
[0030]
Next, a creep test of the evaluation material is performed, and the creep strain change rate dε / dφ with respect to the change in the life consumption rate at the life consumption rate φ is the creep strain rate (dε / dt) of the evaluation material at the life consumption rate. The creep strain rate dε / dt after transition creep is measured from the creep test of the evaluation material by using the product expressed by the product of the creep rupture time t 0 under the same creep condition of the new material state of the evaluation material, and evaluated. An appropriate to value is set for the creep rupture time under the same creep test conditions when the material is in a new material state, and the creep rupture time tr of the evaluation material placed on the φ-dε / dφ master curve is obtained by trial and error.
[0031]
For example, a JIS: STBA28 new material was subjected to a creep test at a test temperature of 665 ° C and a stress of 8kg / mm 2 , and pre-damaged with life consumption rates of (1) 27%, (2) 58%, and (3) 92%, respectively. The creep rupture time tr placed on the φ-dε / dφ master curve was obtained from the creep strain rate of the evaluation material when the creep test was carried out under the stress of 8 kg / mm 2 at 690 ° C. with the material as the evaluation material. The prediction results are shown in Table 1.
[0032]
[Table 1]
Figure 0004638621
Here, when the creep rupture time t 0 under the same creep condition in the new material state is set, the life consumption rate φ is φ = (t 0 −tr) / t 0 , and dε / dφ is dε / dφ = t 0 (dε / dt), and the creep rupture time tr of the evaluation material placed on the φ-dε / dφ master curve is estimated from the creep strain rate dε / dt after transition creep in the creep test of the evaluation material.
[0033]
The creep rupture time of the evaluation material can be predicted with a time of 20% to 40% of the creep rupture test time, and the prediction result is in good agreement with the actual creep rupture time (FIG. 6). The range of the predicted value is the range of change in the predicted value when the setting of the creep rupture time t 0 under the same creep condition in the new material state is changed from 60 hours to 500 hours, and does not depend much on the set value.
[0034]
[Example 5]
In the same manner as in Examples 2 to 4, a φ-dε / dφ master curve is obtained in advance (FIG. 3).
[0035]
In the same manner as in Example 4, the creep test of the evaluation material is performed, and the creep strain change rate dε / dφ with respect to the change in the life consumption rate at the life consumption rate φ is the creep strain rate (dε) of the evaluation material at the life consumption rate. / dt) and the creep rupture time t 0 under the same creep condition in the new material state of the evaluated material, the creep strain rate dε / dt after transition creep from the creep test of the evaluated material is calculated. The value of the creep rupture test time under the same creep test condition of the new material is set as the creep rupture time t 0 under the same creep test condition when the evaluation material is in the new material state, and the life consumption rate φ is φ = ( Since t 0 -tr) / t 0 and dε / dφ are dε / dφ = t 0 (dε / dt), the creep rupture time tr of the evaluation material placed on the φ-dε / dφ master curve is determined as the creep test of the evaluation material. Creep creep after transition creep obtained from This is estimated from the shear rate dε / dt. By determining the creep rupture time tr of the evaluation material placed on the φ-dε / dφ master curve by trial and error, the life consumption rate φ = (t 0 −tr) / t 0 and the remaining life t ((1 / φ) − 1) is required.
[0036]
The creep rupture time t 0 of the new material under the same creep test conditions can be obtained by using the published creep rupture data or by actually performing a creep rupture test on the new material. As a result, a highly accurate remaining life and life consumption rate can be obtained.
[0037]
For example, a JIS: STBA28 new material was subjected to a creep test at a test temperature of 665 ° C and a stress of 8 kg / mm 2 , and pre-damaged with life consumption rates of (1) 27%, (2) 58%, and (3) 92%, respectively. Table 1 shows the results of evaluating the life consumption rate and the remaining life from the creep strain rate of the evaluation material when a creep test was conducted at 690 ° C stress 8 kg / mm 2 with the material as the evaluation material.
[0038]
Here, the creep rupture time t 0 at a new material state of 690 ° C. stress of 8 kg / mm 2 was actually obtained by a creep rupture test, and its value was 133 hours, approximately twice that value, 240 hours, approximately 1/2 of 60 Set for 4 cases of time and 500 hours. The lifetime consumption rate φ is φ = (t 0 −tr) / t 0 , and φ varies with tr. On the other hand, dε / dφ is dε / dφ = t 0 (dε / dt), and dε / dt is obtained by performing a creep test on a pre-damaged material at a stress of 8 kg / mm 2 at 690 ° C. Therefore, φ−dε / dφ The creep rupture time tr of the evaluation material placed on the master curve can be estimated.
[0039]
From this, the life consumption rate φ = (t 0 −tr) / t 0 and the remaining life t ((1 / φ) −1) are obtained.
[0040]
FIG. 7 shows a comparison between the actual life consumption rate and the predicted life consumption rate. By using the creep rupture time of 133 hours for the new material, the life consumption rate can be accurately predicted.
[0041]
Each example has been described above, but the creep strain rate or the displacement rate is also obtained in the small punch creep test as well as the creep strain rate in the creep test. Therefore, the present invention is applied in the small punch creep test. it can.
[0042]
【The invention's effect】
According to the present invention, the creep strain rate of the evaluation material can be obtained by utilizing the relationship between the life consumption rate and the change rate of the creep strain or the relationship between the life consumption rate and the change rate of the creep strain with respect to the change in the life consumption rate. For example, the remaining life evaluation with high remaining life evaluation accuracy can be performed in the latter half of the life consumption rate.
[0043]
In addition, it is possible to perform a remaining life evaluation with a high remaining life evaluation accuracy in the latter half of the life consumption rate only by measuring the dimensional change of the evaluation material at a certain interval.
[Brief description of the drawings]
[Fig. 1] Example of master curve of relationship between life consumption rate and creep strain [Fig. 2] Schematic diagram for evaluating remaining life from master curve shown in FIG. 1 [Fig. 3] Creep with respect to changes in life consumption rate and life consumption rate Example of master curve in relation to strain change rate [Fig.4] Schematic diagram for evaluating remaining life from master curve shown in Fig.3 [Fig.5] Creep strain rate, operating temperature, stress, structure and evaluation material FIG. 6A is a schematic diagram for evaluating the remaining life by calculating from the hardness information. FIG. 10A shows a case where the use temperature and use stress are known, and FIG. ) Is a schematic diagram when the operating stress is unknown, and FIG. 6D is a schematic diagram of a creep rupture strength curve. FIG. 6 is a diagram showing a prediction result of creep rupture time using a creep strain rate during the creep test. Fig. 7 Creep test Of life consumption rate prediction results based on creep strain rate

Claims (6)

あらかじめ、寿命消費率φとクリープひずみεの関係のマスターカーブを求めておき、評価材のある評価時点での寿命消費率とその後の評価時点での寿命消費率との間におけるクリープひずみ変化の勾配(Δε/Δφ)が、前記マスターカーブ上の勾配と一致するような全寿命を求め、評価時点での余寿命を求めることを特徴とするクリープひずみ速度を利用した金属材料の余寿命評価方法。Obtain a master curve of the relationship between the life consumption rate φ and creep strain ε in advance, and the slope of the creep strain change between the life consumption rate at the time of evaluation of the evaluation material and the life consumption rate at the time of subsequent evaluation A method for evaluating the remaining life of a metal material using a creep strain rate, wherein a total life such that (Δε / Δφ) coincides with the gradient on the master curve is obtained, and the remaining life at the time of evaluation is obtained. あらかじめ、寿命消費率φとクリープひずみεの関係を求め、寿命消費率φと寿命消費率φの変化に対するクリープひずみεの変化率(dε/dφ)との関係のマスターカーブを求めておき、評価材の評価時点でのクリープひずみ速度(dε/dt)から、前記マスターカーブに載るような全寿命を求め、評価時点での余寿命を求めることを特徴とするクリープひずみ速度を利用した金属材料の余寿命評価方法。The relationship between the life consumption rate φ and the creep strain ε is obtained in advance, and a master curve of the relationship between the change rate of the creep strain ε (dε / dφ) with respect to the change in the life consumption rate φ and the life consumption rate φ is obtained and evaluated. From the creep strain rate (dε / dt) at the time of evaluation of the material, the total life as placed on the master curve is obtained, and the remaining life at the time of evaluation is obtained. Remaining life evaluation method. あらかじめ、寿命消費率φとクリープひずみεの関係を求め、寿命消費率φと寿命消費率φの変化に対するクリープひずみεの変化率(dε/dφ)との関係のマスターカーブを求めておき、評価材の評価時点でのクリープひずみ速度(dε/dt)を、評価材の使用温度、使用応力、組織及び硬さの情報から算出し、この算出したクリープひずみ速度(dε/dt)から、前記マスターカーブに載るような全寿命を求め、評価時点での余寿命を求めることを特徴とするクリープひずみ速度を利用した金属材料の余寿命評価方法。The relationship between the life consumption rate φ and the creep strain ε is obtained in advance, and a master curve of the relationship between the change rate of the creep strain ε (dε / dφ) with respect to the change in the life consumption rate φ and the life consumption rate φ is obtained and evaluated. The creep strain rate (dε / dt) at the time of evaluation of the material is calculated from information on the use temperature, use stress, structure and hardness of the evaluation material, and the master strain is calculated from the calculated creep strain rate (dε / dt). A method for evaluating the remaining life of a metal material using a creep strain rate, characterized in that a total life as placed on a curve is obtained and the remaining life at the time of evaluation is obtained. 請求項3記載の余寿命評価方法において、評価材の使用温度は、評価材の新材のクリープ破断強度曲線を用いて前記使用温度と全寿命を関係づけ、前記マスターカーブに載るような温度を求め、評価時点での余寿命を求めることを特徴とするクリープひずみ速度を利用した金属材料の余寿命評価方法。4. The remaining life evaluation method according to claim 3, wherein the use temperature of the evaluation material is related to the use temperature and the total life using a creep rupture strength curve of a new material of the evaluation material, and is set to a temperature that is placed on the master curve. A method for evaluating the remaining life of a metal material using a creep strain rate, wherein the remaining life at the time of evaluation is obtained. 請求項3記載の余寿命評価方法において、評価材の使用応力は、新材のクリープ破断強度曲線を用いて前記使用応力と全寿命を関係づけ、前記マスターカーブに載るような応力を求め、評価時点での余寿命を求めることを特徴とするクリープひずみ速度を利用した金属材料の余寿命評価方法。4. The remaining service life evaluation method according to claim 3, wherein the use stress of the evaluation material relates the use stress to the total life using a creep rupture strength curve of a new material, and obtains a stress that is placed on the master curve, and evaluates the stress. A method for evaluating the remaining life of a metal material using a creep strain rate, wherein the remaining life at the time is obtained. あらかじめ、寿命消費率φとクリープひずみεの関係を求め、寿命消費率φと寿命消費率φの変化に対するクリープひずみεの変化率(dε/dφ)との関係のマスターカーブを求めておき、評価材のクリープ試験にて測定したクリープひずみ速度(dε/dt)と新材のクリープ破断時間とから、前記マスターカーブに載るような評価材のクリープ破断時間を求め、余寿命を求めることを特徴とするクリープひずみ速度を利用した金属材料の余寿命評価方法。The relationship between the life consumption rate φ and the creep strain ε is obtained in advance, and a master curve of the relationship between the change rate of the creep strain ε (dε / dφ) with respect to the change in the life consumption rate φ and the life consumption rate φ is obtained and evaluated. The creep rupture time of the evaluation material placed on the master curve is obtained from the creep strain rate (dε / dt) measured in the creep test of the material and the creep rupture time of the new material, and the remaining life is obtained. Of remaining life of metal materials using creep strain rate.
JP2001184314A 2001-06-19 2001-06-19 Evaluation method of remaining life of metallic materials using creep strain rate Expired - Fee Related JP4638621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001184314A JP4638621B2 (en) 2001-06-19 2001-06-19 Evaluation method of remaining life of metallic materials using creep strain rate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001184314A JP4638621B2 (en) 2001-06-19 2001-06-19 Evaluation method of remaining life of metallic materials using creep strain rate

Publications (2)

Publication Number Publication Date
JP2003004626A JP2003004626A (en) 2003-01-08
JP4638621B2 true JP4638621B2 (en) 2011-02-23

Family

ID=19024095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001184314A Expired - Fee Related JP4638621B2 (en) 2001-06-19 2001-06-19 Evaluation method of remaining life of metallic materials using creep strain rate

Country Status (1)

Country Link
JP (1) JP4638621B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5801520B1 (en) * 2014-10-01 2015-10-28 中国電力株式会社 Remaining life estimation method for estimating the remaining life of high chromium steel pipes

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5086615B2 (en) * 2006-11-15 2012-11-28 三菱重工業株式会社 Life evaluation method by creep elongation of high strength steel weld and life evaluation method of high strength steel weld
JP4750868B2 (en) * 2009-03-19 2011-08-17 株式会社日立製作所 Remaining life diagnosis method for bolts used at high temperatures
JP5097844B2 (en) * 2011-05-19 2012-12-12 株式会社日立製作所 Remaining life diagnosis method for bolts used at high temperatures
JP5377617B2 (en) * 2011-12-05 2013-12-25 中国電力株式会社 Remaining life estimation method, estimation system, and estimation program for estimating the remaining life of a high chromium steel pipe
JP5752061B2 (en) * 2012-01-19 2015-07-22 三菱重工業株式会社 Pipe life evaluation criteria setting method and pipe life evaluation method
CN103149079A (en) * 2013-03-06 2013-06-12 中北大学 Method for testing influence of content of POE (polyolefin elastomer)-g (grafted)-MAH (maleic anhydride) in POE-g-MAH/POE on properties of composite material
JP6122669B2 (en) * 2013-03-15 2017-04-26 三菱重工業株式会社 Remaining life evaluation method for high temperature machine parts
JP6222837B2 (en) * 2014-02-28 2017-11-01 三菱日立パワーシステムズ株式会社 Creep life evaluation method
JP6739986B2 (en) * 2016-04-26 2020-08-12 株式会社東芝 Life assessment device and life assessment method
JP6640658B2 (en) * 2016-06-13 2020-02-05 株式会社日立パワーソリューションズ Creep damage evaluation method
JP6696412B2 (en) * 2016-11-29 2020-05-20 日本製鉄株式会社 Evaluation method of remaining life of metallic materials
JP2023177693A (en) * 2022-06-02 2023-12-14 学校法人帝京大学 Evaluation system, evaluation method, and program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07218409A (en) * 1994-01-31 1995-08-18 Toshiba Corp Predictive apparatus for life time of corrosion or crack of structural member
JPH08145864A (en) * 1994-11-15 1996-06-07 Mitsubishi Heavy Ind Ltd Method for measuring creep life consumption rate of material of high-temperature device
JPH09304131A (en) * 1996-05-13 1997-11-28 Toshiba Corp Monitoring device for life of high-temperature apparatus
JPH10132810A (en) * 1996-10-25 1998-05-22 Mitsubishi Heavy Ind Ltd Method for evaluating remaining life of heat-resisting metal material
JPH10170503A (en) * 1996-12-13 1998-06-26 Mitsubishi Heavy Ind Ltd Evaluation method for creep life of tempered martensite heat-resisting steel
JPH10170416A (en) * 1996-12-13 1998-06-26 Mitsubishi Heavy Ind Ltd Method for evaluating creep life of high-temperature device material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07218409A (en) * 1994-01-31 1995-08-18 Toshiba Corp Predictive apparatus for life time of corrosion or crack of structural member
JPH08145864A (en) * 1994-11-15 1996-06-07 Mitsubishi Heavy Ind Ltd Method for measuring creep life consumption rate of material of high-temperature device
JPH09304131A (en) * 1996-05-13 1997-11-28 Toshiba Corp Monitoring device for life of high-temperature apparatus
JPH10132810A (en) * 1996-10-25 1998-05-22 Mitsubishi Heavy Ind Ltd Method for evaluating remaining life of heat-resisting metal material
JPH10170503A (en) * 1996-12-13 1998-06-26 Mitsubishi Heavy Ind Ltd Evaluation method for creep life of tempered martensite heat-resisting steel
JPH10170416A (en) * 1996-12-13 1998-06-26 Mitsubishi Heavy Ind Ltd Method for evaluating creep life of high-temperature device material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5801520B1 (en) * 2014-10-01 2015-10-28 中国電力株式会社 Remaining life estimation method for estimating the remaining life of high chromium steel pipes
WO2016051558A1 (en) * 2014-10-01 2016-04-07 中国電力株式会社 Remaining life estimation method for estimating remaining life of high-chromium steel pipe
EP3203211A4 (en) * 2014-10-01 2017-10-18 The Chugoku Electric Power Co., Inc. Remaining life estimation method for estimating remaining life of high-chromium steel pipe
US10295456B2 (en) 2014-10-01 2019-05-21 The Chugoku Electric Power Co., Inc. Remaining life estimation method for estimating remaining life of high-chromium steel pipe

Also Published As

Publication number Publication date
JP2003004626A (en) 2003-01-08

Similar Documents

Publication Publication Date Title
JP4638621B2 (en) Evaluation method of remaining life of metallic materials using creep strain rate
Wang et al. Dynamic behavior and a modified Johnson–Cook constitutive model of Inconel 718 at high strain rate and elevated temperature
Gasdaska Tensile creep in an in situ reinforced silicon nitride
CN105158447A (en) Maturity-based concrete structure cracking risk evaluation method
Takahashi et al. Study on creep-fatigue life prediction methods for low-carbon nitrogen-controlled 316 stainless steel (316FR)
CN105910883A (en) Predication method of stress relaxation life of torsion spring
Otsuka et al. A new testing method to obtain mode II fatigue crack growth characteristics of hard materials
Jono Fatigue damage and crack growth under variable amplitude loading with reference to the counting methods of stress–strain ranges
US20050021320A1 (en) Method for predicting life-affecting damage on a rotary member
Newman Jr Prediction of crack growth under variable-amplitude loading in thin-sheet 2024-T3 aluminum alloys
JP2004144549A (en) Non-breaking high-temperature creep damage evaluation method
Polák Stress and strain concentration factor evaluation using the equivalent energy concept
JPH08178816A (en) Method for predicting rapid cooling thermal shock fatigue life
Xu et al. Tensile and bending thermo-mechanical fatigue testing on cylindrical and flat specimens of CMSX-4 for design of turbine blades
Sabelkin et al. Investigation into relative slip during fretting fatigue under partial slip contact condition
Tolcha et al. Modeling fatigue crack and spalling for rolling die under hot milling
JP4367845B2 (en) Evaluation method of remaining life of metallic materials using creep strain rate
Evans et al. The θ projection method applied to small strain creep of commercial aluminium alloy
Winstone Influence of prestress on the yield surface of the cast nickel superalloy Mar-M002 at elevated temperature
JP5504492B2 (en) Measuring method of axial force of tendon
Mehringer et al. Low-Cycle Fatigue of Two Nickel-Base Alloys by Thermal-Stress Cycling
JPH0210900B2 (en)
Chu et al. Crack closure-based analysis of fatigue tests with mean stresses
Hyde et al. Thermal ratchetting of axially loaded tubes operating in the creep range
Volkov-Husovic Monitoring the damage level during thermal stability testing of refractory sample using sonic measurment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101029

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees