JPH08178816A - Method for predicting rapid cooling thermal shock fatigue life - Google Patents

Method for predicting rapid cooling thermal shock fatigue life

Info

Publication number
JPH08178816A
JPH08178816A JP32015094A JP32015094A JPH08178816A JP H08178816 A JPH08178816 A JP H08178816A JP 32015094 A JP32015094 A JP 32015094A JP 32015094 A JP32015094 A JP 32015094A JP H08178816 A JPH08178816 A JP H08178816A
Authority
JP
Japan
Prior art keywords
crack
thermal
test
thermal shock
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32015094A
Other languages
Japanese (ja)
Other versions
JP3220342B2 (en
Inventor
Yoshihiro Takeshita
良博 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP32015094A priority Critical patent/JP3220342B2/en
Publication of JPH08178816A publication Critical patent/JPH08178816A/en
Application granted granted Critical
Publication of JP3220342B2 publication Critical patent/JP3220342B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE: To determine the strength, the probability of fracture, and the number of times of thermal shock being applied repetitively before fracture of a test piece with high accuracy by determining the relation between the stress enlarging coefficient of crack and a crack developing rate, together with a thermal conductivity, in a test environment just identical to that for thermal shock fatigue test for measuring the fatigue characteristics directly. CONSTITUTION: A test piece having an arbitrary shape is cracked previously and a stress enlarging coefficient K1 is calculated based on the shape of the crack and the test conditions where the crack begins to develop while assuming a thermal conductivity. The maximum value of the coefficient K1 thus determined is then compared with a critical value thus determining a thermal conductivity (h) satisfying the conditions of K1 . On the other hand, initial length of the previously formed crack is measured and thermal impact is applied repeatedly with a temperature difference lower than the critical temperature difference where the test piece is not fractured by applying the thermal impact once. The crack length is measured after N1 cycle and a crack developing rate V is determined. Thermal stress is then analyzed using the thermal conductivity thus determined and a multiple mode weibull distribution or the like is assumed based on the K1-V thus determining the relationship of the number of times of repetition SPT.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セラミックスに代表さ
れる脆性材料の急冷熱衝撃による疲労寿命を予測する方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for predicting the fatigue life of brittle materials represented by ceramics due to rapid thermal shock.

【0002】[0002]

【従来の技術】セラミックスに代表される脆性材料を、
化学プラントや工作機械をはじめとする各種産業機械装
置や、ガスタービン、ターボチャージャー等の各種動力
機関等、高負荷または高温雰囲気下のいずれか、あるい
はその両条件下で使用される各種構造部品用材料として
供する場合、機械的特性を評価し強度保証を行うだけで
なく、各種疲労に対する特性も充分に把握し、寿命保証
も行う必要がある。
2. Description of the Related Art Brittle materials typified by ceramics are
For various industrial machinery devices such as chemical plants and machine tools, various power engines such as gas turbines and turbochargers, and various structural parts used under high load or high temperature atmosphere, or both conditions When it is used as a material, it is necessary not only to evaluate the mechanical properties and guarantee the strength, but also to fully ascertain the properties against various types of fatigue and guarantee the life.

【0003】この疲労特性の1つに、急冷による熱衝撃
が繰り返し作用する場合の熱衝撃疲労があり、この熱衝
撃は、例えば、試験片を所定温度T1 まで加熱した後、
これを温度T1 よりも低い温度T2 まで急冷して発生さ
せるもので、具体的な急冷方法としては、例えば、ヒー
タ等によりT1 に加熱した試験片を、T2 に設定された
水中やハンダ浴中等に投下する液体急冷法がある。
One of the fatigue characteristics is thermal shock fatigue when thermal shock due to rapid cooling is repeatedly applied. For example, after the test piece is heated to a predetermined temperature T 1 ,
This is generated by quenching to a temperature T 2 lower than the temperature T 1. As a specific quenching method, for example, a test piece heated to T 1 by a heater or the like is used in water set to T 2 or There is a liquid quenching method that is dropped in a solder bath.

【0004】また、前述のような熱衝撃の繰り返しによ
る疲労に対する耐久性の評価方法としては、熱衝撃疲労
試験を行って疲労特性を直接測定する方法と、疲労が亀
裂進展則に従うと仮定してワイブル統計理論より求める
方法とがある。
As a method for evaluating the durability against fatigue due to the repeated thermal shock as described above, it is assumed that the fatigue characteristics are directly measured by performing a thermal shock fatigue test and that the fatigue follows the crack growth law. There is a method of obtaining from Weibull statistical theory.

【0005】前記熱衝撃疲労試験より直接測定する方法
は、試験片に負荷する熱衝撃、即ち熱応力を変えなが
ら、各熱衝撃条件毎に繰り返し試験を行い、強度Sと試
験片の破壊確率P、及び破壊までの繰り返し数または疲
労に有効な応力の負荷時間Tの関係SPT、即ち熱衝撃
疲労特性(以下、熱衝撃疲労特性をSPTと称す)を求
めるものである。
The method of directly measuring from the thermal shock fatigue test is to repeat the test for each thermal shock condition while changing the thermal shock applied to the test piece, that is, the thermal stress, and to determine the strength S and the failure probability P of the test piece. , And the relationship SPT between the number of repetitions until failure or the load time T of stress effective for fatigue, that is, the thermal shock fatigue characteristics (hereinafter, the thermal shock fatigue characteristics are referred to as SPT).

【0006】一方、亀裂進展則を用いる方法は、目的の
材質について応力拡大係数KI と亀裂進展速度Vの関係
I −Vを求め、作用する応力の分布および時間変化を
数値計算などで解析し、ワイブル統計を基礎とする理論
を用いてSPTを求めるものである(J.Materi
als Science 14,573−82,197
9、及び日本機械学会論文集(A編)58巻547号,
1992−3参照)。
On the other hand, in the method using the crack growth law, the relationship K I -V between the stress intensity factor K I and the crack growth rate V is obtained for the target material, and the distribution and time change of the acting stress are analyzed by numerical calculation or the like. However, the SPT is obtained using a theory based on Weibull statistics (J. Materi).
als Science 14, 573-82, 197.
9, and the Transactions of the Japan Society of Mechanical Engineers (A), Volume 58, No. 547,
1992-3).

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前記液
体急冷法を用いた熱衝撃疲労試験から疲労特性を直接測
定する方法では、試験条件毎に実験を行う必要があり、
その上、試験片毎に測定結果がばらつくため、信頼でき
る測定値を得るためには多数の試験片が必要であるとい
う課題がある。
However, in the method of directly measuring the fatigue characteristics from the thermal shock fatigue test using the liquid quenching method, it is necessary to conduct an experiment for each test condition,
In addition, since the measurement results vary from test piece to test piece, a large number of test pieces are required to obtain reliable measured values.

【0008】一方、亀裂進展則からSPTを求める方法
では、熱伝達率とKI −Vの測定が必要となるが、必要
な試験片数は前記熱衝撃疲労試験に比べてかなり少なく
できるものの、重要なKI −Vの測定方法が確立されて
いない。
On the other hand, in the method of obtaining SPT from the crack growth law, it is necessary to measure the heat transfer coefficient and K I -V, but the required number of test pieces can be considerably reduced as compared with the thermal shock fatigue test, An important method for measuring K I- V has not been established.

【0009】即ち、前記KI −Vは、材質だけでなく試
験雰囲気中の水分量等によっても変化するが、前記疲労
特性を直接測定する熱衝撃試験と全く同一環境下でKI
−Vを求めることが容易でないため、動疲労試験や静疲
労試験等、異なる試験環境、試験方法で測定した値を用
いたり、試験環境が近いと考えられる文献値を用いたり
している。
[0009] That is, the K I -V is material but also changes by just not the water content or the like in the test atmosphere, the fatigue characteristics K in exactly under the same environment as the thermal shock test to directly measure the I
Since it is not easy to obtain −V, values measured by different test environments and test methods such as dynamic fatigue tests and static fatigue tests are used, or literature values considered to be close to the test environments are used.

【0010】更に、熱応力解析を行う場合に必要となる
熱伝達率も、冷却媒体の種類や試験条件等によって変化
するが、やはり容易に測定することができず、特に冷却
媒体として取扱いの容易な水を用いる場合には、試験片
が高温であるため冷却中に沸騰が起こり、熱伝達率が試
験条件や試験方法に依存して大きく変動する。
Further, the heat transfer coefficient required for the thermal stress analysis also varies depending on the type of the cooling medium, the test conditions, etc., but it cannot be easily measured, and is particularly easy to handle as a cooling medium. When pure water is used, the test piece is at a high temperature, so that boiling occurs during cooling, and the heat transfer coefficient greatly varies depending on the test conditions and the test method.

【0011】従って、実際の熱伝達率を直接測定するこ
とは困難であることから、熱伝達率もKI −V同様、疲
労特性を直接測定する熱衝撃試験とは異なる試験条件、
試験方法で測定した値を補正して用いたり、文献値を参
照したりしている。
Therefore, since it is difficult to directly measure the actual heat transfer coefficient, the heat transfer coefficient, like K I -V, is different from the thermal shock test in which the fatigue characteristics are directly measured.
The values measured by the test method are corrected and used, or the literature values are referenced.

【0012】以上の結果、算出されるSPTは、KI
Vおよび熱伝達率が実際と異なることによる誤差を含ん
でおり、熱衝撃疲労試験から直接得たSPTと一致しな
いことがあるという課題があった。
As a result of the above, the calculated SPT is K I
There is a problem that V and the heat transfer coefficient include an error due to the fact that they are different from the actual values, and may not match the SPT directly obtained from the thermal shock fatigue test.

【0013】[0013]

【発明の目的】本発明は前記課題を解決せんとしてなさ
れたもので、その目的は、疲労特性を直接測定する熱衝
撃試験と全く同一環境下で、多数の試験片を必要とせず
に高精度のSPTを求める方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made as a solution to the above-mentioned problems, and its purpose is to achieve high accuracy without requiring a large number of test pieces under the same environment as a thermal shock test for directly measuring fatigue characteristics. It is to provide a method for obtaining the SPT of

【0014】[0014]

【課題を解決するための手段】本発明者は、疲労特性を
直接測定する熱衝撃疲労試験と全く同じ試験環境でKI
−Vおよび熱伝達率を求めることにより、少ない試験片
から精度良くSPTを求めることができることを見出
し、本発明に至った。
DISCLOSURE OF THE INVENTION The inventor of the present invention has found that in the test environment exactly the same as the thermal shock fatigue test for directly measuring the fatigue characteristics, K I
The inventors have found that by obtaining -V and heat transfer coefficient, SPT can be accurately obtained from a small number of test pieces, and the present invention has been completed.

【0015】即ち、熱衝撃疲労試験に供する試験片に予
め亀裂を形成すると共に、該試験片のポアソン比、ヤン
グ率、破壊靱性値等の機械的物性値及び熱膨張係数、熱
伝導率等の熱的物性値、並びに形成した亀裂の形状を求
めておき、該亀裂のKI がKICに達し、亀裂が進展を開
始する臨界の試験温度差を見出せれば、亀裂が進展を開
始するという条件式から未知量は熱伝達率のみとなり、
必要な熱伝達率を求めることができ、該熱伝達率が熱衝
撃試験条件での値となる。
That is, a crack is formed in advance on a test piece to be subjected to a thermal shock fatigue test, and mechanical properties such as Poisson's ratio, Young's modulus, fracture toughness value, thermal expansion coefficient, thermal conductivity, etc. of the test piece. If the thermal physical property value and the shape of the formed crack are obtained, and the K I of the crack reaches K IC and a critical test temperature difference at which the crack starts to grow is found, the crack starts to grow. From the conditional expression, the only unknown quantity is the heat transfer coefficient,
The required heat transfer coefficient can be obtained, and the heat transfer coefficient becomes a value under the thermal shock test conditions.

【0016】また、予め複数の亀裂を形成した前記同一
試験片に、亀裂のKI がKICより小さくなる条件で繰り
返し熱衝撃を負荷し、前記亀裂の進展挙動を観察して実
際の熱衝撃疲労試験環境下でのKI −Vを求める。
Further, the same test piece on which a plurality of cracks have been formed in advance is repeatedly subjected to thermal shock under the condition that the K I of the crack is smaller than K IC , and the progress behavior of the crack is observed to observe the actual thermal shock. Determine K I- V under the fatigue test environment.

【0017】かくして得られた前記熱伝達率を用いて熱
応力解析を行い、ワイブル統計と前記KI −Vより強度
(S)と破壊確率(P)及び破壊までの繰り返し数また
は疲労に有効な応力の付加時間(T)との関係SPTを
求めて、セラミックスに代表される脆性材料の急冷熱衝
撃疲労寿命を予測するものである。
Thermal stress analysis is carried out using the heat transfer coefficient thus obtained, and it is effective for strength (S), failure probability (P), number of repetitions up to failure or fatigue from Weibull statistics and the above K I -V. The relationship between the stress application time (T) and the SPT is obtained to predict the rapid thermal shock fatigue life of brittle materials typified by ceramics.

【0018】[0018]

【実施例】以下、本発明を詳細に説明する。本発明の急
冷熱衝撃疲労寿命の予測方法は、先ず、図1に示す手順
に基づき、熱衝撃疲労試験における熱伝達率を決定す
る。
The present invention will be described in detail below. In the method for predicting the rapid thermal shock fatigue life of the present invention, first, the heat transfer coefficient in the thermal shock fatigue test is determined based on the procedure shown in FIG.

【0019】具体的には、任意の形状の試験片に予め亀
裂を形成するが、例えば、図2に示すように、円柱状の
試験片1の周囲にビッカース硬度測定用の圧子を用い
て、複数の亀裂2を形成すれば良い。
Concretely, a crack is formed in advance on a test piece having an arbitrary shape. For example, as shown in FIG. 2, an indenter for measuring Vickers hardness is used around a cylindrical test piece 1, It is sufficient to form a plurality of cracks 2.

【0020】次に、前記亀裂の形状及び該亀裂が進展を
開始する試験条件、例えば図1の手順に示すように、試
験片の加熱温度と冷却媒体との温度差を測定し、試験片
形状として試験片半径Dと、ポアソン比ν、ヤング率
Ε、熱伝導率λ、熱膨張率α、破壊靱性値KIC等の各種
物性値から、熱伝達率を仮定すると応力拡大係数KI
数値計算または近似式で計算できる。
Next, the shape of the crack and the test conditions under which the crack starts to grow, for example, as shown in the procedure of FIG. 1, the temperature difference between the heating temperature of the test piece and the cooling medium is measured, and the shape of the test piece is measured. Assuming the heat transfer coefficient, the stress intensity factor K I is calculated from the test piece radius D and various physical properties such as Poisson's ratio ν, Young's modulus Ε, thermal conductivity λ, thermal expansion coefficient α, and fracture toughness K IC. It can be calculated or calculated by an approximate expression.

【0021】このようにして得られた応力拡大係数の最
大値KImaxを臨界値KICと比較し、臨界値KICより小さ
い場合には、熱伝達率を少し大きくして再び応力拡大係
数KI を求め、これを繰り返して図1中のKImax=KI
の条件を満たす熱伝達率hを求める。
[0021] Thus the maximum value K Imax obtained stress intensity factor in the comparison with the threshold value K IC, if the critical value K IC smaller again stress the heat transfer rate a little greater intensity factor K I is obtained and repeated to obtain K Imax = K I in FIG.
The heat transfer coefficient h satisfying the condition of is obtained.

【0022】尚、任意の温度差条件での熱伝達率は、試
験片に予め形成する亀裂の大きさを変えることにより、
求めることができる。
The heat transfer coefficient under an arbitrary temperature difference condition can be obtained by changing the size of cracks formed in the test piece beforehand.
You can ask.

【0023】一方、KI −Vは、予め形成した亀裂の初
期長さC0 を測定した後、1回の熱衝撃では破壊しない
臨界温度差より小さい温度差で、繰り返し熱衝撃を加
え、Ni サイクル後の亀裂長さCi を測定し、この時の
亀裂の進展速度Vを次式で求める。
On the other hand, K I -V is obtained by measuring the initial length C 0 of the preformed crack and then applying thermal shock repeatedly with a temperature difference smaller than the critical temperature difference that does not cause destruction by one thermal shock. The crack length C i after i cycles is measured, and the crack growth rate V at this time is determined by the following equation.

【0024】[0024]

【数1】 [Equation 1]

【0025】この時、応力拡大係数KI は亀裂の長さC
および形状を考慮して数値計算あるいは近似式を用いて
計算する。
At this time, the stress intensity factor K I is the crack length C.
And the shape is taken into consideration, and calculation is performed using a numerical calculation or an approximate expression.

【0026】かくして得られた熱伝達率で熱応力解析を
行い、KI −Vより多重モードワイブル分布等を仮定す
ることにより、強度(S)と破壊確率(P)及び破壊ま
での繰り返し数または疲労に有効な応力の付加時間
(T)との関係が求まる。
Thermal stress analysis is carried out using the heat transfer coefficient thus obtained, and by assuming a multimode Weibull distribution from K I -V, the strength (S) and failure probability (P) and the number of repetitions until failure or The relationship with the stress addition time (T) effective for fatigue can be obtained.

【0027】以下、本発明の急冷熱衝撃疲労寿命の予測
方法を、具体的な実施例に基づき詳細に述べる。
The method for predicting the rapid thermal shock fatigue life of the present invention will be described in detail below based on specific examples.

【0028】先ず、図2に示すような直径8mm、長さ
70mmの先端10mmが30°の円錐を成す円柱状の
窒化珪素質焼結体を測定試験片とし、該測定試験片にビ
ッカース硬度測定用圧子を用い、圧入荷重を10kg
f、20kgf、30kgf、50kgfに変えて4本
の試験片に、先端20mmから長手方向に2mm置きに
スパイラル状に各試験片に同一圧入荷重で8箇所、ほぼ
等間隔に亀裂を形成した後、該亀裂の長さCを測定し
た。
First, as shown in FIG. 2, a cylindrical silicon nitride sintered body having a diameter of 8 mm, a length of 70 mm and a tip 10 mm forming a cone of 30 ° is used as a measurement test piece, and the Vickers hardness measurement is performed on the measurement test piece. Using an indenter, press-fit load is 10 kg
f, 20 kgf, 30 kgf, and 50 kgf were changed to four test pieces, and a crack was formed in a spiral shape at a distance of 2 mm from the tip 20 mm in the longitudinal direction at each test piece at eight locations with the same press-fitting load at substantially equal intervals, The length C of the crack was measured.

【0029】次に、前記試験片に熱衝撃を加えるのであ
るが、予め先行試験により圧入荷重と亀裂が進展する温
度差との関係を概略把握し、亀裂が進展する温度差より
十分小さい温度差をそれぞれ設定して、例えば、圧入荷
重10kgfで亀裂を形成した試験片には、温度差ΔT
を640℃から、同様に20kgf、30kgf、50
kgfの試験片にはそれぞれΔTを460℃、400
℃、350℃から順次20℃おきに高くした設定温度で
急冷処理して熱衝撃を加え、その都度、亀裂長さを観察
し、予め形成した亀裂が進展を開始する平均の温度差Δ
Tcを求めた。
Next, a thermal shock is applied to the test piece. The relationship between the press-fitting load and the temperature difference at which the crack propagates is roughly grasped in advance by a preliminary test, and the temperature difference sufficiently smaller than the temperature difference at which the crack propagates. Are set respectively, and for example, for a test piece in which a crack is formed with a press-fit load of 10 kgf, the temperature difference ΔT
From 640 ° C. to 20 kgf, 30 kgf, 50
For the test pieces of kgf, ΔT was set to 460 ° C. and 400, respectively.
℃, from 350 ℃ to 20 ℃ every 20 ℃ in order to make quenching treatment, the thermal shock is given, the crack length is observed each time, the average temperature difference which the crack which is formed beforehand begins to spread Δ
The Tc was calculated.

【0030】[0030]

【表1】 [Table 1]

【0031】また、無限円柱を熱伝達率一定で急冷した
場合の亀裂が進展を開始する平均の温度差ΔTcは、次
式で表わされる。
The average temperature difference ΔTc at which cracks start to grow when an infinite cylinder is rapidly cooled with a constant heat transfer coefficient is represented by the following equation.

【0032】[0032]

【数2】 [Equation 2]

【0033】ここで、σmax * は次の近似式で表される
ものである。
Here, σ max * is expressed by the following approximate expression.

【0034】[0034]

【数3】 (Equation 3)

【0035】前記数2及び数3において、ν、Ε、α、
λ、KIC、YおよびDは、それぞれ、ポアソン比、ヤン
グ率、熱膨張係数、熱伝導率、破壊靭性値、形状係数お
よび試験片半径であり、これらは既知量である。
In the above equations 2 and 3, ν, Ε, α,
λ, K IC , Y and D are Poisson's ratio, Young's modulus, thermal expansion coefficient, thermal conductivity, fracture toughness value, shape coefficient and test piece radius, respectively, which are known quantities.

【0036】従って、数2及び数3に表1の実験データ
を代入すれば未知量は熱伝達率hのみとなる。但し、
Ε、α、λ、KICは温度の関数として、YはCの関数と
して多項式近似したものを用いた。尚、νの温度依存性
は無視できる。
Therefore, by substituting the experimental data of Table 1 into equations 2 and 3, the only unknown quantity is the heat transfer coefficient h. However,
Ε, α, λ, and K IC were polynomial-approximated as a function of temperature, and Y was a function of C. The temperature dependence of ν can be ignored.

【0037】得られた温度差条件と熱伝達率の関係ΔT
−hを図3に示す。この結果を用いれば熱衝撃疲労試験
の任意の温度差での熱応力を解析することができる。
Relationship between the obtained temperature difference condition and the heat transfer coefficient ΔT
-H is shown in FIG. Using these results, it is possible to analyze the thermal stress at any temperature difference in the thermal shock fatigue test.

【0038】次にKI −Vを求めた例を示す。先ず、ビ
ッカース硬度測定用圧子の圧入荷重30kgfで予め亀
裂を形成した試験片2本と、同様にして圧入荷重20k
gfで亀裂を形成した試験片1本を用意した。
Next, an example of obtaining K I -V will be shown. First, two test pieces in which a crack was previously formed with a Vickers hardness measuring indenter with a press-in load of 30 kgf and a press-in load of 20 k
One test piece having a crack formed with gf was prepared.

【0039】前記圧入荷重が30kgfの試験片の1本
に、温度差430℃で230回の熱衝撃を、他の1本に
温度差460℃で230回の熱衝撃を、また圧入荷重が
20kgfの試験片には、温度差430℃で190回の
熱衝撃を負荷して亀裂の長さを測定し、それぞれ平均5
0μm、120μm、10μm亀裂が成長していること
が分かった。
One of the test pieces having a press-fitting load of 30 kgf was subjected to a thermal shock of 230 times at a temperature difference of 430 ° C., another one was subjected to a thermal shock of 230 times at a temperature difference of 460 ° C., and a press-fitting load of 20 kgf. The test piece was subjected to thermal shock 190 times at a temperature difference of 430 ° C. and the crack length was measured.
It was found that cracks of 0 μm, 120 μm and 10 μm were grown.

【0040】前記結果に基づき、数1で計算した亀裂進
展速度の平均値とRaju−Newmanの式(J.
C.Newman,Jr.andI.S.Raju,N
ASA.Tech.Paper,15,78(197
9).参照)を用いて求めた応力拡大係数KI と亀裂進
展速度Vの関係を図4に示す。但し、横軸は臨界応力拡
大係数KICで規格化してある。
Based on the above results, the average value of the crack growth rates calculated by the equation 1 and the Raju-Newman equation (J.
C. Newman, Jr. and I. S. Raju, N
ASA. Tech. Paper, 15, 78 (197)
9). FIG. 4 shows the relationship between the stress intensity factor K I and the crack growth rate V, which are obtained by using However, the horizontal axis is standardized by the critical stress intensity factor K IC .

【0041】図4から、実験データは両対数グラフ上で
ほぼ直線となることから、該実験データを最小二乗法で
フィッティングし、次式を得た。
From FIG. 4, since the experimental data is almost a straight line on the log-log graph, the experimental data was fitted by the least squares method, and the following equation was obtained.

【0042】[0042]

【数4】 [Equation 4]

【0043】但し、A=10-4.69 、n=19.43で
ある。
However, A = 10 −4.69 and n = 19.43.

【0044】以上の結果よりSPTを求めるが、計算に
は2母数のワイブル分布を用い、破壊が表面欠陥から起
こる場合と、内部欠陥から起こる場合とを考えて二重モ
ードとする。但し、ワイブルプロットは表面と内部で同
一とし、亀裂進展則に従う疲労が表面のみで起こると仮
定した。この場合のSPTは次式で表される。
The SPT is obtained from the above results, but a Weibull distribution with two parameters is used for the calculation, and a dual mode is set considering the case where the destruction occurs from the surface defect and the case where the destruction occurs from the internal defect. However, the Weibull plot was assumed to be the same on the surface and inside, and it was assumed that fatigue according to the crack growth law only occurred on the surface. The SPT in this case is expressed by the following equation.

【0045】[0045]

【数5】 (Equation 5)

【0046】但し、However,

【0047】[0047]

【数6】 (Equation 6)

【0048】[0048]

【数7】 (Equation 7)

【0049】[0049]

【数8】 (Equation 8)

【0050】[0050]

【数9】 [Equation 9]

【0051】[0051]

【数10】 [Equation 10]

【0052】[0052]

【数11】 [Equation 11]

【0053】で表され、Pは破壊確率、Nは繰り返し
数、σmax は最大負荷応力、SE は有効表面積、VE
有効体積、mはワイブル係数、nは疲労指数、σ0 は尺
度母数、σa は平均強度、VE4は4点曲げ強度試験の有
効体積、Γ(1+1/m) はガンマ関数、tw は応力の有効負
荷時間、Yは形状係数、Aは定数、σQQは周方向の熱応
力、σzzは軸方向の熱応力、Sは表面積、Vは体積、H
はヘビサイドのステップ関数である。
P is the failure probability, N is the number of repetitions, σ max is the maximum load stress, S E is the effective surface area, V E is the effective volume, m is the Weibull coefficient, n is the fatigue index, and σ 0 is the scale. Parameter, σ a is average strength, V E4 is effective volume of 4-point bending strength test, Γ (1 + 1 / m) is gamma function, tw is effective load time of stress, Y is shape factor, and A is constant. , Σ QQ is circumferential thermal stress, σ zz is axial thermal stress, S is surface area, V is volume, H
Is the Heaviside step function.

【0054】また、測定対象の窒化珪素質焼結体の4点
曲げ強度の平均値σa は796.0MPa、ワイブル係
数mは11.4であった。更に、Yは半楕円亀裂を仮定
し、1.28とした。
The average value σ a of the four-point bending strength of the silicon nitride sintered body to be measured was 796.0 MPa, and the Weibull coefficient m was 11.4. Furthermore, Y was set to 1.28 assuming a semi-elliptical crack.

【0055】SPTの結果を図5に実線で示す。シンボ
ルは70本の試験片による直接測定法の熱衝撃疲労試験
より得られた結果で、両者は比較的良く一致することが
わかる。
The result of SPT is shown by the solid line in FIG. The symbol is the result obtained from the thermal shock fatigue test of the direct measurement method using 70 test pieces, and it can be seen that the two agree relatively well.

【0056】[0056]

【発明の効果】本発明の急冷熱衝撃疲労寿命の予測方法
によれば、熱衝撃疲労試験片に予め亀裂を形成してお
き、疲労特性を直接測定する熱衝撃疲労試験と全く同じ
試験環境でKI −Vおよび熱伝達率を求めることによ
り、少ない試験片から精度良くSPTを求めることがで
きる。
According to the method for predicting the rapid thermal shock fatigue life of the present invention, a crack is formed in advance on a thermal shock fatigue test piece, and the fatigue test is conducted under the same test environment as that for directly measuring the fatigue characteristics. By obtaining K I- V and heat transfer coefficient, SPT can be obtained accurately from a small number of test pieces.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る熱伝達率の求め方の手順を示す図
である。
FIG. 1 is a diagram showing a procedure for obtaining a heat transfer coefficient according to the present invention.

【図2】本発明に係る測定試験片形状を示す図である。FIG. 2 is a diagram showing a shape of a measurement test piece according to the present invention.

【図3】本発明に係る温度差ΔTと熱伝達率hの関係を
示す図である。
FIG. 3 is a diagram showing a relationship between a temperature difference ΔT and a heat transfer coefficient h according to the present invention.

【図4】本発明に係る応力拡大係数KI と亀裂進展速度
Vの関係を示す図である。
FIG. 4 is a diagram showing a relationship between a stress intensity factor K I and a crack growth rate V according to the present invention.

【図5】本発明に係るSPTと直接測定法の熱衝撃疲労
試験より得られた結果の比較図である。
FIG. 5 is a comparison diagram of the results obtained from the thermal shock fatigue test of the SPT according to the present invention and the direct measurement method.

【符号の説明】[Explanation of symbols]

1 試験片 2 亀裂 1 test piece 2 crack

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ポアソン比、ヤング率、破壊靱性値及び熱
膨張係数、熱伝導率が既知の試験片に予め形状が既知の
複数の亀裂を形成した後、該亀裂の応力拡大係数KI
破壊靱性より小さくなる条件で試験片に繰り返し熱衝撃
を加え、前記亀裂の進展挙動から熱衝撃疲労試験環境下
での応力拡大係数KI と亀裂進展速度Vの関係KI −V
を求めるとともに、前記亀裂の応力拡大係数KI が破壊
靱性値に達して亀裂が進展し始める臨界の温度差から熱
伝達率を求め、該熱伝達率から熱応力解析を行い、ワイ
ブル統計と前記KI −Vから、強度(S)と破壊確率
(P)及び破壊までの繰り返し数または疲労に有効な応
力の付加時間(T)との関係SPTを求めることを特徴
とする急冷熱衝撃疲労寿命の予測方法。
1. A test piece having a known Poisson's ratio, Young's modulus, fracture toughness value, thermal expansion coefficient, and thermal conductivity is formed with a plurality of cracks of known shapes, and the stress intensity factor K I of the cracks is determined. A thermal shock is repeatedly applied to the test piece under the condition that the fracture toughness is smaller than the fracture toughness. From the crack growth behavior, the relationship between the stress intensity factor K I and the crack growth rate V under the thermal shock fatigue test environment K I −V
And the stress intensity factor K I of the crack reaches the fracture toughness value and the heat transfer coefficient is calculated from the critical temperature difference at which the crack starts to develop, and thermal stress analysis is performed from the heat transfer coefficient to determine the Weibull statistics and the from K I -V, strength (S) and fracture probability (P) and quenching thermal shock fatigue life and obtaining a relationship SPT and an additional time (T) of the effective stress on the number of repetitions or fatigue to failure Prediction method.
JP32015094A 1994-12-22 1994-12-22 Prediction method of quenching thermal shock fatigue life Expired - Fee Related JP3220342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32015094A JP3220342B2 (en) 1994-12-22 1994-12-22 Prediction method of quenching thermal shock fatigue life

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32015094A JP3220342B2 (en) 1994-12-22 1994-12-22 Prediction method of quenching thermal shock fatigue life

Publications (2)

Publication Number Publication Date
JPH08178816A true JPH08178816A (en) 1996-07-12
JP3220342B2 JP3220342B2 (en) 2001-10-22

Family

ID=18118269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32015094A Expired - Fee Related JP3220342B2 (en) 1994-12-22 1994-12-22 Prediction method of quenching thermal shock fatigue life

Country Status (1)

Country Link
JP (1) JP3220342B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11132929A (en) * 1997-10-31 1999-05-21 Central Glass Co Ltd Measuring method/device for stress enlargement coefficient for flat glass
JP2007071657A (en) * 2005-09-06 2007-03-22 Chubu Electric Power Co Inc History measurement method of stress intensity factor range and crack development evaluation method
US7516674B1 (en) 2008-08-26 2009-04-14 International Business Machines Corporation Method and apparatus for thermally induced testing of materials under transient temperature
JP2010243387A (en) * 2009-04-08 2010-10-28 Mitsubishi Electric Corp Delayed destructive test method and tester by indentation method
JP2011149873A (en) * 2010-01-22 2011-08-04 Nagoya Institute Of Technology Fatigue characteristic determination method and fatigue life prediction method of material
CN102385046A (en) * 2011-03-09 2012-03-21 北京市电力公司 Weibull distribution-based method for determining minimum test time of prolonging service life of intelligent electric meter
CN106769597A (en) * 2017-01-16 2017-05-31 西南交通大学 A kind of disc material thermal fatigue tester and test method
CN110793873A (en) * 2019-09-30 2020-02-14 鞍钢股份有限公司 Method for preventing deformation of sample during heating from influencing test precision
CN117148893A (en) * 2023-09-08 2023-12-01 广州计测检测技术股份有限公司 Temperature control method and system for cold and hot impact detection of automobile

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11132929A (en) * 1997-10-31 1999-05-21 Central Glass Co Ltd Measuring method/device for stress enlargement coefficient for flat glass
JP2007071657A (en) * 2005-09-06 2007-03-22 Chubu Electric Power Co Inc History measurement method of stress intensity factor range and crack development evaluation method
US7516674B1 (en) 2008-08-26 2009-04-14 International Business Machines Corporation Method and apparatus for thermally induced testing of materials under transient temperature
JP2010243387A (en) * 2009-04-08 2010-10-28 Mitsubishi Electric Corp Delayed destructive test method and tester by indentation method
JP2011149873A (en) * 2010-01-22 2011-08-04 Nagoya Institute Of Technology Fatigue characteristic determination method and fatigue life prediction method of material
CN102385046A (en) * 2011-03-09 2012-03-21 北京市电力公司 Weibull distribution-based method for determining minimum test time of prolonging service life of intelligent electric meter
CN106769597A (en) * 2017-01-16 2017-05-31 西南交通大学 A kind of disc material thermal fatigue tester and test method
CN106769597B (en) * 2017-01-16 2023-05-30 西南交通大学 Brake disc material thermal fatigue testing machine and testing method
CN110793873A (en) * 2019-09-30 2020-02-14 鞍钢股份有限公司 Method for preventing deformation of sample during heating from influencing test precision
CN110793873B (en) * 2019-09-30 2021-12-24 鞍钢股份有限公司 Method for preventing deformation of sample during heating from influencing test precision
CN117148893A (en) * 2023-09-08 2023-12-01 广州计测检测技术股份有限公司 Temperature control method and system for cold and hot impact detection of automobile
CN117148893B (en) * 2023-09-08 2024-05-14 广州计测检测技术股份有限公司 Temperature control method and system for cold and hot impact detection of automobile

Also Published As

Publication number Publication date
JP3220342B2 (en) 2001-10-22

Similar Documents

Publication Publication Date Title
Dean et al. A procedure for extracting primary and secondary creep parameters from nanoindentation data
Allen et al. Optimizing material strength constants numerically extracted from Taylor impact data
Naik et al. A critical plane gradient approach for the prediction of notched HCF life
Wang et al. An Experimental‐Numerical Combined Method to Determine the True Constitutive Relation of Tensile Specimens after Necking
CN105372136A (en) Fatigue limit rapid prediction method based on strain increment
JPH08178816A (en) Method for predicting rapid cooling thermal shock fatigue life
Dehgolan et al. Obtaining constants of Johnson-Cook material model using a combined experimental, numerical simulation and optimization method
Kolasangiani et al. Ratcheting progress at notch root of 1045 steel samples over asymmetric loading cycles: Experiments and analyses
Shlyannikov et al. Fatigue of steam turbine blades with damage on the leading edge
Shi et al. Cyclic stress-strain response during isothermal and thermomechanical fatigue
Lapovok et al. Damage mechanics for the fracture prediction of metal forming tools
Minzhong et al. Fatigue crack growth under general-yielding cyclic-loading
CN115017697A (en) Method for correcting thermal compression stress-strain curve by using numerical simulation
Tlilan et al. Effect of notch depth on strain-concentration factor of notched cylindrical bars under static tension
Tanner et al. FE analysis of a notched bar under thermomechanical fatigue using a unified viscoplasticity model
Vshivkov et al. Experimental and theoretical analysis of heat flux at fatigue crack tip under mixed mode loading
Buczynski et al. Multiaxial stress-strain notch analysis
Tang et al. Numerical and experimental analysis of quenching process for cam manufacturing
RU2624613C1 (en) Method of metals testing for tension-compression and the sample for its implementation
Cuccio¹ PROBABILISTIC METHODS FOR CERAMIC COMPONENT DESIGN AND IMPLICATIONS FOR STANDARDS REFERENCE: Cuccio, J., Peralta, A., Song, J., Brehm, P., Johnson, C., Tucker, W., and Fang, H.," Probabilistic Methods for Ceramic Component Design and Implications for Standards," Life Prediction Methodologies and Data for Ceramic Materials, ASTM STP 1201, CR
JPH07190914A (en) Method for estimating critical temperature difference of quenching heat shock
Kurilenko Predicting crack resistance by infrared thermography
Awang et al. Double Surface Cracks Interaction on Cylindrical Rod Under Tensile and Torsional Loading
CN111597706B (en) Method for processing high-temperature high-cycle fatigue performance data of material
Wu et al. Random outcome and stochastic analysis of some fatigue crack growth data

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees