JPS629543A - Optical pickup device - Google Patents

Optical pickup device

Info

Publication number
JPS629543A
JPS629543A JP14799085A JP14799085A JPS629543A JP S629543 A JPS629543 A JP S629543A JP 14799085 A JP14799085 A JP 14799085A JP 14799085 A JP14799085 A JP 14799085A JP S629543 A JPS629543 A JP S629543A
Authority
JP
Japan
Prior art keywords
photodetector
regions
semiconductor substrate
source
optical pickup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14799085A
Other languages
Japanese (ja)
Inventor
Toru Kuwabara
徹 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14799085A priority Critical patent/JPS629543A/en
Priority to EP86109059A priority patent/EP0207517B1/en
Priority to DE8686109059T priority patent/DE3677645D1/en
Publication of JPS629543A publication Critical patent/JPS629543A/en
Priority to US07/173,949 priority patent/US4972400A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Head (AREA)

Abstract

PURPOSE:To attain miniaturization of the entire device and to improve the S/N by forming a photodetector and an amplifier circuit for the output signal on a single semiconductor substrate. CONSTITUTION:Islands 26, 27 are formed to the major face of the semiconductor substrate 25, drain regions 28-33 are formed to each island and source-drain regions 34, 35 are formed to the regions between the islands. Further, gate oxide films 36, 37 and gate electrodes 38, 39 are provided to the regions 32, 33 and the regions 34, 35 of the island 27 while being overlapped on each region. Then the photodetector and the amplifier circuit for the output signal are formed on the signal semiconductor substrate as semiconductor devices to miniaturize the entire device and to improve the S/N.

Description

【発明の詳細な説明】 〔産業上の利用分W〕 乙の発明はトラック状に情報が記録された情報記録媒体
からレーザー光を用いて情報を読みとる光学式ピックア
ップ装置に関するものである。
[Detailed Description of the Invention] [Industrial Application W] The invention of Part B relates to an optical pickup device that uses laser light to read information from an information recording medium in which information is recorded in the form of tracks.

〔従来の技術〕  ′ 第5図は従来の3ビ一ム方式の光学式ピックアップ装置
の概略構成図であり、図において、1はトラック状に情
報を記録した情報記録媒体としてのディスク、2はこの
ディスクの記録情報を読みとる光学式ピックアップで、
レーザー光源3と、回折格子、ビームスプリッタ−4、
対物l/レンズ等を含み、レーザー光源3からの光束を
トラック上に照射させる光学系と、こり光学系に導かれ
た情報トラックからの反射光束を受光して電気信号を出
力する光検知IJIFBとからなり、更に図示しないが
、情報トラック上に光束の焦点を結ばせるとともに情報
トラック上を光束が正確に追従するようにするための2
つの駆動機構を具備している。
[Prior Art] Figure 5 is a schematic diagram of a conventional 3-beam optical pickup device. With an optical pickup that reads the recorded information on this disc,
laser light source 3, diffraction grating, beam splitter 4,
An optical system that includes an objective l/lens, etc. and irradiates the track with the light beam from the laser light source 3, and a photodetector IJIFB that receives the reflected light beam from the information track guided by the optical system and outputs an electric signal. Although not shown, there are two components for focusing the light flux on the information track and for ensuring that the light flux accurately follows the information track.
It is equipped with two drive mechanisms.

光検知!!#8は第6図に示すように、互いに直交する
軸に対して対称に配置された少なくとも4個の受光部6
a−9dと、この受光部を挾んで相対するよう配置され
た2個の受光部6e、(3fとから構成されている。
Light detection! ! As shown in FIG. 6, #8 is at least four light receiving sections 6 arranged symmetrically with respect to mutually orthogonal axes.
a-9d, and two light receiving sections 6e and (3f) arranged to face each other with this light receiving section in between.

)は光検知器8の外部端子に各受光部6a〜6fに対応
してそれぞれ接続したCMOSインバータによる電流電
圧変換回路で、受光部の出力電流を電圧に変換して後段
の増幅回路に供給する。
) is a current-voltage conversion circuit using a CMOS inverter connected to the external terminal of the photodetector 8 corresponding to each of the light receiving sections 6a to 6f, which converts the output current of the light receiving section into voltage and supplies it to the subsequent amplifier circuit. .

第8図は光検知器6の構造図を示し、これは低濃度n型
不純物基板8(以下n−基板と称す)上に高濃度のp型
拡散層(以後p+拡散層)を形成して各検知部9a〜6
fとしている。
FIG. 8 shows a structural diagram of the photodetector 6, in which a high concentration p-type diffusion layer (hereinafter referred to as a p+ diffusion layer) is formed on a low concentration n-type impurity substrate 8 (hereinafter referred to as an n- substrate). Each detection section 9a-6
f.

一方、第7図は電流電圧変換回路フを構成するCMOS
インバータの構造図を示し、9はn−基板電極である。
On the other hand, FIG. 7 shows the CMOS that constitutes the current-voltage conversion circuit.
A structural diagram of an inverter is shown, and 9 is an n-substrate electrode.

次に動作について説明する。レーザー光源3から発した
レーザー光は回折格子によって、1本のメインビームと
2本のサブビームに分割され、対物レンズ5を通してデ
ィスク1のトラック上に照射され、一方ディスク1から
の反射光は対物レンズ5から入射し、ビームスプリッタ
−4で分離されて光検知器8に照射される。
Next, the operation will be explained. The laser beam emitted from the laser light source 3 is split into one main beam and two sub beams by a diffraction grating, and is irradiated onto the track of the disk 1 through the objective lens 5, while the reflected light from the disk 1 is reflected by the objective lens. The light enters from the beam splitter 5 and is separated by the beam splitter 4 and irradiated onto the photodetector 8.

つまり、第6図に対するようにメインビームは光検知器
6の中央の検知部6a〜6dに照射され、サブビームは
対置する他の検知部(3e、9fにそれぞれ照射される
That is, as shown in FIG. 6, the main beam is irradiated on the central detection parts 6a to 6d of the photodetector 6, and the sub-beams are irradiated on the other opposing detection parts (3e, 9f, respectively).

従って、光検知器6の各検知部6a〜6fはそれぞれの
光量に応じた光電流が外部端子から電流電圧変換回路7
に入力し、電圧信号に変換される、このときの電気回路
を第8図に示しており、光検知Wi6の検知部には各検
知部の出力信号が相互に干渉しないように抵抗1日とコ
ンデンサ20とからなる回路を介してバイアス電源を接
続し、検知部に光束が当ると光電流が発生ずる。
Therefore, each of the detection parts 6a to 6f of the photodetector 6 receives a photocurrent corresponding to the amount of light from the external terminal to the current-voltage conversion circuit 7.
Figure 8 shows the electrical circuit at this time, where the input signal is input to a voltage signal and is converted into a voltage signal.The detection section of the photodetector Wi6 is equipped with a resistor of 1 day and 1 day, so that the output signals of each detection section do not interfere with each other. A bias power source is connected through a circuit including a capacitor 20, and when a light beam hits the detection section, a photocurrent is generated.

〔発明が解決しようとする問題点3 以上のように従来の光学式ピックアップ装置によれば、
光検知器に対し、電流電圧変換回路をピックアップの外
部端子を介して接続するようにしているから組立作業が
煩雑であるとともに大型化してコストが増大し、特にリ
ード線の引き回しにより再生信号におけるSN比が低下
するという問題点があった。
[Problem 3 to be solved by the invention As described above, according to the conventional optical pickup device,
Since the current-voltage conversion circuit is connected to the photodetector through the external terminal of the pickup, the assembly work is complicated, the size increases, and the cost increases.In particular, the SN/N of the reproduced signal is reduced due to the routing of the lead wires. There was a problem that the ratio decreased.

この発明は上記のような問題点を解消するためになされ
たもので、ピックアップ自体を小型化してコストを下げ
、しかもSN比を向上するようにした光学式ピックアッ
プ装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and aims to provide an optical pickup device in which the pickup itself is miniaturized to reduce costs and improve the S/N ratio.

[1itljI点を解決するための手段]この発明に係
る光学式ピックアップ装置は、光検知器と、この光検知
器から出力される電気信号の増幅回路とを単一の半導体
基板上に集積して形成したものである。
[Means for solving the problem] The optical pickup device according to the present invention integrates a photodetector and an amplification circuit for an electric signal output from the photodetector on a single semiconductor substrate. It was formed.

〔作用〕[Effect]

この発明においては、光検知器の出力信号は単一の半導
体基板にl/4ml、て形成された増幅回路により有効
に処理される。
In this invention, the output signal of the photodetector is effectively processed by an amplifier circuit formed on a single semiconductor substrate with a thickness of 1/4 ml.

〔実施例〕〔Example〕

以下この発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第2図は増幅回路と光検知器とを形成する半導体装置の
断面図であり、p−の半導体基板25の主面側に2つの
n−アイランド26.27が形成され、各アイランドに
p+ソースドレイン領域28〜33が不純物拡散により
形成されるとともにこのアイランドの間の領域にn+リ
ソースレイン領域34゜35が不純物拡散により形成さ
れる。
FIG. 2 is a cross-sectional view of a semiconductor device forming an amplifier circuit and a photodetector, in which two n- islands 26 and 27 are formed on the main surface side of a p- semiconductor substrate 25, and each island has a p+ source. Drain regions 28 to 33 are formed by impurity diffusion, and n+ resource drain regions 34 and 35 are formed in regions between the islands by impurity diffusion.

更に一方のアイランド27のp″ソースドレイン領域3
2.33と、n+リソースレイン領域34゜35にはゲ
ート酸化膜38.37及びゲート電極38.39が一部
各領域と重なるように設けられている。   ゛ つまり、かかる半導体装置におけるp↑ソースドレイン
領域28〜31が光検知器6の各検知部6゛a〜6fに
該当し、ゲート電極の設けられtこptyノースドレイ
ン1i域32.33と、n+リソースレイン領域34が
相補型電界トランジスタとして電流電圧変換回路7を構
成している。
Furthermore, the p″ source/drain region 3 of one island 27
Gate oxide films 38, 37 and gate electrodes 38, 39 are provided in the n+ resource rain regions 34, 35 and 2.33 so as to partially overlap with each region. In other words, the p↑ source/drain regions 28 to 31 in this semiconductor device correspond to the respective detection parts 6a to 6f of the photodetector 6, and the tpty north drain 1i regions 32, 33 where the gate electrode is provided, The n+ resource rain region 34 constitutes the current-voltage conversion circuit 7 as a complementary field transistor.

第3図はこのような半導体装置の製造工程を説明した図
であり、まず半導体基板25の主面側にn−のアイラン
ド26.27を不純物拡散によ抄形成するとともに n
?リソースレイン領域34,35を不純物拡散により形
成する。
FIG. 3 is a diagram illustrating the manufacturing process of such a semiconductor device. First, n- islands 26 and 27 are formed on the main surface side of the semiconductor substrate 25 by impurity diffusion.
? Resource rain regions 34 and 35 are formed by impurity diffusion.

次に、n−アイランド28.27にp′″ソースドレイ
ン領域28〜33を不純物拡散により形成し、一部のp
+リソースレイン領域32,33およびn+リソースレ
イン領域34.35にこの各領域と一部が重なるように
ゲート酸化膜3B、3フを被着し、乙のゲート酸化膜の
上に導電性のゲート電極38.38を形成する。
Next, p''' source/drain regions 28 to 33 are formed on the n-island 28.27 by impurity diffusion, and some p''
Gate oxide films 3B and 3F are deposited on + resource rain regions 32 and 33 and n+ resource rain regions 34 and 35 so as to partially overlap with each region, and a conductive gate is deposited on the gate oxide film B. Form electrodes 38.38.

従って、p+ソースドレイン領域28〜31は光検知器
6のアノードとなり、又電極を設けたptソースドレイ
ン領域32.33同e< n±ソースドレ第4図はこの
発明の他の実施態様、すなわちn−基板を用いた半導体
装置の製造工程で説明した図であり、まず、n−の半導
体基板40の主面側にp−アイランド4141が不純物
拡散により形成されるとともにptのソースドレイン領
域42〜43が不純物拡散により形成される。
Therefore, the p+ source drain regions 28-31 become the anodes of the photodetector 6, and the pt source drain regions 32.33 provided with electrodes e< n± source drain FIG. 4 shows another embodiment of the invention, namely n - This is a diagram illustrating the manufacturing process of a semiconductor device using a substrate. First, a p- island 4141 is formed on the main surface side of an n- semiconductor substrate 40 by impurity diffusion, and pt source/drain regions 42 to 43 are formed. is formed by impurity diffusion.

次に、p−アイランド41にれ+ソースドレイン領域4
5,4Eiを不純物拡散により形成し、とのn↑ソース
ドレイン領域45,4Bとp↑ソースドレイン領域43
,44にこの各領域と一部が重なるようにゲート酸化膜
47.48を被着するとともにこのゲート酸化膜の上に
導電性のゲート電pi49.50を形成する。
Next, the p- island 41 is connected to the source/drain region 4.
5,4Ei are formed by impurity diffusion, and n↑ source/drain regions 45, 4B and p↑ source/drain regions 43
, 44 are deposited with gate oxide films 47, 48 so as to partially overlap with these regions, and conductive gate electrodes pi 49, 50 are formed on the gate oxide films.

従って、この実施態様によればp土ソースドレイン42
が光検知器でかつその1ノードとなり、基板40がその
ままカソードとなる。
Therefore, according to this embodiment, the p-soil source drain 42
is a photodetector and one node thereof, and the substrate 40 directly serves as a cathode.

[発明の効果〕 この発明は以上説明したとおり、光検知器とその出力信
号の増幅回路とを半導体装置として単一の半導体基板に
形成しているから、全体に小型化を図ることが可能にな
るとともにS N比の向上を図れるという効果がある。
[Effects of the Invention] As explained above, in this invention, since the photodetector and the amplification circuit for its output signal are formed as a semiconductor device on a single semiconductor substrate, it is possible to achieve overall miniaturization. This also has the effect of improving the S/N ratio.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は乙の説明の一実施例を示す光学式ピック1ツブ
装置の概略図、第2図は半導体装置の断面図、第3図は
半導体装置の製造工程を示す断面図、第4図は他の実施
態様における製造工程を示す断面図、第5図は従来の光
学式ピックアップ装置を示す概略図、第6図は光検知器
の構成図、第7図は光検知器の断面図、第8図は増幅回
路を構成する半導体装置の断面図、第9図は回路図であ
る。 6は光検知器、7は増幅回路、25は半導体基板である
。 なお、図中同一符号は同一または相当部分を示す。 代理人 大 岩 増 雄(外2名) 第3図 第4図   4゜
Fig. 1 is a schematic diagram of an optical pick one-tub device showing one embodiment of the explanation in Part B, Fig. 2 is a sectional view of a semiconductor device, Fig. 3 is a sectional view showing the manufacturing process of the semiconductor device, and Fig. 4 is a sectional view showing the manufacturing process in another embodiment, FIG. 5 is a schematic diagram showing a conventional optical pickup device, FIG. 6 is a configuration diagram of a photodetector, and FIG. 7 is a sectional view of the photodetector. FIG. 8 is a sectional view of a semiconductor device constituting an amplifier circuit, and FIG. 9 is a circuit diagram. 6 is a photodetector, 7 is an amplifier circuit, and 25 is a semiconductor substrate. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Masuo Oiwa (2 others) Figure 3 Figure 4 4゜

Claims (1)

【特許請求の範囲】[Claims] レーザー光を情報記録媒体に照射し、その反射したレー
ザー光を光検知器で受光することにより情報を電気信号
に変換して出力するようにしたものにおいて、前記電気
信号の増幅回路を前記光検知器と単一の半導体基板上に
形成したことを特徴とする光学式ピックアップ装置。
In a device that converts information into an electrical signal and outputs it by irradiating an information recording medium with a laser beam and receiving the reflected laser beam with a photodetector, the amplification circuit of the electrical signal is connected to the photodetector. An optical pickup device characterized by being formed on a single semiconductor substrate.
JP14799085A 1985-07-05 1985-07-05 Optical pickup device Pending JPS629543A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP14799085A JPS629543A (en) 1985-07-05 1985-07-05 Optical pickup device
EP86109059A EP0207517B1 (en) 1985-07-05 1986-07-03 Optical pickup apparatus
DE8686109059T DE3677645D1 (en) 1985-07-05 1986-07-03 OPTICAL SIGNAL COLLECTOR.
US07/173,949 US4972400A (en) 1985-07-05 1988-03-28 Optical pickup apparatus having switch for allowing positional adjustment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14799085A JPS629543A (en) 1985-07-05 1985-07-05 Optical pickup device

Publications (1)

Publication Number Publication Date
JPS629543A true JPS629543A (en) 1987-01-17

Family

ID=15442662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14799085A Pending JPS629543A (en) 1985-07-05 1985-07-05 Optical pickup device

Country Status (1)

Country Link
JP (1) JPS629543A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5979441A (en) * 1982-10-29 1984-05-08 Omron Tateisi Electronics Co Pickup for optical digital disk

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5979441A (en) * 1982-10-29 1984-05-08 Omron Tateisi Electronics Co Pickup for optical digital disk

Similar Documents

Publication Publication Date Title
US6887735B2 (en) Photodetector and device employing the photodetector for converting an optical signal into an electrical signal
JP4131031B2 (en) Semiconductor device having light receiving element, optical pickup device, and method of manufacturing semiconductor device having light receiving element
US4847846A (en) Semiconductor laser chip
JP2731115B2 (en) Split type light receiving element
US4972400A (en) Optical pickup apparatus having switch for allowing positional adjustment
JPH1041488A (en) Photodetector with built-in circuit
JP2000252507A (en) Optical pickup semiconductor photodetector
JP4086860B2 (en) Semiconductor device
EP0634742B1 (en) Optical head and optical detector used in the same
JP3060233B2 (en) Radiation-sensitive semiconductor device
US5567974A (en) Semiconductor device to absorb stray carriers
JP2961168B2 (en) Semiconductor device
JPS629543A (en) Optical pickup device
JP3165689B2 (en) Photosensitive semiconductor device
JP2009260503A (en) Light-receiving amplifier element, optical pickup, and optical disk recording and reproducing device equipped with the same
JPS62246154A (en) Optical pickup device
JP4000042B2 (en) Light receiving element, light receiving device with built-in circuit, and optical disk device
JPH0955532A (en) Semiconductor light receiving element
JPH0773503A (en) Optical head and photodetector used in the head
JP3090086B2 (en) Photodetector with built-in circuit
JP4014384B2 (en) Semiconductor photo detector
JP3172355B2 (en) Optical pickup device
JPH09298285A (en) Integrated circuit device incorporating light receiving elements and manufacture thereof
JP2989883B2 (en) Solid-state spatial light modulator
JP2665336B2 (en) Semiconductor device