JPS6295430A - Large-size plane primary standard hologram interferometer - Google Patents

Large-size plane primary standard hologram interferometer

Info

Publication number
JPS6295430A
JPS6295430A JP23618185A JP23618185A JPS6295430A JP S6295430 A JPS6295430 A JP S6295430A JP 23618185 A JP23618185 A JP 23618185A JP 23618185 A JP23618185 A JP 23618185A JP S6295430 A JPS6295430 A JP S6295430A
Authority
JP
Japan
Prior art keywords
light
hologram
liquid
reproduced
luminous flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23618185A
Other languages
Japanese (ja)
Other versions
JPH0519928B2 (en
Inventor
Joji Matsuda
浄史 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP23618185A priority Critical patent/JPS6295430A/en
Publication of JPS6295430A publication Critical patent/JPS6295430A/en
Publication of JPH0519928B2 publication Critical patent/JPH0519928B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Holo Graphy (AREA)

Abstract

PURPOSE:To eliminate worry about the fluctuation of a liquid level and dust and to prevent a body to be measured from being wet with liquid at every time of measurement by recording a reference plane formed of a liquid surface in an excellent state by holography, and performing reproduction and using a reproduced image as the reference plane every time a measurement is taken. CONSTITUTION:Luminous flux reflected by a surface 25 to be measured is modulated by being affected by the surface to be measured. This reflected luminous flux travels the optical path of incidence on the liquid surface 21 backward and reaches a beam splitter 2 through a parabolic mirror 12, a pinhole 11, and a converging lens 8, thereby illuminating a hologram H through the beam splitter 2. One pieces of luminous flux recorded in the hologram H is reproduced by said illumination, but the reproduced illumination light is modulated by being affected by the object surface 25, so reproduced body light 22a is also modulated pairing with one piece of luminous flux 22 and the reproduced body light 22a and one piece of luminous flux 22 interfere with each other to form interference fringes on a screen 16 through an observation lens 15. For the purpose, the interference fringes are observed to measure the surface shape of the object surface 25.

Description

【発明の詳細な説明】 (イ)発明の目的 [産業上の利用分野] この発明は大口径の平面鏡の表面形状を測定づ−るため
のホログラム干渉訓に関づるものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Purpose of the invention [Field of industrial application] This invention relates to hologram interference techniques for measuring the surface shape of a large-diameter plane mirror.

U従来の技術1 ポリゴンミラー、天体望遠鏡、レーリ゛核融合用ミラー
等の大口径平面鏡を製造する場合には、その様な平面鏡
を高精度に測定する技術が必要である。
U Prior Art 1 When manufacturing large-diameter plane mirrors such as polygon mirrors, astronomical telescopes, mirrors for Rayleigh fusion, etc., a technique for measuring such plane mirrors with high precision is required.

従来から平面鏡はガラスを研磨し、その表面にアルミニ
ウム等の金属をP6することによって作られており、通
常、その大きさは直径20cm以内、精度は0.5μ程
度である。しかるに、最近、グイψモンド1&盤の発達
により、その大きさが口径500mPi!度の金属鏡が
比較的容易に製作できるようになり、その粘度も、ガラ
ス鏡はどではないが、それに近づきつつあるのぐあるが
、これらの大口径の鏡面形状を高精度で筒中に測定する
技術が開発されていない。
Conventionally, plane mirrors have been made by polishing glass and coating the surface with metal such as aluminum, and usually have a diameter of 20 cm or less and an accuracy of about 0.5 μm. However, with the recent development of the Gui ψ Mondo 1 & board, its size has increased to 500 mPi in diameter! It has become relatively easy to produce metal mirrors with a high diameter, and their viscosity is not as good as that of glass mirrors, but it is approaching that, but it is now possible to measure the shape of these large-diameter mirror surfaces with high precision inside the cylinder. The technology to do so has not been developed.

例えば、直径500mの大口径平面を高精度に測定づる
ことは非常に困難である。ぞの理由はn径500姻の基
準になる平面を作り出ずことが困難だからである。この
基準平面を作り出まためには、口径500mmの高精度
コリメータレンズをガラスで研磨して製作することにな
るが、たとえ製作したとしてもその性能を測定しなけれ
ばならず、結局測定法を考えな()ればならない。A−
ストラリア計測研究所の光学グループは測定する試料を
容器の中に入れ液を満たし、この液面をliにして面を
測定している。第3図はこのような装置の枯木光学系を
示したものである。l−1e −N Oレーず光源51
からのレーザ光をコリメータレンズ52で平行光束にし
て上側から容器53を照明する。液面54で反射した光
と被測定面55で反射した光とがHいに干渉し、干渉縞
を肖る。これらの光はもとの光路に戻り、ハ′−フミラ
ー56で取り出されて投影レンズ57で干渉縞がスクリ
ーン58に(e影される。生じた干渉縞は1/2波長毎
の等高線となる。
For example, it is extremely difficult to measure a large-diameter plane with a diameter of 500 m with high precision. The reason for this is that it is difficult to create a plane that can serve as a reference for n-diameter 500 matings. In order to create this reference plane, a high-precision collimator lens with a diameter of 500 mm must be manufactured by polishing it with glass, but even if it were manufactured, its performance would have to be measured, and in the end, the measurement method was determined. I have to think about it. A-
The optics group at the Stralia Metrology Institute puts the sample to be measured into a container, fills it with liquid, sets the liquid level to li, and measures the surface. FIG. 3 shows the dead tree optical system of such an apparatus. l-1e -N O laser light source 51
A collimator lens 52 converts the laser light from the container into a parallel beam of light to illuminate the container 53 from above. The light reflected from the liquid surface 54 and the light reflected from the surface to be measured 55 interfere with each other, producing interference fringes. These lights return to the original optical path, are taken out by a half mirror 56, and interference fringes are projected onto a screen 58 by a projection lens 57. The resulting interference fringes become contour lines for each 1/2 wavelength. .

この測定では、地球の重力で131%に用いる液面が曲
がることを考1遺すると、この曲りhは第4図から h= (x2)/(2r) によって与えられる。500snの直径の面の場合x=
0.25m 地球の半径 r=6.367xlO3Kmとするとh=
0.01μどなる。従って液面を利用すると直径500
#に対して0.01μmの誤差の基準平面を作り出ずこ
とが可能である。
In this measurement, considering that the liquid surface used is curved by 131% due to the earth's gravity, this curve h is given by h = (x2)/(2r) from Figure 4. For a surface with a diameter of 500 sn, x=
0.25m Earth's radius r=6.367xlO3Km then h=
0.01μ roar. Therefore, if you use the liquid level, the diameter will be 500.
It is possible to create a reference plane with an error of 0.01 μm for #.

[発明が解決しようとする問題点] しかるに、このように液面を基準平面とする表面m11
定方法では、液面の形成に肖たって、表面張力の問題が
あり、例えば璧面の近くでは表面張力を無視することは
できない。また、使用する液体によっても影響を受け、
例えばシリコンオイル(Dow Corning 70
4 )の粘付が問題になる。更に、液の層の厚さによっ
ても影響を受け、例えば液の層の厚さを大きくすると液
面が振動し、理想的な)、l単面を(qることができな
い。この振動を無視できるためには、液層の深さを1〜
2mmの深さに7る必要がある。また、埃も壬要な問題
であり、この埃が荷1h溌杏吟に欲面が影響され、更に
空気の振動も問題があって、特に空調に注意をする必要
がある。
[Problems to be solved by the invention] However, in this way, the surface m11 with the liquid level as the reference plane
In the fixed method, there is a problem of surface tension in the formation of the liquid level, and for example, surface tension cannot be ignored near a wall. It is also affected by the liquid used.
For example, silicone oil (Dow Corning 70
4) Stickiness becomes a problem. Furthermore, it is also affected by the thickness of the liquid layer; for example, if the thickness of the liquid layer is increased, the liquid surface will vibrate, making it impossible to convert the ideal In order to do this, the depth of the liquid layer must be 1~
It is necessary to dig to a depth of 2mm. In addition, dust is also a serious problem, and this dust affects the load as it passes through the air.Furthermore, air vibration is also a problem, so special attention must be paid to air conditioning.

このように、液面を基準平面とする揚台でも、その様な
液面を必要時に常に理想的な状態で、形成づることは困
冗であり、このようなことから、必要時に常に理想的な
状態の液面を再現して高精葭に平面を測定することがで
きる技術の開発が望まれている。
In this way, even with a lifting platform that uses the liquid level as a reference plane, it is difficult to always form such a liquid level in an ideal state when necessary; There is a need for the development of a technology that can reproduce the liquid level under normal conditions and measure flat surfaces with high precision.

この発明は上記の如き事情に鑑みてなされたものであっ
て、測定時に理想的な状態の液面を再現しC平面を高精
度に測定することができる干渉計を捉供することを目的
とする乙のである。
This invention has been made in view of the above circumstances, and aims to provide an interferometer that can reproduce the ideal liquid level during measurement and measure the C plane with high precision. It's Otsu's.

(ロ)発明の構成 [問題を解決するための手段] この目的に対応して、この発明の大型平面原器ホログラ
ム干渉計は、レーザ光源と前記レーデ光源からの光束を
一方の光束と他方の光束との2光束に分前するビームス
プリッタと、及び前記一方の光束を試料位置に位置する
液面で反射させて生成した反射光を参照光として前記他
方の光束を記録したホログラムとを備え、前記−1ノの
光束を前記試料位置に位置覆る試わlで反射させて生成
した反射光を前記ホログラムに照明して生成した再生物
体光と前記他方の光束との干渉縞を観測するように構成
したことを特徴としている。
(B) Structure of the Invention [Means for Solving the Problem] In response to this purpose, the large-scale planar prototype hologram interferometer of the present invention divides the light beams from the laser light source and the Rade light source into one light beam and the other light beam. A beam splitter that splits the light beam into two light beams, and a hologram that records the other light beam using the reflected light generated by reflecting the one light beam on a liquid surface located at the sample position as a reference light, The hologram is illuminated with the reflected light generated by reflecting the -1 beam of light at the sample position, and interference fringes between the reproduced object beam and the other beam of light are observed. It is characterized by its composition.

以下、この発明の汀線を一実施例を示寸図面について説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the shoreline of the present invention will be described below with reference to sized drawings.

第1図において1はホログラム干渉甜である。In FIG. 1, 1 is a hologram interference link.

ホログラム干渉計1はホログラlXHを備えている。The hologram interferometer 1 is equipped with a hologram IXH.

そこでまずホログラムI」の作成について説明する。First, the creation of hologram I will be explained.

第2図において10はホログラムHを作成するためのホ
ログラム作成光学系である。
In FIG. 2, 10 is a hologram creation optical system for creating a hologram H. In FIG.

ホログラム作成光学系10はビームスプリッタ2を備え
ており、ビームスプリッタ2の入射側に、例えばHe−
NeシレーFを発生ざけるシー1F光源3、光路変更用
ミラー4、顕微鏡対物レンズ6、コリメータレンズ7を
備えている。
The hologram creation optical system 10 includes a beam splitter 2, and on the incident side of the beam splitter 2, for example, He-
It is equipped with a 1F light source 3 for generating Ne silane F, a mirror 4 for changing the optical path, a microscope objective lens 6, and a collimator lens 7.

また、ビームスプリッタ2の反射側に、収束レンズ8、
ピンホール11、放物面鏡12を備え、かつ試r++ 
t?フット置13に容器17に入れた液体18の液面2
1を位置させている。
In addition, a converging lens 8 is provided on the reflection side of the beam splitter 2.
Equipped with a pinhole 11, a parabolic mirror 12, and a trial r++
T? Liquid level 2 of the liquid 18 placed in the container 17 on the foot rest 13
1 is located.

一方、ビームスプリッタ2の透過側には、光路変更用ミ
ラー5、光路変更用ミラー9及び写真乾板Haを備えて
いる。
On the other hand, the transmission side of the beam splitter 2 is provided with an optical path changing mirror 5, an optical path changing mirror 9, and a photographic plate Ha.

ホログラムl」を作成する場合には、レーデ光源3から
のシー1F光を顕微鏡対物レンズ6で発散光とし、かつ
コリメータレンズ7で平行光とした後、光路変更用ミラ
ー4で光路変更してビームスプリッタ2に入削り−る。
When creating a hologram 1, the SEE 1F light from the Rede light source 3 is made into a diverging light by the microscope objective lens 6 and parallel light by the collimator lens 7, and then the optical path is changed by the optical path changing mirror 4 to form a beam. Cut into splitter 2.

ビームスプリッタ2に入射した平行光束は、一方の平行
光束22と他方の平行光束23に分前され、一方の平行
光束22はビームスプリッタ2を透過して光路変更用ミ
ラー5、光路変更用ミラーって光路変更した俊、写真乾
板1−18に入射する。この写真乾板Haに入射する一
方の平行光束22は後述する参照先によってホログラム
1−1(写真乾板Ha )に記録される物体光である。
The parallel light beam incident on the beam splitter 2 is split into one parallel light beam 22 and the other parallel light beam 23, and one parallel light beam 22 passes through the beam splitter 2 and passes through the optical path changing mirror 5 and the optical path changing mirror. Shun changed the optical path and entered the photographic plate 1-18. One of the parallel light beams 22 incident on the photographic plate Ha is an object beam recorded on the hologram 1-1 (photographic plate Ha) by a reference destination to be described later.

他方の平行光束23はビームスプリッタ2で反射して収
束レンズ8及びピンホール11で発散光としたのち、放
物面鏡12で光路変更しかつ平行光束に変換して液面2
1に入射し、液面21で反射される。液面21に大割し
た光束のうら、その一部分は液体18内に進入して容器
17の底面24で反射するが、この底面24は液面21
に対して傾いているので、この底面24で反射した光は
系外に出される。
The other parallel light beam 23 is reflected by the beam splitter 2 and made into a diverging light by the converging lens 8 and pinhole 11, and then changed its optical path by the parabolic mirror 12 and converted into a parallel light beam to reach the liquid surface 2.
1 and is reflected by the liquid surface 21. A portion of the light beam that is roughly divided into the liquid surface 21 enters the liquid 18 and is reflected by the bottom surface 24 of the container 17;
Since the bottom surface 24 is tilted relative to the bottom surface 24, the light reflected from the bottom surface 24 is emitted outside the system.

液面21で反射した光束は、液面21に入(ト)したと
きの光路を逆に経過して放物面鏡12、ピンボール11
、及び収束レンズ8を通ってビームスプリッタ2に達し
、ビームスプリッタ2を透過して写真乾板1−1aを照
明する。この液面21で反qすして写真乾板Haに達す
る光が前記の一方の光束22を物体光として写真乾板ト
1a(ホログラム11)に記録する場合の参照光としで
機能するものである。こうして他方の光束23を参照光
として一方の光束22を物体光として記録した写真乾板
1−1 aは写真処理してホログラム1−1が完成する
1゜第1図に示すホログラム干渉i1は、第2図に示す
ホログラム作成光学系に観測レンズ15とスクリーン1
6を付加し、かつ試料セット位置13の液面21を取外
して、その位置に被測定面25をピッ1〜したものであ
る。ホログラム(」は写真乾板1−1aがあった位置に
セットされる。
The light beam reflected on the liquid surface 21 passes through the optical path in the opposite direction when it entered the liquid surface 21 and reaches the parabolic mirror 12 and the pinball 11.
, and a converging lens 8 to reach the beam splitter 2, and is transmitted through the beam splitter 2 to illuminate the photographic plate 1-1a. The light that is reflected on the liquid surface 21 and reaches the photographic plate Ha functions as a reference beam when one of the light beams 22 is recorded on the photographic plate 1a (hologram 11) as an object beam. In this way, the photographic plate 1-1a recorded with the other beam 23 as the reference beam and the one beam 22 as the object beam is photographically processed to complete the hologram 1-1.The hologram interference i1 shown in FIG. An observation lens 15 and a screen 1 are included in the hologram creation optical system shown in Figure 2.
6 is added, the liquid surface 21 at the sample setting position 13 is removed, and the surface to be measured 25 is placed at that position. The hologram () is set at the position where the photographic plate 1-1a was.

[作用] この第1図に示ず如ぎホログラム干渉計1において、被
測定面25の表面形状を測定するには、次のようにする
[Operation] In the hologram interferometer 1 not shown in FIG. 1, the surface shape of the surface to be measured 25 is measured as follows.

まず、レーtア光源3を発光させ、レーザ光Ki3から
のレーザ光を顕微鏡対物レンズ6で発散光とし、かつコ
リメータレンズ7で平11光とした後、光路変更用ミラ
ー4で光路変更してビームスプリッタ2に入射する。ビ
ームスプリッタ2に入射した平行光束は、一方の平行光
束22と他方の平行光束23に分前され、一方の平行光
束22はビームスプリッタ2を透過して光路変更用ミラ
ー5、光路変更用ミラー9で光路変更した後、ホログラ
ムHに入射する。他方の平行光束23はビームスプリッ
タ2で反射して収束レンズ8及びビンボール11で発散
光としたのら、放物面鏡12で光路変更しかつ平行光束
に変換して被測定面25に入射し、被測定面25で反射
される。
First, the laser light source 3 is made to emit light, and the laser beam from the laser beam Ki3 is made into a diverging beam by the microscope objective lens 6, and is made into a flat 11 beam by the collimator lens 7, and then the optical path is changed by the optical path changing mirror 4. The beam enters the beam splitter 2. The parallel light beam incident on the beam splitter 2 is split into one parallel light beam 22 and the other parallel light beam 23, and one parallel light beam 22 passes through the beam splitter 2 and passes through the optical path changing mirror 5 and the optical path changing mirror 9. After changing the optical path at , the beam enters the hologram H. The other parallel light beam 23 is reflected by the beam splitter 2 and made into a diverging light by the converging lens 8 and bottle ball 11, and then changed to a parallel light beam by the parabolic mirror 12, and is then incident on the surface to be measured 25. , reflected by the surface to be measured 25.

被測定面25て゛反射した光束(ま被測定面の影響を受
けて変調する。この反射した光束は、液面21に入射し
たときの光路を逆に経過して放物面鏡12、ピンホール
11、及び収束レンズ8を通ってビームスプリッタ2に
達し、ビームスプリッタ2を透過してホログラムHを照
明ザる。
The light beam reflected from the surface to be measured 25 (modulated due to the influence of the surface to be measured). This reflected light beam passes through the parabolic mirror 12 and the pinhole in the opposite direction of the optical path when it was incident on the liquid surface 21. 11 and a converging lens 8 to reach the beam splitter 2, and is transmitted through the beam splitter 2 to illuminate the hologram H.

この照明ににってホログラムHに記録されていた一方の
光束が再生されるが、その再生照明光が被測定面25の
影響を受けて変調しているので、これによって再生され
た再生物体光22aも一方の光束22に対して変調して
J3す、再生物体光22aと一方の光束22とが干渉し
て観測レンズ15を通してスクリーン16上に干渉縞が
生じる。
This illumination reproduces one of the light beams recorded in the hologram H, but since the reproduced illumination light is modulated by the influence of the surface to be measured 25, the reproduced object light is thereby reproduced. 22a is also modulated with respect to one of the light beams 22, and the reproduced object light 22a and one of the light beams 22 interfere, and interference fringes are generated on the screen 16 through the observation lens 15.

従って、この干渉縞を観測づることによって被測定面2
5の表面形状を測定することができ゛る。
Therefore, by observing these interference fringes, the measured surface 2
5 surface shapes can be measured.

(ハ)発明の効果 このように、この発明のホログラム干渉計によれば、良
好な状態の液面で作り出された基準平面をホログラムに
記録しておぎ、測定する時にホログラムから再生して基
準平面として使用することになるので、測定するたび毎
に、液面の振動や埃を気にする必要がなく、また、被測
定物が液で濡れることを防ぐことができる。
(C) Effects of the Invention As described above, according to the hologram interferometer of the present invention, the reference plane created at the liquid level in good condition is recorded on the hologram, and when measuring, the reference plane is reproduced from the hologram. Therefore, there is no need to worry about vibrations or dust on the liquid surface each time a measurement is made, and it is possible to prevent the object to be measured from getting wet with the liquid.

また、一般に干渉計はミラーやレンズ等の多くの光学系
が用いられており、これらの精度や収差が問題になるが
、この発明の干渉計ではホログラムを作成する場合にも
、また、ホ[1グラムを再生する場合にも同じ収差が入
る結果、これらの収差の震音は打消し合って除去される
In addition, interferometers generally use many optical systems such as mirrors and lenses, and their accuracy and aberrations pose problems, but the interferometer of the present invention can also be used to create holograms. The same aberrations also occur when reproducing 1 gram, so the vibrations caused by these aberrations cancel each other out and are removed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明のホログラム干渉t1を示す構成図、
第2図はホログラム作成用の光学系を示す構成図、第3
図は従来の千′7!581を丞す構成図、及び第4図は
液面の曲りを示寸線図である。 1・・・干渉計  2・・・ビームスプリッタ  3・
・・レー奇ア光源  4・・・光路変更用ミラー  5
・・・光路変更用ミラー  6・・・顕微鏡対物レンズ
  7・・・コリ・メータレンズ  8・・・収束レン
ズ  9・・・光路変更用ミラー  10・・・ホログ
ラム作成光学系11・・・ピンホール  12・・・放
物面鏡  13・・・試料セット位置  14・・・試
料  15・・・観測レンズ  16・・・スクリーン
  ト]・・・ホログラム1−18・・・写真乾板  
17・・・容器  18・・・液体21・・・液面  
22・・・一方の平行光束  23・・・使方の平行光
束  24・・・底面   25・・・被測定面
FIG. 1 is a configuration diagram showing hologram interference t1 of the present invention,
Figure 2 is a configuration diagram showing the optical system for creating holograms, Figure 3
The figure is a block diagram showing the conventional 1,7581 cm, and FIG. 4 is a dimensional line diagram showing the curvature of the liquid level. 1...Interferometer 2...Beam splitter 3.
...Ray light source 4...Mirror for changing optical path 5
... Mirror for changing optical path 6 ... Microscope objective lens 7 ... Collimeter lens 8 ... Converging lens 9 ... Mirror for changing optical path 10 ... Hologram creation optical system 11 ... Pinhole 12... Parabolic mirror 13... Sample setting position 14... Sample 15... Observation lens 16... Screent]... Hologram 1-18... Photographic plate
17... Container 18... Liquid 21... Liquid level
22...One parallel light beam 23...Parallel light beam used 24...Bottom surface 25...Measurement surface

Claims (1)

【特許請求の範囲】[Claims] レーザ光源と前記レーザ光源からの光束を一方の光束と
他方の光束との2光束に分前するビームスプリッタと、
及び前記一方の光束を試料位置に位置する液面で反射さ
せて生成した反射光を参照光として前記他方の光束を記
録したホログラムとを備え、前記一方の光束を前記試料
位置に位置する試料で反射させて生成した反射光を前記
ホログラムに照明して生成した再生物体光と前記他方の
光束との干渉縞を観測するように構成したことを特徴と
する大型平面原器ホログラム干渉計
a laser light source and a beam splitter that divides the light flux from the laser light source into two light fluxes, one light flux and the other light flux;
and a hologram in which the other light beam is recorded using the reflected light generated by reflecting the one light beam on a liquid surface located at the sample position as a reference light, and the one light beam is reflected on the sample position located at the sample position. A large flat prototype hologram interferometer, characterized in that it is configured to illuminate the hologram with reflected light generated by reflection and observe interference fringes between the reproduced object beam and the other light beam.
JP23618185A 1985-10-22 1985-10-22 Large-size plane primary standard hologram interferometer Granted JPS6295430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23618185A JPS6295430A (en) 1985-10-22 1985-10-22 Large-size plane primary standard hologram interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23618185A JPS6295430A (en) 1985-10-22 1985-10-22 Large-size plane primary standard hologram interferometer

Publications (2)

Publication Number Publication Date
JPS6295430A true JPS6295430A (en) 1987-05-01
JPH0519928B2 JPH0519928B2 (en) 1993-03-18

Family

ID=16996969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23618185A Granted JPS6295430A (en) 1985-10-22 1985-10-22 Large-size plane primary standard hologram interferometer

Country Status (1)

Country Link
JP (1) JPS6295430A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109000796A (en) * 2013-01-09 2018-12-14 国际湿度分析仪器有限公司 CLA Chemilumineceut Analyzer and liquid depth sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109000796A (en) * 2013-01-09 2018-12-14 国际湿度分析仪器有限公司 CLA Chemilumineceut Analyzer and liquid depth sensor
CN109000796B (en) * 2013-01-09 2020-10-30 国际湿度分析仪器有限公司 Photochemical analyzer and liquid depth sensor

Also Published As

Publication number Publication date
JPH0519928B2 (en) 1993-03-18

Similar Documents

Publication Publication Date Title
US3658403A (en) High fidelity readout of a hologram performing the function of a complex wave modifying structure
JP2003232608A (en) Device and method of measuring non-spherical surface with concave and hologram
KR880003294A (en) Optical playback device
JPS63215902A (en) Position transducer for body
JPS6117905A (en) Thickness measuring instrument
JPS6295430A (en) Large-size plane primary standard hologram interferometer
JPS5658139A (en) Condensing state monitoring device for optical recorder
JPH0914911A (en) Interferometer
JP2005316233A (en) Method and apparatus for forming photonic crystal structure
JPS60253945A (en) Shape measuring instrument
JP2000266636A (en) System and device for inspecting lens
JPH01159683A (en) Parallel light generating device and large-sized plane primary standard hologram interferometer
JPH01143906A (en) Measuring instrument for parallelism between front and rear surfaces of opaque body
Zhang Optical profilometry and its applications
JP2004204538A (en) Road-sign display system and road-sign display method in tunnel
Waddell et al. The role of retro-reflective materials in holography
JPS56140315A (en) Laser scanner
SU1677508A1 (en) Holographic interferometer
JPS60242304A (en) Hologram interferometer for measuring surface shape of large-aperture plane mirror
SU1675661A1 (en) Holographic interferometer
JP2899688B2 (en) Hologram interferometer for cylindrical surface inspection
SU1633272A1 (en) Interferometer
JP3214063B2 (en) Hologram interferometer
JPS61120910A (en) Shape measuring apparatus
SU1295211A1 (en) Interferometer for checking shape of aspherical surfaces

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term