JPS6295413A - Measuring method for crack variation - Google Patents

Measuring method for crack variation

Info

Publication number
JPS6295413A
JPS6295413A JP23586085A JP23586085A JPS6295413A JP S6295413 A JPS6295413 A JP S6295413A JP 23586085 A JP23586085 A JP 23586085A JP 23586085 A JP23586085 A JP 23586085A JP S6295413 A JPS6295413 A JP S6295413A
Authority
JP
Japan
Prior art keywords
measurement
crack
measurement base
measuring
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23586085A
Other languages
Japanese (ja)
Other versions
JPH0439890B2 (en
Inventor
Kiyoshi Mamiya
間宮 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OYO CHISHITSU KK
Original Assignee
OYO CHISHITSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OYO CHISHITSU KK filed Critical OYO CHISHITSU KK
Priority to JP23586085A priority Critical patent/JPS6295413A/en
Publication of JPS6295413A publication Critical patent/JPS6295413A/en
Publication of JPH0439890B2 publication Critical patent/JPH0439890B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To grasp the shape of a crack accurately by measuring gaps among >=3 opposite surfaces by two measurement bases which are fixed to structure lumps bordered with a crack. CONSTITUTION:For example, a construction structure, etc., has a crack 10 and two structure lumps 12 and 14 are bordered with the crack. The 1st gate- shaped measurement base 16 which has an aperture part 18 is fixed tightly to one structure lump 12 with a bolt 16 and the 2nd measurement base 22 which is so structured as to enter the aperture part 18 of the 1st measurement base 16 with a margin is fixed to the other structure lump 14 tightly with a similar bolt, etc. Fitting holes 34x-34z for a displacement measuring instrument are bored in the raised part 24 of the 1st measurement base 16, the vertical piece 30 of the 2nd measurement base 22, and the lateral rack part 26 of the 1st measurement base 16, and tip measurement parts of dial gauges 32x-32z are inserted into those holes.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、各種土木建築構造物等において様々な原因で
発生し進行するクラックの変動を測定する方法に関し、
更に詳しくは、クランクを境とする2つの構造塊のそれ
ぞれに、相異なる3面以上で対向するような測定ベース
を取り付け、それらの間隔を随時測定することによって
クラックの3次元的変動を正確に測定出来る方法に関す
るものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for measuring fluctuations in cracks that occur and progress due to various causes in various civil engineering and architectural structures.
More specifically, by attaching measuring bases that face each other on three or more different sides to each of the two structural blocks bordering the crank, and measuring the distance between them at any time, we can accurately measure three-dimensional fluctuations in cracks. It relates to methods that can be measured.

[従来の技術] 土木あるいは建築等の構造物では、地震、地盤沈下、水
圧、コンクリート等材料の劣化、施工の不備等の理由に
よりクランクが新たに生じたり、既に存在しているクラ
ック(隙間や継目等も含む)が拡大していく場合がある
。これらの変状がどのように進行していくかを監視し構
造物等が破壊に至らないように保守管理することは土木
工学上極めて大きな課題である。そのためにはクラック
の変動を1/100mm程度もしくはそれ以下の極めて
高い精度で測定できるようにすることが肝要である。
[Conventional technology] In structures such as civil engineering or architecture, new cracks may occur due to earthquakes, ground subsidence, water pressure, deterioration of materials such as concrete, or poor construction, or existing cracks (gaps or (including seams, etc.) may expand. Monitoring how these deformations progress and performing maintenance management to prevent structures from being destroyed is an extremely important issue in civil engineering. To this end, it is important to be able to measure crack fluctuations with extremely high accuracy of about 1/100 mm or less.

クランクを境とした2つ構造塊の変動を測定しうる従来
の方法としては、両横造塊にそれぞれ基準となるボルト
等を固着し、それらの間にインパール線等を張設してそ
の長さ変化によりボルトを取り付けた前記2点間の相対
変位を測定する方法がある。この方法は、例えば地滑り
の監視等に利用されている方法と同じ原理に基づいてい
る。
The conventional method for measuring the fluctuation of two structural blocks with the crank as a boundary is to fix bolts, etc. that serve as standards to both horizontal blocks, and to stretch Imphal wire, etc. between them. There is a method of measuring the relative displacement between the two points to which the bolt is attached based on the change in height. This method is based on the same principles as those used, for example, in landslide monitoring.

[発明が解決しようとする問題点コ 土木建築構造物におけるクランクを境とした2つの構造
塊は、クランクが拡大する方向のみに動くものではなく
、3次元的に動くものである。従って構造塊の3次元的
な挙動を正確に知ることが出来なければ構造物の適切な
保守管理は行えない。
[Problems to be Solved by the Invention] The two structural blocks in a civil engineering building structure with a crank as a boundary do not move only in the direction in which the crank expands, but move three-dimensionally. Therefore, if the three-dimensional behavior of the structural block cannot be accurately known, appropriate maintenance and management of the structure cannot be performed.

しかしながら上記のような従来方法では2つの構造塊の
両基準点間の直線的な相対距離の変動しか測定出来ない
。従って構造塊が相対的にどちらの方向へどれだけ変動
したかは計測できない欠点がある。
However, the conventional method described above can only measure linear relative distance fluctuations between both reference points of two structural blocks. Therefore, there is a drawback that it is not possible to measure how much the structural block relatively moves in which direction.

また線材を張設して2点間の相対距離を測定する方法で
は、線材が常時構造物表面に現れているため何かに引っ
掛かる等のトラブルが発生し易いし、管理が面倒である
といった欠点もある。
In addition, the method of measuring the relative distance between two points by stretching wire rods has disadvantages such as the wire rods constantly appearing on the surface of the structure, which tends to cause troubles such as getting caught on something, and that management is troublesome. There is also.

本発明の目的は、上記のような従来技術の欠点を解消し
、クラックを境とする2つの構造塊の3次元的な相対変
位を精度良く測定することができ、しかも長期間にわた
って安定な測定が可能であるようなりラック変動の測定
方法を提供することにある。
The purpose of the present invention is to eliminate the drawbacks of the prior art as described above, to be able to accurately measure the three-dimensional relative displacement of two structural blocks bordering on a crack, and to provide stable measurement over a long period of time. An object of the present invention is to provide a method for measuring rack fluctuations that makes it possible to do so.

[問題点を解決するための手段] 上記のような目的を達成することのできる本発明は、ク
ラック(隙間や継目等も含む。以下同様)を境とする2
つの構造塊のそれぞれに特定形状の測定ベースを固着し
、線材等は一切(史用しない点に特徴がある。
[Means for Solving the Problems] The present invention, which can achieve the above-mentioned objects, has two
A measurement base of a specific shape is fixed to each of the two structural blocks, and the system is characterized by the fact that no wires or the like are used.

ここで一方の測定ベースは凹部もしくは開口部を備えた
形状をなし、それに対して他方の測定ベースは前記第1
の測定ベースの四部もしくは開口部内に余裕をもって進
入しうる構造である。そしてそれら2つの測定ベースは
相異なる3面以上が対向するような関係にあり、前記の
ようにクランクを境とする2つの構造塊に取り付けられ
る。前記3面以上の対向面での間隔を随時測定すること
により2つの構造塊の3次元的な相対変位を求め、クラ
ック変動を測定する。
Here, one measuring base is shaped with a recess or an opening, whereas the other measuring base is shaped like a recess or an opening.
It has a structure that allows it to enter the four parts or openings of the measurement base with plenty of room. The two measurement bases are in a relationship such that three or more different sides face each other, and are attached to two structural blocks with the crank as a boundary, as described above. The three-dimensional relative displacement of the two structural blocks is determined by measuring the spacing between the three or more opposing surfaces at any time, and crack fluctuations are measured.

[作用] 2つの測定ベースはそれぞれクラックを境とする2つの
構造塊に固定されているから、構造塊が変位すればそれ
に伴って測定ベースも変位することになる。2つの測定
ベースは相異なる3面以上で間隔を介して対向している
から、それらの相対距離を求めることによって2つの構
造塊の相対的な3次元的な変動を正確に把握することが
できる。
[Operation] Since the two measurement bases are each fixed to two structural blocks bordered by a crack, if the structural blocks are displaced, the measurement bases will also be displaced accordingly. Since the two measurement bases face each other with a distance between them on three or more different sides, it is possible to accurately grasp the relative three-dimensional fluctuations of the two structural blocks by determining their relative distances. .

クラックを境とする2つの構造塊が相対的に微小距離だ
け変化する場合には、相対的な平行移動的変動のみと考
えられるから、このようにして相異なる3面以上で対向
面の1個所について間隔を測定することによって3次元
的な相対的変位を求めることができる。
If two structural masses bordering on a crack change by a relatively small distance, it can be considered that there is only a relative translational change. The three-dimensional relative displacement can be determined by measuring the distance between the two.

ただし構造塊の変動が捲めて激しい場合にはクランクを
境として2つの構造塊の測定ベース据付面が隆起や沈降
等により角度変位を起こす場合もある。そのような場合
には例えば測定ベースの鉛直線に対する傾きを測定した
りあるいは相対向する面で3点以上異なるポイントで測
定し対向面の間の角度変化も測定出来るようにすれば、
そのような激しい構造塊の動きも正確に把握することが
可能となる。
However, if the fluctuations of the structural blocks are severe, the measurement base installation surfaces of the two structural blocks may undergo angular displacement due to uplift, subsidence, etc. with the crank as the boundary. In such cases, for example, it is possible to measure the inclination of the measurement base with respect to the vertical line, or to measure at three or more different points on opposing surfaces so that changes in angle between the opposing surfaces can also be measured.
It becomes possible to accurately grasp such intense movements of structural blocks.

[実施例コ 第1図は本発明方法を適用したクラックゲージの一実施
例を示す説明図であり、第2図はその測定中の状態を示
す説明図である。土木構造物等にクラック10が存在し
、それを境として2つの構造塊12.14に分かれてい
るとする。
[Embodiment] FIG. 1 is an explanatory view showing an example of a crack gauge to which the method of the present invention is applied, and FIG. 2 is an explanatory view showing the state during measurement. It is assumed that a crack 10 exists in a civil engineering structure or the like, and the crack 10 is divided into two structural blocks 12 and 14 with the crack as a boundary.

一方の構造塊12には開口部18を備えた凹型の第1の
測定ベース16がボルト20により強固に固着され、他
方の構造塊14には前記第1の測定ベース16の開口部
18内に余裕をもって進入するような構造を存する第2
の測定へ一ス22が同様にボルト等により強固に固着さ
れる。これら第1および第2の測定ベース16゜22は
、温度変化の激しい場所に設置する場合にはアンバー合
金やセラミック等の熱膨張係数の小さい材料で製作する
のが好ましい。地下深部のように温度変化の小さい場所
に設置する場合には通常の金属等で製作してもよい。
A concave first measuring base 16 with an opening 18 is firmly fixed to one structural mass 12 by bolts 20, and a concave first measuring base 16 with an opening 18 is firmly fixed to the other structural mass 14 in the opening 18 of the first measuring base 16. The second section has a structure that allows for easy entry.
22 is similarly firmly fixed with bolts or the like. When these first and second measurement bases 16 and 22 are installed in a place where temperature changes are severe, it is preferable to make them from a material with a small coefficient of thermal expansion, such as an amber alloy or ceramic. If it is installed in a place where temperature changes are small, such as deep underground, it may be made of ordinary metal.

第1の測定ベース16は、2つの立設部24の上端を横
架部26で連続した凹型構造をなし、それに対して第2
の測定ベース22は、先端が前記開口部1日内に進入す
るようなL型部28とその先端から立設された垂設片3
0を有するIlI造である。そしてこれら2つの測定ベ
ース16.22は、相異なる3方向で対向する。即ち一
方の立設部24の内面とL型部28の側面、横架部26
の側面と垂設部30の表面、横架部26の下面とL型部
28の上面である。これら3mの対向面について、一方
の部材にそれぞれ変位測定器取り付は部が予め形成され
る。
The first measurement base 16 has a concave structure in which the upper ends of the two upright parts 24 are continuous with a horizontal frame part 26, and the second
The measurement base 22 includes an L-shaped part 28 whose tip enters into the opening within one day, and a hanging piece 3 erected from the tip.
It is of Ill structure with 0. These two measurement bases 16.22 face each other in three different directions. That is, the inner surface of one upright portion 24, the side surface of the L-shaped portion 28, and the horizontal portion 26.
, the surface of the hanging portion 30, the lower surface of the horizontal portion 26, and the upper surface of the L-shaped portion 28. For these 3 m long opposing surfaces, a displacement measuring device mounting section is formed in advance on one of the members.

ここでは第1の測定ベース16の立設部24と、第2の
測定ベース22の垂設片30と、第1の測定ベース16
の横架部26にそれぞれ変位測定器取り付は穴34x、
34y、34zが設けられ、それぞれダイヤルゲージ3
2x。
Here, the upright part 24 of the first measurement base 16, the vertical piece 30 of the second measurement base 22, and the first measurement base 16
The displacement measuring device is installed in the hole 34x on the horizontal frame 26 of the
34y and 34z are provided, each with dial gauge 3
2x.

32)’、32zの先端測定部が貫入するように構成さ
れる。従って上記取り付は穴は第1図で示すxyzの直
角座標軸に対応している。
32)' and 32z are configured to penetrate. Therefore, in the above mounting, the holes correspond to the xyz rectangular coordinate axes shown in FIG.

それぞれの対応する部分にダイヤルゲージを取り付けて
測定している状態を第2図に示す。
Figure 2 shows a situation in which dial gauges are attached to the corresponding parts for measurement.

ダイヤルゲージ32xによって立設部24の内面とL型
部28の側面との間隔(X方向の変位)が測定され、ダ
イヤルゲージ32yによって横架部26の側面と垂設片
30の表面との間の間隔(X方向の変位)が測定され、
更にダイヤルゲージ32zによって横架部26の下面と
L型部2日の上面との間の間隔(2方向の変位)が測定
されることになる。従って経時的に2つの構造塊12.
14が相対的な変位を生じた時に、クラックの3次元的
な変動を正確に測定することが可能となるのである。
The distance between the inner surface of the upright portion 24 and the side surface of the L-shaped portion 28 (displacement in the X direction) is measured by the dial gauge 32x, and the distance between the side surface of the horizontal portion 26 and the surface of the hanging piece 30 is measured by the dial gauge 32y. The interval (displacement in the X direction) is measured,
Further, the distance (displacement in two directions) between the lower surface of the horizontal frame section 26 and the upper surface of the L-shaped section 2 is measured by the dial gauge 32z. Therefore, over time two structural masses12.
14 causes relative displacement, it becomes possible to accurately measure the three-dimensional variation of the crack.

クラック変動が比較的小さい場合にはこのような測定で
十分正確に2つの構造塊の相対的な変動を求めることが
できる。しかしクラックが更に進行し2つの構造塊の面
、即ち2つの測定ベースの取り付は面が相対的に角度変
位を生じるように変動した場合には、その回転角度の影
響によって測定に誤差が生じる。そのような場合には第
2図にも示されているように各測定へ一ス14.22に
角度検出機構36を設けておき、鉛直方向に対する各測
定ベース面の傾きを予め測定しておけば、両測定ベース
の設置面の角変変位も把握することができ、それによっ
て正確な3次元的変動を求めることが可能である。
If the crack fluctuations are relatively small, such measurements can be used to determine the relative fluctuations of the two structural masses with sufficient accuracy. However, if the crack progresses further and the surfaces of the two structural blocks, that is, the mounting surfaces of the two measurement bases, change so as to cause a relative angular displacement, errors in measurement will occur due to the influence of the rotation angle. . In such a case, as shown in Fig. 2, an angle detection mechanism 36 should be provided at one step 14.22 for each measurement, and the inclination of each measurement base surface with respect to the vertical direction should be measured in advance. For example, it is possible to grasp the angular displacement of the installation surfaces of both measurement bases, thereby making it possible to obtain accurate three-dimensional fluctuations.

第3図は本発明を適用したタラツクゲージの他の実施例
を示す説明図であり、第4図A、第4図Bはそれぞれそ
の正面図および側面図である。基本的な考え方は前記実
施例の場合と同様である。クラック10を境とする一方
の構造塊12ζこ第1の測定ベース42が固着され、他
方の構造塊14には第2の測定ベース44が固着される
。ここでは耐候性を有する接着物質46により強固に固
着されている。第1の測定へ一ス42は構造塊12に固
着された立設部48と、その側面から延びる側板50お
よびそれらを覆うように張り出している天板52が連続
一体となり、それらによって凹部が形成される構造であ
り、それに対して第2の測定ベース44はその凹部内に
余裕をもって収まるような直方体状のブロックである。
FIG. 3 is an explanatory view showing another embodiment of a tarmac gauge to which the present invention is applied, and FIGS. 4A and 4B are a front view and a side view thereof, respectively. The basic idea is the same as in the previous embodiment. A first measurement base 42 is fixed to one structural block 12ζ bordering on the crack 10, and a second measurement base 44 is fixed to the other structural block 14. Here, it is firmly fixed with a weather-resistant adhesive material 46. In the first measurement step 42, an upright part 48 fixed to the structural block 12, a side plate 50 extending from the side surface thereof, and a top plate 52 projecting to cover them are continuously integrated, and a concave part is formed by them. In contrast, the second measurement base 44 is a rectangular parallelepiped block that can fit comfortably within the recess.

従ってここでは第1の測定ベース42を構成する3つの
板状部分の内面と第2の測定ベース44の外面とによっ
て相異なる3方向で対向することになる。そしてこの実
施例が前記実施例と顕著に相違する点は、各対向面とな
る部分にそれぞれ一直線上には並ばない3点以上の変位
測定器取り付は穴54が設けられている点である。
Therefore, in this case, the inner surfaces of the three plate-shaped portions constituting the first measurement base 42 and the outer surface of the second measurement base 44 face each other in three different directions. This embodiment is significantly different from the previous embodiment in that holes 54 are provided for mounting displacement measuring devices at three or more points that are not aligned in a straight line on each opposing surface. .

このような構成とすると、xyzの3方向について各3
点ずつ間隔を測定でき、対向面の間隔のみならず角度変
位をも測定することが可能となる。従って例えば第5図
に示すようにクラックが進行して2つの構造塊が単なる
平行移動的変動ではなく角度変化を伴うような変動を起
こしたとしても、第6図に示すように各対向面について
3点以上でダイヤルゲージ32を挿入して間隔を測定す
ることにより、対向面間の間隔を角度変動を含めて求め
ることができ、あらゆる変化が測定できることになる。
With such a configuration, 3
The distance can be measured point by point, making it possible to measure not only the distance between opposing surfaces but also the angular displacement. Therefore, for example, even if a crack progresses as shown in Fig. 5 and the two structural blocks change not only in parallel but also in an angular manner, as shown in Fig. 6, each of the opposing surfaces By inserting the dial gauge 32 at three or more points and measuring the distance, the distance between the facing surfaces can be determined including angular fluctuations, and all changes can be measured.

この場合には特に第2図に示すような角度測定機構を設
ける必要がなく、変位測定器のみによって角度変化も測
定できるため測定ベースの構造が簡単となり極めて好ま
しいものと言える。
In this case, there is no need to provide an angle measuring mechanism as shown in FIG. 2, and changes in angle can be measured using only a displacement measuring device, so the structure of the measuring base is simple and can be said to be extremely preferable.

以上本発明の2つの実施例について詳述したが、本発明
はこのような構成のみに限定されるものでないこと無論
である。第1の測定ベースおよび第2の測定ベースの形
状は種々変更できることは言うまでもない。例えば第1
図において、第1の測定ベースは門型構造でなく逆り字
型構造でもよいし、口の字型構造であってもよい。要す
るに方向の異なる3面以上で対向するような部分を有す
る測定ベースの組合せとすればよい。変位測定器として
はダイヤルゲージの他、作動トランスや光学的な変位検
出計等も利用できる。何れにしても各測定ベースにおけ
る測定個所さえ予め定めておけば、1個の携帯式の各種
変位測定器を持ち込み順次計測することによって極めて
f’J単にクラック変動の測定が可能である。
Although two embodiments of the present invention have been described in detail above, it goes without saying that the present invention is not limited to only such configurations. It goes without saying that the shapes of the first measurement base and the second measurement base can be changed in various ways. For example, the first
In the figure, the first measurement base may not have a gate-shaped structure but may have an inverted-shaped structure or a mouth-shaped structure. In short, it is sufficient to use a combination of measurement bases having portions that face each other in three or more different directions. As a displacement measuring device, in addition to a dial gauge, an actuating transformer, an optical displacement detector, etc. can also be used. In any case, as long as the measurement points on each measurement base are determined in advance, it is possible to simply measure crack fluctuations by bringing in one portable displacement measuring device and sequentially measuring the displacement.

[発明の効果] 本発明は上記のようにクラ、りを境とする2つの構造塊
にそれぞれ固着した2つの測定へ一スによって相対向す
る3面以上において対向面の間隔を測定するよう構成し
たから、2つの構造塊の3次元的な相対変位を精度良く
測定することが可能であり、クランクの変状を正確に把
握でき、クランクに伴う土木建築構造物の破を員や破壊
等を防止できるから保守管理を適切に行なえるという優
れた効果がある。
[Effects of the Invention] As described above, the present invention is configured to measure the distance between opposing surfaces on three or more opposing surfaces with one pass to two measuring blocks each fixed to two structural blocks bounded by a wall and a wall. Therefore, it is possible to accurately measure the three-dimensional relative displacement of two structural blocks, and it is possible to accurately grasp the deformation of the crank, and to prevent damage to civil engineering and architectural structures caused by the crank. Since it can be prevented, maintenance management can be carried out appropriately, which is an excellent effect.

また本発明では2個の測定ベースを取り付けておくだけ
であるから、長期間にわたって安定な測定が可能であり
測定上トラブルが生じ難いし、測定ベースの保守も殆ど
不要であり、そのため費用が安くて済み、更には測定に
熟練を要しない等数々の優れた効果を有するものである
In addition, since the present invention only requires two measurement bases to be installed, stable measurement is possible over a long period of time, and measurement troubles are unlikely to occur. Maintenance of the measurement bases is also almost unnecessary, so the cost is low. This method has many excellent effects, such as not requiring any skill for measurement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用したクランクゲージの一実施例を
示す説明図、第2図はそれによる測定状況を示す説明図
、第3図は本発明によるタラツクゲージの他の実施例を
示す説明図、第4図Aはその正面図、第4図Bはその側
面図、第5図はクランクが拡大してきた時の状態を示す
説明図、第6図はその時の間隔測定状況を示す説明図で
ある。 10・・・クラック、12.14・・・構造塊、16・
・・第1の測定ベース、18・・・開口部、22・・・
第2の測定ベース、32x、32y、32z・・・ダイ
ヤルゲージ、34x、34y、34z・・・変位測定器
の取り付は用の穴。
Fig. 1 is an explanatory diagram showing one embodiment of a crank gauge to which the present invention is applied, Fig. 2 is an explanatory diagram showing a measurement situation using the crank gauge, and Fig. 3 is an explanatory diagram showing another embodiment of the tartar gauge according to the present invention. , Figure 4A is its front view, Figure 4B is its side view, Figure 5 is an explanatory diagram showing the state when the crank has expanded, and Figure 6 is an explanatory diagram showing the interval measurement situation at that time. be. 10... Crack, 12.14... Structural block, 16.
...first measurement base, 18...opening, 22...
Second measurement base, 32x, 32y, 32z...dial gauge, 34x, 34y, 34z...holes for mounting the displacement measuring device.

Claims (1)

【特許請求の範囲】[Claims] 1、凹部もしくは開口部を備えた第1の測定ベースをク
ラックを境とする一方の構造塊に固着し、その凹部もし
くは開口部内に余裕をもって進入しうる構造の第2の測
定ベースを、相異なる3面以上で対向するようにクラッ
クを境とする他方の構造塊に固着しておき、前記3面以
上で両測定ベース対向面の間隔を随時測定することによ
り2つの構造塊の3次元的相対変位を求めることを特徴
とするクラック変動の測定方法。
1. A first measurement base with a recess or opening is fixed to one of the structural blocks bordering the crack, and a second measurement base with a structure that can enter the recess or opening with ample space is attached to a different one. The three-dimensional relative relationship between the two structural blocks can be determined by fixing them to the other structural block with a crack as the boundary so that they face each other on three or more sides, and measuring the distance between the two measuring bases at any time on the three or more sides. A method for measuring crack fluctuations characterized by determining displacement.
JP23586085A 1985-10-22 1985-10-22 Measuring method for crack variation Granted JPS6295413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23586085A JPS6295413A (en) 1985-10-22 1985-10-22 Measuring method for crack variation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23586085A JPS6295413A (en) 1985-10-22 1985-10-22 Measuring method for crack variation

Publications (2)

Publication Number Publication Date
JPS6295413A true JPS6295413A (en) 1987-05-01
JPH0439890B2 JPH0439890B2 (en) 1992-07-01

Family

ID=16992320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23586085A Granted JPS6295413A (en) 1985-10-22 1985-10-22 Measuring method for crack variation

Country Status (1)

Country Link
JP (1) JPS6295413A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114045883A (en) * 2021-10-15 2022-02-15 河海大学 Rock slope surface soil body fracture network risk evaluation method based on soil body drying test

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60235859A (en) * 1984-04-28 1985-11-22 バイエル・アクチエンゲゼルシヤフト Dispersion composition, manufacture and use

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60235859A (en) * 1984-04-28 1985-11-22 バイエル・アクチエンゲゼルシヤフト Dispersion composition, manufacture and use

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114045883A (en) * 2021-10-15 2022-02-15 河海大学 Rock slope surface soil body fracture network risk evaluation method based on soil body drying test
CN114045883B (en) * 2021-10-15 2022-11-18 河海大学 Rock slope surface soil body fracture network risk evaluation method based on soil body drying test

Also Published As

Publication number Publication date
JPH0439890B2 (en) 1992-07-01

Similar Documents

Publication Publication Date Title
CN103913145A (en) Crack opening two-direction deformation monitoring structure and measurement method
CN103147466B (en) Automatic inclination measurement device for precast pile with rectangular or hollow rectangular cross section
CN205246041U (en) Three -dimensional joint measurement device of displacement sensor parallel placement
JP2639254B2 (en) Automatic measurement method for maintenance of seismically isolated buildings
CN109556524A (en) Fracture width based on Fiber Bragg Grating technology monitors system and method
KR100430106B1 (en) Device for testing crack progress with vernier type
JPS6295413A (en) Measuring method for crack variation
CN111608213A (en) Method and device for measuring horizontal displacement of foundation pit supporting pile
KR20080035246A (en) Equipment for measuring displacement for construction using optical fiber sensor and method thereof
US4150490A (en) Relative displacement measurement apparatus
RU2330238C2 (en) Device and method for monitoring technical condition of tunnels
JPS6295412A (en) Crack gauge
CN206556576U (en) A kind of Three-direction gap detector for monitoring concrete structure relative deformation
Sunley The experimental investigation of defects
CN212772499U (en) Foundation ditch fender pile horizontal displacement's measuring device
CN207991553U (en) A kind of measuring device in gate recess installation process
KR101266159B1 (en) Measuring apparatus for displacement and measuring system using the same
JP3120806U (en) Rubber thickness measuring device
CN211012819U (en) Crack three-dimensional relative displacement measuring device
JP2001289616A (en) Optical fiber displacement sensor and displacement measuring method using the same
KR102663363B1 (en) Apparatus for measuring out-of plane displacement of wall and method therefor
CN217718089U (en) Laser ranging sensor mounting bracket for orthogonal two-way monitoring
KR100497804B1 (en) Apparatus for measuring position of anchor bolt and level for installing struts of sound absorbing wall
CN210892929U (en) Three-dimensional relative displacement measuring device for deformation joint of structure
Balletti et al. Integrated topographical and inclinometric procedures for long term monitoring of complex civil structures

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees