JPH0439890B2 - - Google Patents

Info

Publication number
JPH0439890B2
JPH0439890B2 JP60235860A JP23586085A JPH0439890B2 JP H0439890 B2 JPH0439890 B2 JP H0439890B2 JP 60235860 A JP60235860 A JP 60235860A JP 23586085 A JP23586085 A JP 23586085A JP H0439890 B2 JPH0439890 B2 JP H0439890B2
Authority
JP
Japan
Prior art keywords
measurement
crack
measuring
structural
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60235860A
Other languages
Japanese (ja)
Other versions
JPS6295413A (en
Inventor
Kyoshi Mamya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OYO CHISHITSU KK
Original Assignee
OYO CHISHITSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OYO CHISHITSU KK filed Critical OYO CHISHITSU KK
Priority to JP23586085A priority Critical patent/JPS6295413A/en
Publication of JPS6295413A publication Critical patent/JPS6295413A/en
Publication of JPH0439890B2 publication Critical patent/JPH0439890B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、各種土木建築構造物等において様々
な原因で発生し進行するクラツクの変動を測定す
る方法に関し、更に詳しくは、クラツクを境とす
る2つの構造塊のそれぞれに、相異なる3面以上
で対向するような測定ベースを取り付け、それら
の間隔を随時測定することによつてクラツクの3
次元的変動を正確に測定出来る方法に関するもの
である。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for measuring changes in cracks that occur and progress due to various causes in various civil engineering and building structures. By attaching measurement bases that face each other on three or more different sides to each of the two structural blocks, and measuring the distance between them at any time,
It relates to a method that can accurately measure dimensional variations.

[従来の技術] 土木あるいは建築等の構造物では、地震、地盤
沈下、水圧、コンクリート等材料の劣化、施工の
不備等の理由によりクラツクが新たに生じたり、
既に存在しているクラツク(隙間や継目等も含
む)が拡大していく場合がある。これらの変状が
どのように進行していくかを監視し構造物等が破
壊に至らないように保守管理することは土木工学
上極めて大きな課題である。そのためにはクラツ
クの変動を1/100mm程度もしくはそれ以下の極め
て高い精度で測定できるようにすることが肝要で
ある。
[Prior Art] In civil engineering or architectural structures, new cracks may occur due to earthquakes, ground subsidence, water pressure, deterioration of materials such as concrete, or poor construction.
Already existing cracks (including gaps, seams, etc.) may expand. Monitoring how these deformations progress and performing maintenance management to prevent structures from being destroyed is an extremely important issue in civil engineering. To this end, it is important to be able to measure crack fluctuations with extremely high accuracy of about 1/100 mm or less.

クラツクを境とした2つ構造塊の変動を測定し
うる従来の方法としては、両構造塊にそれぞれ基
準となるボルト等を固着し、それらの間にインバ
ール線等を張設してその長さ変化によりボルトを
取り付けた前記2点間の相対変位を測定する方法
がある。この方法は、例えば地滑りの監視等に利
用されている方法と同じ原理に基づいている。
The conventional method for measuring the fluctuation of two structural blocks with a crack as a boundary is to fix a reference bolt, etc., to each structural block, and to stretch an Invar wire, etc. between them, and measure its length. There is a method of measuring the relative displacement between the two points to which bolts are attached due to changes. This method is based on the same principles as those used, for example, in landslide monitoring.

[発明が解決しようとする問題点] 土木建築構造物におけるクラツクを境とした2
つの構造塊は、クラツクが拡大する方向のみに動
くものではなく、3次元的に働くものである。従
つて構造塊の3次元的な挙動を正確に知ることが
出来なければ構造物の適切な保守管理は行えな
い。
[Problems to be solved by the invention] Problems with cracks in civil engineering and architectural structures 2
The two structural blocks do not move only in the direction in which the crack expands, but work three-dimensionally. Therefore, if the three-dimensional behavior of the structural block cannot be accurately known, appropriate maintenance and management of the structure cannot be performed.

しかしながら上記のような従来技術では2つの
構造塊の両基準点間の直線的な相対距離の変動し
か測定出来ない。従つて構造塊が相対的にどちら
の方向へどれだけ変動したかは計測できない欠点
がある。
However, the conventional techniques described above can only measure linear relative distance fluctuations between both reference points of two structural blocks. Therefore, there is a drawback that it is not possible to measure how much the structural block relatively moves in which direction.

また線材を張設して2点間の相対距離を測定す
る方法では、線材が常時構造物表面に現れている
ため何かに引つ掛かる等のトラブルが発生し易い
し、管理が面倒であるといつた欠点もある。
In addition, with the method of measuring the relative distance between two points by stretching a wire, the wire is always exposed on the surface of the structure, so problems such as getting caught on something are likely to occur, and management is troublesome. There are also some drawbacks.

本発明の目的は、上記のような従来技術の欠点
を解消し、クラツクを境とする2つの構造塊の3
次元的な相対変位を精度良く測定することがで
き、しかも長期間にわたつて安定な測定が可能で
あるようなクラツク変動の測定方法を提供するこ
とにある。
It is an object of the present invention to solve the above-mentioned drawbacks of the prior art and to
It is an object of the present invention to provide a method for measuring crack fluctuations that can measure dimensional relative displacement with high precision and can perform stable measurements over a long period of time.

[問題点を解決するための手段] 上記のような目的を達成することのできる本発
明は、クラツク(隙間や継目等も含む。以下同
様)を境とする2つの構造塊のそれぞれに特定形
状の測定ベースを固着し、線材等は一切使用しな
い点に特徴がある。
[Means for Solving the Problems] The present invention, which can achieve the above objects, has a specific shape for each of two structural blocks bordering on cracks (including gaps, joints, etc., hereinafter the same). The unique feature is that the measurement base is fixed and no wires are used.

ここで一方の測定ベースは凹部もしくは開口部
を備えた形状をなし、それに対して他方の測定ベ
ースは前記第1の測定ベースの凹部もしくは開口
部内に余裕をもつて進入しうる構造である。そし
てそれら2つの測定ベースは相異なる3面以上が
対向するような関係にあり、前記のようにクラツ
クを境とする2つの構造塊に取り付けられる。前
記3面以上の対向面での間隔を随時測定すること
により2つの構造塊の3次元的な相対変位を求
め、クラツク変動を測定する。
Here, one measurement base has a shape with a recess or an opening, whereas the other measurement base has a structure that allows it to enter the recess or opening of the first measurement base with a margin. The two measurement bases are in a relationship such that three or more different sides face each other, and are attached to two structural blocks with the crack as a boundary, as described above. The three-dimensional relative displacement of the two structural blocks is determined by measuring the distance between the three or more opposing surfaces at any time, and the crack fluctuation is measured.

[作用] 2つの測定ベースはそれぞれクラツクを境とす
る2つの構造塊に固定されているから、構造塊が
変位すればそれに伴つて測定ベースも変位するこ
とになる。2つの測定ベースは相異なる3面以上
で間隔を介して対向しているから、それらの相対
距離を求めることによつて2つの構造塊の相対的
な3次元的な変動を正確に把握することができ
る。
[Operation] Since the two measurement bases are each fixed to two structural blocks with cracks as boundaries, if the structural blocks are displaced, the measurement base will also be displaced accordingly. Since the two measurement bases face each other with a distance between them on three or more different sides, it is possible to accurately grasp the relative three-dimensional fluctuations of the two structural blocks by determining their relative distances. I can do it.

クラツクを境とする2つの構造塊が相対的に微
小距離だけ変化する場合には、相対的な平行移動
的変動のみと考えられるから、このようにして相
異なる3面以上で対向面の1個所について間隔を
測定することによつて3次元的な相対的変位を求
めることができる。
If two structural blocks bordering on a crack change by a relatively small distance, it can be considered that there is only a relative translational change. Three-dimensional relative displacement can be determined by measuring the distance between the two.

ただし構造塊の変動が極めて激しい場合にはク
ラツクを境として2つの構造塊の測定ベース据府
面が隆起や沈降等により角度変位を起こす場合も
ある。そのような場合には例えば測定ベースの鉛
直線に対する傾きを測定したりあるいは相対向す
る面で3点以上異なるポイントで測定し対向面の
間の角度変化も測定出来るようにすれば、そのよ
うな激しい構造塊の動きも正確に把握することが
可能となる。
However, if the fluctuations of the structural blocks are extremely severe, the measurement base surfaces of the two structural blocks may undergo angular displacement due to uplift, subsidence, etc. with the crack as the boundary. In such cases, for example, it is possible to measure the inclination of the measurement base with respect to the vertical line, or measure at three or more different points on opposing surfaces so that changes in angle between the opposing surfaces can also be measured. It becomes possible to accurately grasp even the violent movements of structural blocks.

[実施例] 第1図は本発明方法を適用したクラツクゲージ
の一実施例を示す説明図であり、第2図はその測
定中の状態を示す説明図である。土木構造物等に
クラツク10が存在し、それを境として2つの構
造塊12,14に分かれているとする。一方の構
造塊12には凹部18を備えた門型の第1の測定
ベース16がボルト20により強固に固着され、
他方の構造塊14には前記第1の測定ベース16
の開口部18内に余裕をもつて進入するような構
造を有する第2の測定ベース22が同様にボルト
等により強固に固着される。これら第1および第
2の測定ベース16,22は、温度変化の激しい
場所に設置する場合にはアンバー合金やセラミツ
ク等の熱膨張係数の小さい材料で製作するのが好
ましい。地下深部のように温度変化の小さい場所
に設置する場合には通常の金属等で製作してもよ
い。
[Example] Fig. 1 is an explanatory view showing an example of a crack gauge to which the method of the present invention is applied, and Fig. 2 is an explanatory view showing the state during measurement. It is assumed that a crack 10 exists in a civil engineering structure or the like, and the crack 10 is divided into two structural blocks 12 and 14 with the crack as a boundary. A gate-shaped first measurement base 16 with a recess 18 is firmly fixed to one structural block 12 by bolts 20.
The first measurement base 16 is attached to the other structural block 14.
A second measuring base 22, which has a structure that allows it to enter the opening 18 with a margin, is similarly firmly fixed with bolts or the like. When these first and second measurement bases 16, 22 are installed in a place where temperature changes are severe, it is preferable to make them from a material with a small coefficient of thermal expansion, such as an amber alloy or ceramic. If it is installed in a place where temperature changes are small, such as deep underground, it may be made of ordinary metal.

第1の測定ベース16は、2つの立設部24の
上端を横架部26で連続した門型構造をなし、そ
れに対して第2の測定ベース22は、先端が前記
開口部18内に進入するようなL型部28とその
先端から立設された垂設片30を有する構造であ
る。そしてこれら2つの測定ベース16,22
は、相異なる3方向で対向する。即ち一方の立設
部24の内面とL型部28の側面、横架部26の
側面と垂設部30の表面、横架部26の下面とL
型部28の上面である。これら3組の対向面につ
いて、一方の部材にそれぞれ変位測定器取り付け
部が予め形成される。
The first measurement base 16 has a gate-shaped structure in which the upper ends of two upright parts 24 are connected to a horizontal frame part 26, whereas the second measurement base 22 has a tip end that enters the opening 18. It has a structure including an L-shaped part 28 and a hanging piece 30 erected from the tip thereof. and these two measurement bases 16, 22
are opposed in three different directions. That is, the inner surface of one of the upright portions 24 and the side surface of the L-shaped portion 28, the side surface of the horizontal portion 26 and the surface of the vertical portion 30, and the lower surface of the horizontal portion 26 and the L-shaped portion 28.
This is the upper surface of the mold part 28. Regarding these three sets of opposing surfaces, a displacement measuring device mounting portion is formed in advance on one member, respectively.

ここでは第1の測定ベース16の立設部24
と、第2の測定ベース22の垂設片30と、第1
の測定ベース16の横架部26にそれぞれ変位測
定器取り付け穴34x,34y,34zが設けら
れ、それぞれダイヤルゲージ32x,32y,3
2zの先端測定部が貫入するように構成される。
従つて上記取り付け穴は第1図で示すxyzの直角
座標軸に対応している。
Here, the upright portion 24 of the first measurement base 16
, the vertical piece 30 of the second measurement base 22, and the first
Displacement measuring device mounting holes 34x, 34y, 34z are provided in the horizontal frame 26 of the measurement base 16, respectively, and dial gauges 32x, 32y, 3 are provided respectively.
The tip measurement part of 2z is configured to penetrate.
The mounting holes therefore correspond to the xyz rectangular coordinate axes shown in FIG.

それぞれの対応にする部分にダイヤルゲージを
取り付けて測定している状態を第2図に示す。ダ
イヤルゲージ32xによつて立設部24の内面と
L型部28の側面との間隔(x方向の変位)が測
定され、ダイヤルゲージ32yによつて横架部2
6の側面と垂設片30の表面との間の間隔(y方
向の変位)が測定され、更にダイヤルゲージ32
zによつて横架部26の下面とL型部28の上面
との間の間隔(z方向の変位)が測定されること
になる。従つて経時的に2つの構造塊12,14
が相対的な変位を生じた時に、クラツクの3次元
的な変動を正確に測定することが可能となるので
ある。
Figure 2 shows the state in which dial gauges are attached to each corresponding part and are being measured. The distance between the inner surface of the upright portion 24 and the side surface of the L-shaped portion 28 (displacement in the x direction) is measured by the dial gauge 32
6 and the surface of the hanging piece 30 (displacement in the y direction) is measured, and the dial gauge 32 is also measured.
By z, the distance (displacement in the z direction) between the lower surface of the horizontal portion 26 and the upper surface of the L-shaped portion 28 is measured. Therefore, over time two structural masses 12, 14
When a relative displacement occurs, it becomes possible to accurately measure three-dimensional fluctuations in the crack.

クラツク変動が比較的小さい場合にはこのよう
な測定で十分正確に2つの構造塊の相対的な変動
を求めることができる。しかしクラツクが更に進
行し2つの構造塊の面、即ち2つの測定ベースの
取り付け面が相対的に角度変位を生じるように変
動した場合には、その回転角度の影響によつて測
定に誤差が生じる。そのような場合には第2図に
も示されているように各測定ベース14,22に
角度検出機構36を設けておき、鉛直方向に対す
る各測定ベース面の傾きを予め測定しておけば、
両測定ベースの設置面の角度変位も把握すること
ができ、それによつて正確な3次元的変動を求め
ることが可能である。
If the crack fluctuations are relatively small, such a measurement is sufficient to determine the relative fluctuations of the two structural masses with sufficient accuracy. However, if the crack progresses further and the surfaces of the two structural blocks, that is, the mounting surfaces of the two measurement bases, move so as to cause a relative angular displacement, errors will occur in the measurement due to the influence of the rotation angle. . In such a case, as shown in FIG. 2, each measurement base 14, 22 is provided with an angle detection mechanism 36, and the inclination of each measurement base surface with respect to the vertical direction is measured in advance.
The angular displacement of the installation surfaces of both measurement bases can also be ascertained, thereby making it possible to determine accurate three-dimensional fluctuations.

第3図は本発明を適用したクラツクゲージの他
の実施例を示す説明図であり、第4図A、第4図
Bはそれぞれその正面図および側面図である。基
本的な考え方は前記実施例の場合と同様である。
クラツク10を境とする一方の構造塊12に第1
の測定ベース42が固着され、他方の構造塊14
には第2の測定ベース44が固着される。ここで
は耐候性を有する接着物質46により強固に固着
されている。第1の測定ベース42は構造塊12
に固着された立設部48と、その側面から延びる
側板50およびそれらを覆うように張り出してい
る天板52が連続一体となり、それらによつて凹
部が形成される構造でありそれに対して第2の測
定ベース44はその凹部内に余裕をもつて収まる
ような直方体状のブロツクである。従つてここで
は第1の測定ベース42を構成する3つの板状部
分の内面と第2の測定ベース44の外面とによつ
て相異なる3方向で対向することになる。そして
この実施例が前記実施例と顕著に相違する点は、
各対向面となる部分にそれぞれ一直線上には並ば
ない3点以上の変位測定器取り付け穴54が設け
られている点である。
FIG. 3 is an explanatory diagram showing another embodiment of a crack gauge to which the present invention is applied, and FIGS. 4A and 4B are a front view and a side view thereof, respectively. The basic idea is the same as in the previous embodiment.
The first structural block 12 has a crack 10 as its boundary.
The measuring base 42 of the other structural mass 14 is fixed to the measuring base 42 of the
A second measurement base 44 is fixed to. Here, it is firmly fixed with a weather-resistant adhesive material 46. The first measurement base 42 is the structural mass 12
The upright part 48 fixed to the side plate 50, the side plate 50 extending from the side surface, and the top plate 52 projecting to cover them are continuous and integral, and a concave part is formed by them. The measurement base 44 is a rectangular parallelepiped block that can fit comfortably within the recess. Therefore, in this case, the inner surfaces of the three plate-shaped portions constituting the first measurement base 42 and the outer surface of the second measurement base 44 face each other in three different directions. This example is significantly different from the previous example in that:
The point is that three or more displacement measuring device mounting holes 54, which are not lined up in a straight line, are provided on each opposing surface.

このような構成とすると、xyzの3方向につい
て各3点ずつ間隔を測定でき、対向面の間隔のみ
ならず角度変位をも測定することが可能となる。
従つて例えば第5図に示すようにクラツクが進行
して2つの構造塊が単なる平行移動的変動ではな
く角度変化を伴うような変動を起こしたとして
も、第6図に示すように各対向面について3点以
上でダイヤルゲージ32を挿入して間隔を測定す
ることにより、対向面間の間隔を角度変動を含め
て求めることができ、あらゆる変化が測定できる
ことになる。この場合には特に第2図に示すよう
な角度測定機構を設ける必要がなく、変位測定器
のみによつて角度変化も測定できるため測定ベー
スの構造が簡単となり極めて好ましいものと言え
る。
With this configuration, the distances can be measured at three points in each of the three directions x, y, and z, making it possible to measure not only the distance between the opposing surfaces but also the angular displacement.
Therefore, for example, even if the crack progresses as shown in FIG. 5 and the two structural blocks undergo a change that involves an angular change rather than a simple translational change, each opposing surface will change as shown in FIG. By inserting the dial gauge 32 at three or more points and measuring the distance, the distance between the facing surfaces can be determined including angular fluctuations, and all changes can be measured. In this case, there is no need to provide an angle measuring mechanism as shown in FIG. 2, and changes in angle can be measured using only the displacement measuring device, so the structure of the measuring base is simple and can be said to be extremely preferable.

以上本発明の2つの実施例について詳述した
が、本発明はこのような構成のみに限定されるも
のでないこと無論である。第1の測定ベースおよ
び第2の測定ベースの形状は種々変更できること
は言うまでもない。例えば第1図において、第1
の測定ベースは門型構造でなく逆L字型構造でも
よいし、口の字型構造であつてもよい。要するに
方向の異なる3面以上で対向するような部分を有
する測定ベースの組合せとすればよい。変位測定
器としてダイヤルゲージの他、作動トランスや光
学的な変位検出計等も利用できる。何れにしても
各測定ベースにおける測定個所さえ予め定めてお
けば、1個の携帯式の各種変位測定器を持ち込み
順次計測することによつて極めて簡単にクラツク
変動の測定が可能である。
Although two embodiments of the present invention have been described in detail above, it goes without saying that the present invention is not limited to only such configurations. It goes without saying that the shapes of the first measurement base and the second measurement base can be changed in various ways. For example, in Figure 1, the first
The measurement base may have an inverted L-shaped structure instead of a gate-shaped structure, or a mouth-shaped structure. In short, it is sufficient to use a combination of measurement bases having portions that face each other in three or more different directions. In addition to dial gauges, actuating transformers and optical displacement detectors can also be used as displacement measuring instruments. In any case, as long as the measurement points on each measurement base are determined in advance, crack fluctuations can be measured very easily by bringing in one portable displacement measuring device and sequentially measuring it.

[発明の効果] 本発明は上記のようにクラツクを境とする2つ
の構造塊にそれぞれ固着した2つの測定ベースに
よつて相対向する3面以上において対向面の間隔
を測定するよう構成したから、2つの構造塊の3
次元的な相対変位を精度良く測定することが可能
であり、クラツクの変状を正確に把握でき、クラ
ツクに伴う土木建築構造物の破損や破壊等を防止
できるから保守管理を適切に行なえるという優れ
た効果がある。
[Effects of the Invention] As described above, the present invention is configured to measure the distance between opposing surfaces on three or more opposing surfaces using two measuring bases each fixed to two structural blocks bordering on a crack. , 3 of the two structural blocks
It is possible to measure relative dimensional displacement with high accuracy, accurately grasp the deformation of cracks, and prevent damage and destruction of civil engineering and building structures caused by cracks, allowing for appropriate maintenance management. It has excellent effects.

また本発明では2個の測定ベースを取り付けて
おくだけであるから、長時間にわたつて安定な測
定が可能であり測定上トラブルが生じ難いし、測
定ベースの保守も殆ど不要であり、そのため費用
が安くて済み、更には測定に熟練を要しない等
数々の優れた効果を有するものである。
In addition, since the present invention only requires two measurement bases to be installed, stable measurement is possible over a long period of time, and measurement troubles are unlikely to occur, and maintenance of the measurement bases is almost unnecessary, which reduces costs. It has many excellent effects, such as being inexpensive and requiring no skill for measurement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用したクラツクゲージの一
実施例を示す説明図、第2図はそれによる測定状
況を示す説明図、第3図は本発明によるクラツク
ゲージの他の実施例を示す説明図、第4図Aはそ
の正面図、第4図Bはその側面図、第5図はクラ
ツクが拡大してきた時の状態を示す説明図、第6
図はその時の間隔測定状況を示す説明図である。 10……クラツク、12,14……構造塊、1
6……第1の測定ベース、18……開口部、22
……第2の測定ベース、32x,32y,32z
……ダイヤルゲージ、34x,34y,34z…
…変位測定器の取り付け用の穴。
FIG. 1 is an explanatory diagram showing one embodiment of a crack gauge to which the present invention is applied, FIG. 2 is an explanatory diagram showing a measurement situation using the same, and FIG. 3 is an explanatory diagram showing another embodiment of the crack gauge according to the present invention. Figure 4A is a front view, Figure 4B is a side view, Figure 5 is an explanatory diagram showing the state when the crack has expanded, and Figure 6
The figure is an explanatory diagram showing the interval measurement situation at that time. 10...Crack, 12,14...Structural block, 1
6... First measurement base, 18... Opening, 22
...Second measurement base, 32x, 32y, 32z
...Dial gauge, 34x, 34y, 34z...
...Hole for mounting a displacement measuring device.

Claims (1)

【特許請求の範囲】[Claims] 1 凹部もしくは開口部を備えた第1の測定ベー
スをクラツクを境とする一方の構造塊に固着し、
その凹部もしくは開口部内に余裕をもつて進入し
うる構造の第2の測定ベースを、相異なる3面以
上で対向するようにクラツクを境とする他方の構
造塊に固着しておき、前記3面以上で両測定ベー
ス対向面の間隔を随時測定することにより2つの
構造塊の3次元的相対変位を求めることを特徴と
するクラツク変動の測定方法。
1. A first measuring base with a recess or opening is fixed to one of the structural blocks bordering the crack,
A second measurement base having a structure that can easily enter the recess or opening is fixed to the other structural block with the crack as a boundary so as to face each other on three or more different sides, and The method for measuring crack fluctuations is characterized in that the three-dimensional relative displacement of two structural blocks is determined by measuring the distance between the opposing surfaces of both measurement bases at any time.
JP23586085A 1985-10-22 1985-10-22 Measuring method for crack variation Granted JPS6295413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23586085A JPS6295413A (en) 1985-10-22 1985-10-22 Measuring method for crack variation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23586085A JPS6295413A (en) 1985-10-22 1985-10-22 Measuring method for crack variation

Publications (2)

Publication Number Publication Date
JPS6295413A JPS6295413A (en) 1987-05-01
JPH0439890B2 true JPH0439890B2 (en) 1992-07-01

Family

ID=16992320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23586085A Granted JPS6295413A (en) 1985-10-22 1985-10-22 Measuring method for crack variation

Country Status (1)

Country Link
JP (1) JPS6295413A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114045883B (en) * 2021-10-15 2022-11-18 河海大学 Rock slope surface soil body fracture network risk evaluation method based on soil body drying test

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60235859A (en) * 1984-04-28 1985-11-22 バイエル・アクチエンゲゼルシヤフト Dispersion composition, manufacture and use

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60235859A (en) * 1984-04-28 1985-11-22 バイエル・アクチエンゲゼルシヤフト Dispersion composition, manufacture and use

Also Published As

Publication number Publication date
JPS6295413A (en) 1987-05-01

Similar Documents

Publication Publication Date Title
CN103913145A (en) Crack opening two-direction deformation monitoring structure and measurement method
CN205246041U (en) Three -dimensional joint measurement device of displacement sensor parallel placement
KR102044959B1 (en) Concrete constructions crack displacement measurement equipment
CN109556524A (en) Fracture width based on Fiber Bragg Grating technology monitors system and method
KR100879601B1 (en) Equipment for measuring displacement for construction using optical fiber sensor and Method thereof
JPH0439890B2 (en)
KR100430106B1 (en) Device for testing crack progress with vernier type
US4150490A (en) Relative displacement measurement apparatus
CN111608213A (en) Method and device for measuring horizontal displacement of foundation pit supporting pile
JPH0439889B2 (en)
RU2330238C2 (en) Device and method for monitoring technical condition of tunnels
Ngeljaratan et al. Novel digital image correlation instrumentation for large-scale shake table tests
Sunley The experimental investigation of defects
CN204085407U (en) A kind of triaxial joint meter limiting measurement degree of freedom
JPH11325803A (en) Equipment measuring three-dimentional change of crack and its operating method
KR101266159B1 (en) Measuring apparatus for displacement and measuring system using the same
CN211012819U (en) Crack three-dimensional relative displacement measuring device
Inaudi et al. Long-gage sensor topologies for structural monitoring
CN114777740B (en) Pipe pile verticality detection device and detection method
CN210892929U (en) Three-dimensional relative displacement measuring device for deformation joint of structure
CN219608017U (en) Inclination sensor with positioning assembly for building monitoring
CN217718089U (en) Laser ranging sensor mounting bracket for orthogonal two-way monitoring
CN110749264A (en) Crack three-direction relative displacement measuring device and measuring method thereof
Urban et al. Measurement of deflection line on bridges
CN107816925A (en) Thin-wall hollow member is without damaged thickness gauge

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees