JPH0439889B2 - - Google Patents

Info

Publication number
JPH0439889B2
JPH0439889B2 JP60235859A JP23585985A JPH0439889B2 JP H0439889 B2 JPH0439889 B2 JP H0439889B2 JP 60235859 A JP60235859 A JP 60235859A JP 23585985 A JP23585985 A JP 23585985A JP H0439889 B2 JPH0439889 B2 JP H0439889B2
Authority
JP
Japan
Prior art keywords
measurement
crack
base
measuring
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60235859A
Other languages
Japanese (ja)
Other versions
JPS6295412A (en
Inventor
Kyoshi Mamya
Michio Nagase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OYO CHISHITSU KK
Original Assignee
OYO CHISHITSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OYO CHISHITSU KK filed Critical OYO CHISHITSU KK
Priority to JP23585985A priority Critical patent/JPS6295412A/en
Publication of JPS6295412A publication Critical patent/JPS6295412A/en
Publication of JPH0439889B2 publication Critical patent/JPH0439889B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、各種土木建築構造物等において様々
な原因で発生し進行するクラツクの変動を測定す
る装置に関し、更に詳しくは、クラツクを境とす
る2つの構造塊に固定される2個の測定ベースが
相異なる3面以上で対向するように組み合わせら
れ、対向面の間隔を3点以上で測定可能としたク
ラツクの3次元的変動の測定装置に関するもので
ある。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a device for measuring fluctuations in cracks that occur and progress due to various causes in various civil engineering and building structures. A device for measuring three-dimensional fluctuations in cracks, in which two measurement bases fixed to two structural blocks are combined so that they face each other on three or more different surfaces, and the distance between the opposing surfaces can be measured at three or more points. It is related to.

[従来の技術] 土木あるいは建築等の構造物では、地震、地盤
沈下、水圧、コンクリート等材料の劣化、施工の
不備等の理由によりクラツクが新たに生じたり、
既に存在しているクラツク(隙間や継目等も含
む)が拡大していく場合がある。これらの変状が
どのように進行していくかを監視し構造物等が破
壊に至らないように保守管理することは土木工学
上際めて大きな課題である。そのためにはクラツ
ク変動を1/100mm程度もしくはそれ以下の極めて
高い精度で測定できるようにすることが肝要であ
る。
[Prior Art] In civil engineering or architectural structures, new cracks may occur due to earthquakes, ground subsidence, water pressure, deterioration of materials such as concrete, or poor construction.
Already existing cracks (including gaps, seams, etc.) may expand. Monitoring how these deformations progress and performing maintenance management to prevent structures from being destroyed is an extremely important issue in civil engineering. To this end, it is important to be able to measure crack fluctuations with extremely high accuracy of around 1/100 mm or less.

クラツクを境とした2つ構造塊の相対的変動を
測定しうる従来の装置としては、両構造塊にそれ
ぞれ基準となるボルト等を固着し、それらの間に
インバール線等を張設してその長さ変化によりボ
ルトを取り付けた前記2点間の相対変位を測定す
るものが考えられる。このような測定装置は、例
えば地滑りの監視等に利用されているものと同じ
原理に基づいている。
A conventional device that can measure the relative fluctuation of two structural blocks with a crack as a boundary is to fix a reference bolt, etc. to each structural block, and to stretch an Invar wire, etc. between them. It is conceivable to measure the relative displacement between the two points to which the bolt is attached based on the change in length. Such measuring devices are based on the same principles as those used, for example, in landslide monitoring.

[発明が解決しようとする問題点] 土木建築構造物におけるクラツクを境とした2
つの構造塊は、クラツクが拡大する方向のみに変
動するとは限られず3次元的に動くものである。
従つてクラツクの3次元的な挙動を正確に知るこ
とができなければ構造物の適切な保守管理は行え
ない。
[Problems to be solved by the invention] Problems with cracks in civil engineering and architectural structures 2
The two structural blocks do not necessarily move only in the direction in which the crack expands, but move three-dimensionally.
Therefore, if the three-dimensional behavior of the crack cannot be accurately known, proper maintenance and management of the structure cannot be performed.

しかしながら上記のような従来技術では2つの
構造塊の両基準点間の直線的な相対距離の変動し
か測定出来ない。従つて2つの構造塊が相対的に
どちらの方向へどれだけ変動したかは計測できな
い欠点がある。
However, the conventional techniques described above can only measure linear relative distance fluctuations between both reference points of two structural blocks. Therefore, there is a drawback that it is not possible to measure how much the two structural blocks have relatively moved in which direction.

また線材を張設して2点間の相対距離を測定す
る技術だから線材が常時構造物表面に現れてお
り、このため何かに引つ掛かる等トラブルが発生
し易いし管理が面倒であるといつた欠点もある。
In addition, since the technology measures the relative distance between two points by stretching wires, the wires are always visible on the surface of the structure, which can easily cause problems such as getting caught on something, and making management troublesome. There are some drawbacks as well.

本発明の目的は、上記のような従来技術の欠点
を解消し、クラツクを境とする2つの構造塊の3
次元的な相対変位を精度良く測定することがで
き、しかも長期間にわたつて安定な測定が可能と
なるようなクラツク変動の測定装置を提供するこ
とにある。
It is an object of the present invention to solve the above-mentioned drawbacks of the prior art and to
It is an object of the present invention to provide a crack fluctuation measuring device that can measure dimensional relative displacement with high accuracy and can perform stable measurement over a long period of time.

[問題点を解決するための手段] 上記のような目的を達成することのできる本発
明は、クラツク(隙間や継目等も含む。以下同
様)を境とする2つの構造塊のそれぞれに特定形
状の測定ベースを固着し、対向する面の間隔を傾
きを含めて計測できるように構成したものであ
る。
[Means for Solving the Problems] The present invention, which can achieve the above objects, has a specific shape for each of two structural blocks bordering on cracks (including gaps, joints, etc., hereinafter the same). The measurement base is fixed to the base, and the distance between the opposing surfaces can be measured, including the inclination.

即ち本発明に係るクラツクゲージは、クラツク
を境とする2つの構造塊にそれぞれ固定される第
1および第2の2個の測定ベースを備えている。
第1の測定ベースは凹部もしくは開口部を有する
構造であり、それに対して第2の測定ベースは前
記第1の測定ベースの凹部もしくは開口部内に余
裕をもつて進入しうる構造である。それら2つの
測定ベースは相異なる3面以上で対向するような
関係に組み合わせられる。そして前記第1および
第2の測定ベースの各対向部には、それぞれ一直
線上には位置しない3個所以上で面間隔を測定で
きるように変位測定器の取り付け部が設けられ
る。
That is, the crack gauge according to the present invention includes two measuring bases, a first and a second measuring base, each of which is fixed to two structural blocks bounded by a crack.
The first measurement base has a structure having a recess or an opening, whereas the second measurement base has a structure that allows it to enter into the recess or opening of the first measurement base with a margin. The two measurement bases are combined in a relationship such that they face each other on three or more different sides. Each of the opposing portions of the first and second measurement bases is provided with a mounting portion for a displacement measuring device so that surface spacing can be measured at three or more locations that are not located on a straight line.

[作用] 2つの測定ベースはそれぞれクラツクを境とす
る2つの構造塊に固定されているから、構造塊が
変位すればそれに伴つて測定ベースも変位するこ
とになる。2つの測定ベースは相異なる3面以上
で対向し、しかも各対向面について3点以上で間
隔を測定するから、構造塊(測定ベース据付面)
が隆起や沈降等により角度変位を起こす場合でも
それらの相対距離並びに面間角度を求めることが
でき、それによつて2つの構造塊の複雑な3次元
的変動でも正確に把握することができる。
[Operation] Since the two measurement bases are each fixed to two structural blocks with cracks as boundaries, if the structural blocks are displaced, the measurement base will also be displaced accordingly. The two measurement bases face each other on three or more different surfaces, and the distance is measured at three or more points on each opposing surface, so the structure block (measurement base installation surface)
Even if the two structural blocks undergo angular displacement due to uplift, subsidence, etc., their relative distances and interplane angles can be determined, and thereby even complex three-dimensional changes in two structural blocks can be accurately grasped.

[実施例] 第1図は本発明に係るクラツクゲージの一実施
例を示す説明図であり、第2図A,Bはその設置
状態を示す正面図および側面図である。土木構造
物等にクラツク10が存在し、それを境として2
つの構造塊12,14に分かれているとする。一
方の構造塊12には凹部18を備えた第1の測定
ベース16が接着物質20により強固に固着さ
れ、他方の構造塊14には前記第1の測定ベース
16の凹部18内に余裕をもつて進入するような
構造の第2の測定ベース22が同様に接着物質2
0により強固に固着される。これら第1および第
2の測定ベース16,22は、温度変化の激しい
場所に設置する場合にはアンバー合金やセラミツ
ク等の熱膨張係数の小さい材料で製作するのが好
ましい。地下深部のように温度変化の小さい場所
に設置する場合には通常の金属等で製作してよ
い。
[Embodiment] FIG. 1 is an explanatory diagram showing an embodiment of a crack gauge according to the present invention, and FIGS. 2A and 2B are a front view and a side view showing the installed state thereof. Cracks 10 exist in civil engineering structures, etc., and 2
Assume that it is divided into two structural blocks 12 and 14. A first measuring base 16 having a recess 18 is firmly fixed to one structural mass 12 by an adhesive 20, and the other structural mass 14 has a space within the recess 18 of the first measuring base 16. A second measuring base 22, which is structured such that it can be accessed by the adhesive material 2, is
It is firmly fixed by 0. When these first and second measurement bases 16 and 22 are installed in a place where temperature changes are severe, it is preferable to make them from a material with a small coefficient of thermal expansion, such as an amber alloy or ceramic. If it is installed in a place where temperature changes are small, such as deep underground, it may be made of ordinary metal.

第1の測定ベース16は構造塊12に固着され
た立設部24と、その側面から構造塊14方向に
延びる側板26およびそれらを覆うように貼り出
している天板28が連続一体となり、それらによ
つて凹部18が形成される構造である。それに対
して第2の測定ベース22はその凹部18内に余
裕をもつて収まるようにはるかに小さな寸法の直
方体状のブロツクである。従つてここでは第1の
測定ベース16を構成する3つの板状部分(立設
部24、側板26、および天板28)と第2の測
定ベース22の外面とによつて互いに直交する
xyzの3方向で対向することになる。そして、こ
れらの3組の対向面の一方に一直線上に並ばない
ように3個以上の変位測定器取り付け穴が設けら
れる。
The first measurement base 16 consists of a standing part 24 fixed to the structural block 12, a side plate 26 extending from the side toward the structural block 14, and a top plate 28 sticking out to cover them. This is the structure in which the recess 18 is formed. In contrast, the second measurement base 22 is a rectangular block of much smaller dimensions so as to fit comfortably within its recess 18. Therefore, here, the three plate-shaped parts (standing part 24, side plate 26, and top plate 28) constituting the first measurement base 16 and the outer surface of the second measurement base 22 are arranged so that they are perpendicular to each other.
They will face each other in three directions: x, y, and z. Three or more displacement measuring device mounting holes are provided on one of these three sets of opposing surfaces so as not to be lined up in a straight line.

この実施例では第1の測定ベース16の立設部
24、側板26、および天板28にそれぞれ三角
形状にダイヤルゲージ取り付け穴34x,34
y,34zが配設され、それぞれダイヤルゲージ
の先端測定部が貫入するように構成される。従つ
て上記取り付け穴の向きは第1図で示すxyzの直
角座標軸に対応している。
In this embodiment, triangular dial gauge mounting holes 34
y and 34z are arranged, and each is configured so that the tip measuring part of the dial gauge penetrates therethrough. Therefore, the orientation of the mounting holes corresponds to the xyz rectangular coordinate axes shown in FIG.

このような構成とすると、例えば第3図に示す
ようにクラツクが進行して2つの構造塊12,1
4が単なる平行移動的変動ではなく角度変化を伴
うような変動を起こしたとしても、第4図に示す
ように各対向面について3点以上でダイヤルゲー
ジ32を挿入して間隔を測定することにより、対
向面間の間隔を角度変動を含めて求めることがで
き、クラツクのあらゆる変化が側定できることに
なる。
With such a configuration, for example, as shown in FIG. 3, the crack progresses and the two structural blocks 12,
Even if 4 causes a variation that involves an angular change rather than a simple translational variation, it is possible to measure the distance by inserting a dial gauge 32 at three or more points on each opposing surface as shown in Fig. 4. , it is possible to determine the distance between the opposing surfaces, including angular variations, and any changes in cracks can be determined.

第5図は本発明に係るクラツクゲージの他の実
施例を示す説明図であり、第6図A,Bはそれぞ
れその正面図および側面図である。基本的な考え
方は前記実施例の場合と同様である。クラツク1
0を境とする一方の構造塊12に第1の測定ベー
ス40が固定され、他方の構造塊14には第2の
測定ベース42が固定される。第1の測定ベース
40は、2本の立設部44に半円柱状の凹部46
を有する部材を横置きしたものであり、それに対
して第2の測定ベース42は逆L字型形状をな
し、その先端突出部が半円柱状で丁度前記第1の
測定ベース40の凹部46内に余裕をもつて進入
しうる構造である。
FIG. 5 is an explanatory view showing another embodiment of the crack gauge according to the present invention, and FIGS. 6A and 6B are a front view and a side view thereof, respectively. The basic idea is the same as in the previous embodiment. crack 1
A first measurement base 40 is fixed to one structural block 12 bounded by 0, and a second measurement base 42 is fixed to the other structural block 14. The first measurement base 40 has two upright portions 44 and a semi-cylindrical recess 46.
On the other hand, the second measurement base 42 has an inverted L-shape, and its tip protrusion is semi-cylindrical and fits inside the recess 46 of the first measurement base 40. The structure allows for easy entry into the area.

これらの図から明らかなように、第1の測定ベ
ース40はその凹部46が構造塊14の方を向く
ように取り付けられ、第2の測定ベース42の半
円柱状突出部は前記凹部46内に進入するように
取り付けられる。そして第1の測定ベース40の
彎曲した上面、平坦な底面および端面にそれぞれ
3個の変位検出部50が取り付けられる。この場
合、底面および端面に形成される変位測定器取り
付け部は、一直線上に並ぶことなく三角形を構成
するように設けられる。
As is clear from these figures, the first measuring base 40 is mounted in such a way that its recess 46 faces towards the structural mass 14, and the semi-cylindrical projection of the second measuring base 42 lies within said recess 46. Mounted for entry. Three displacement detection units 50 are attached to each of the curved top surface, flat bottom surface, and end surface of the first measurement base 40. In this case, the displacement measuring device mounting portions formed on the bottom surface and the end surface are not arranged in a straight line but are provided so as to constitute a triangle.

第1および第2の測定ベース40,42をこの
ような形状としても、前記実施例の場合と同様に
相対向する3面の間隔およびそれらの傾きを測定
することができ、それによつてクラツク10の3
次元的な変動を正確に把握することが可能であ
る。
Even if the first and second measurement bases 40 and 42 have such a shape, it is possible to measure the distance between the three opposing surfaces and their inclinations as in the case of the previous embodiment, and thereby the crack 10 No. 3
It is possible to accurately grasp dimensional fluctuations.

以上本発明の2つの実施例について詳述した
が、本発明はこのような構成のみに限定されるも
のでないこと無論である。第1の測定ベースおよ
び第2の測定ベースの形状は種々変更できること
はいうまでもない。要するに方向の異なる3面以
上で対向するような2個の測定ベースの組合せと
すればよい。変位測定器としてダイヤルゲージの
他、作動トランスや光学的な変位検出計等も利用
できる。何れにしても各測定ベースにおける測定
個所さえ予め定めておけば、1個の携帯式の各種
変位測定器を持ち込み順次計測することによつて
極めて簡単にクラツク変動の測定が可能である。
Although two embodiments of the present invention have been described in detail above, it goes without saying that the present invention is not limited to only such configurations. It goes without saying that the shapes of the first measurement base and the second measurement base can be changed in various ways. In short, it is sufficient to combine two measurement bases that face each other in three or more different directions. In addition to dial gauges, actuating transformers and optical displacement detectors can also be used as displacement measuring instruments. In any case, as long as the measurement points on each measurement base are determined in advance, crack fluctuations can be measured very easily by bringing in one portable displacement measuring device and sequentially measuring it.

[発明の効果] 本発明は上記のようにクラツクを境とする2つ
の構造塊にそれぞれ固着した2つの測定ベースに
よつて相対向する3面以上においてそれぞれ3点
以上で対向面の間隔を測定するよう構成したか
ら、2つの構造塊の3次元的な相対変位を傾きを
含めて精度良く測定できることが可能であり、ク
ラツクの変状を正確に把握でき、クラツクに伴う
土木建築構造物の破損や破壊等を防止できるから
保守管理を適切に行なえるという優れた効果があ
る。
[Effects of the Invention] As described above, the present invention measures the distance between opposing surfaces at three or more points on each of three or more opposing surfaces using two measuring bases each fixed to two structural blocks bordering on a crack. Because it is configured to do so, it is possible to accurately measure the three-dimensional relative displacement of two structural blocks, including the inclination, and it is possible to accurately determine the deformation of cracks and prevent damage to civil engineering and building structures caused by cracks. This has the excellent effect of being able to properly perform maintenance and management, since it prevents damage and destruction.

また本発明では2個の測定ベースを取り付けて
おくだけであるから、長時間にわたつて安定な測
定が可能であり測定上トラブルが生じ難いし、測
定ベースの保守も殆ど不要である上、通常唯1個
の変位測定器を持ち込むだけで測定できるから費
用も安くて済み、更には測定に熟練を要しない等
の効果も有するものである。
In addition, since the present invention only requires two measurement bases to be installed, stable measurement is possible over a long period of time, and measurement troubles are unlikely to occur. Maintenance of the measurement bases is almost unnecessary, and Since measurements can be carried out by bringing only one displacement measuring device, the cost is low, and furthermore, it has the advantage that no skill is required for measurement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るクラツクゲージの一実施
例を示す説明図、第2図Aはその正面図、第2図
Bはその側面図、第3図はクラツクが拡大してき
た時の状態を示す説明図、第4図はその時の対向
面間隔の測定状況を示す説明図、第5図は本発明
に係るクラツクゲージの他の実施例を示す説明
図、第6図Aはその正面図、第6図Bはその側面
図である。 10……クラツク、12,14……構造塊、1
6……第1の測定ベース、18……開口部、22
……第2の測定ベース、32……ダイヤルゲー
ジ、34x,34y,34z……変位測定器の取
り付け用の穴。
Fig. 1 is an explanatory diagram showing an embodiment of the crack gauge according to the present invention, Fig. 2 A is a front view thereof, Fig. 2 B is a side view thereof, and Fig. 3 shows the state when the crack is enlarged. An explanatory diagram, FIG. 4 is an explanatory diagram showing the measurement situation of the distance between opposing surfaces at that time, FIG. 5 is an explanatory diagram showing another embodiment of the crack gauge according to the present invention, and FIG. Figure B is a side view thereof. 10...Crack, 12,14...Structural block, 1
6... First measurement base, 18... Opening, 22
...Second measurement base, 32...Dial gauge, 34x, 34y, 34z...Hole for mounting a displacement measuring device.

Claims (1)

【特許請求の範囲】[Claims] 1 凹部もしくは開口部を備えクラツクを境とす
る一方の構造塊に固定される第1の測定ベース
と、他方の構造塊に固定され前記第1の測定ベー
スの凹部もしくは開口部内に余裕をもつて進入す
第2の測定ベースとを備え、前記第1および第2
の測定ベースは相異なる3面以上で間隔を介して
対向し、それらの各対向部についてそれぞれ一直
線上にない3個所以上に変位測定器の取り付け部
を設けたことを特徴とするクラツクゲージ。
1. A first measuring base having a recess or an opening and fixed to one structural block with a crack as a boundary, and a first measuring base fixed to the other structural block with a space within the recess or opening of the first measuring base a second measurement base that enters the first and second measurement bases;
A crack gauge characterized in that the measurement bases face each other at intervals on three or more different sides, and mounting parts for displacement measuring devices are provided at three or more locations that are not in a straight line for each of the opposing parts.
JP23585985A 1985-10-22 1985-10-22 Crack gauge Granted JPS6295412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23585985A JPS6295412A (en) 1985-10-22 1985-10-22 Crack gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23585985A JPS6295412A (en) 1985-10-22 1985-10-22 Crack gauge

Publications (2)

Publication Number Publication Date
JPS6295412A JPS6295412A (en) 1987-05-01
JPH0439889B2 true JPH0439889B2 (en) 1992-07-01

Family

ID=16992304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23585985A Granted JPS6295412A (en) 1985-10-22 1985-10-22 Crack gauge

Country Status (1)

Country Link
JP (1) JPS6295412A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010088253A (en) * 2000-03-11 2001-09-26 유승룡 Crack Gauge
DE102005037138A1 (en) * 2005-08-06 2007-02-08 Sms Demag Ag Method and device for precisely positioning a number of cooperating rolling or rolling elements

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60235860A (en) * 1984-05-10 1985-11-22 Toyo Ink Mfg Co Ltd Colored polyimide composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60235860A (en) * 1984-05-10 1985-11-22 Toyo Ink Mfg Co Ltd Colored polyimide composition

Also Published As

Publication number Publication date
JPS6295412A (en) 1987-05-01

Similar Documents

Publication Publication Date Title
CN109026106B (en) Working condition simulation method and working condition simulation test bed for anchor bolt support system
CN205246041U (en) Three -dimensional joint measurement device of displacement sensor parallel placement
KR102044959B1 (en) Concrete constructions crack displacement measurement equipment
JPH0439889B2 (en)
CN109556524A (en) Fracture width based on Fiber Bragg Grating technology monitors system and method
RU2330238C2 (en) Device and method for monitoring technical condition of tunnels
KR100430106B1 (en) Device for testing crack progress with vernier type
CN111608213A (en) Method and device for measuring horizontal displacement of foundation pit supporting pile
US4150490A (en) Relative displacement measurement apparatus
KR20080035246A (en) Equipment for measuring displacement for construction using optical fiber sensor and method thereof
JPH0439890B2 (en)
KR20050062308A (en) Method for measuring 2d convergence of tunnel and apparatus thereof
JP2002022401A (en) Instrument for measuring bend/warp size of long part
CN206556576U (en) A kind of Three-direction gap detector for monitoring concrete structure relative deformation
Sunley The experimental investigation of defects
CN204085407U (en) A kind of triaxial joint meter limiting measurement degree of freedom
JPH11325803A (en) Equipment measuring three-dimentional change of crack and its operating method
JP2001289616A (en) Optical fiber displacement sensor and displacement measuring method using the same
KR101266159B1 (en) Measuring apparatus for displacement and measuring system using the same
CN112857171A (en) Method for measuring spatial displacement of building based on coordinate point spatial position relation
JP3821457B2 (en) Displacement detector
CN210892929U (en) Three-dimensional relative displacement measuring device for deformation joint of structure
JP3671347B2 (en) Earthquake damage assessment device
CN211012819U (en) Crack three-dimensional relative displacement measuring device
CN110702085B (en) Method and system for measuring cable-stayed bridge cable tower axis perpendicularity