JP2001289616A - Optical fiber displacement sensor and displacement measuring method using the same - Google Patents

Optical fiber displacement sensor and displacement measuring method using the same

Info

Publication number
JP2001289616A
JP2001289616A JP2000100816A JP2000100816A JP2001289616A JP 2001289616 A JP2001289616 A JP 2001289616A JP 2000100816 A JP2000100816 A JP 2000100816A JP 2000100816 A JP2000100816 A JP 2000100816A JP 2001289616 A JP2001289616 A JP 2001289616A
Authority
JP
Japan
Prior art keywords
displacement
optical fiber
fixed
point
fixed point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000100816A
Other languages
Japanese (ja)
Inventor
Takeshi Kawamura
武司 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2000100816A priority Critical patent/JP2001289616A/en
Publication of JP2001289616A publication Critical patent/JP2001289616A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To reliably monitor a landslide, land subsidence, flexure of a structure such as a bridge girder by using an optical fiber and precisely finding the quantity of displacement of a position where the optical fiber is fixed. SOLUTION: The optical fiber is laid along 1st and 2nd lines 11 and 12 which extend almost in parallel and a 3rd line 13 which zigzags between them, base points No.1 and No.1 are fixed to a member which is easy to displace, and respective points succeeding the No.2 are so fixed to an object to be monitored that they move together with the object. The extension of the optical fiber at positions forming two sides of a triangle is measured to find the coordinates of the fixed points succeeding to the No.2, and the coordinate values before displacement are subtracted from the coordinate values after the displacement to measure the displacement quantities of the respective fixed points.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、光ファイバの伸
び歪を計測して光ファイバを固定した位置の変位量を測
定する変位監視システム用の光ファイバ変位センサと、
それを用いる変位計測方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical fiber displacement sensor for a displacement monitoring system for measuring the extension strain of an optical fiber and measuring the amount of displacement at a position where the optical fiber is fixed.
The present invention relates to a displacement measuring method using the same.

【0002】[0002]

【従来の技術】光ファイバの歪を計測して地盤等の変位
状況を監視する方法を発明者等は既にいくつか考案して
いる。その方法のひとつを図9に示す。これは、監視対
象部に光ファイバ1をジグザグに布設して上側の各頂点
部を所定間隔で設けたアンカー杭2等に固定し、監視対
象部と一緒に動く光ファイバの下側頂点部Pの変位を、
左右の固定点間の光ファイバに生じる伸び歪を測定器3
で測定して計算する。この方法は、監視点に電源が無く
ても1本の光ファイバを用いて多点の遠隔監視が行える
利点がある。
2. Description of the Related Art The inventors of the present invention have already devised several methods for monitoring the state of displacement of the ground or the like by measuring the strain of an optical fiber. One such method is shown in FIG. This is because the optical fibers 1 are laid in a zigzag manner on the monitoring target portion, and the upper vertices are fixed to the anchor pile 2 or the like provided at predetermined intervals, and the lower vertex P of the optical fiber that moves together with the monitoring target portion. The displacement of
A measuring instrument 3 measures the elongation strain generated in the optical fiber between the right and left fixed points.
Measure and calculate. This method has the advantage that multipoint remote monitoring can be performed using a single optical fiber even if there is no power supply at the monitoring point.

【0003】[0003]

【発明が解決しようとする課題】これまで提案してきた
方法は、監視対象部の動きを予想或いは予測し、一定の
仮定の下で変位量を計算するようにしていたため、想定
外の変位が生じた場合に、計測精度が低下する不具合が
あった。
The method proposed so far predicts or predicts the movement of the monitoring target portion and calculates the displacement amount under certain assumptions. In such a case, there was a problem that the measurement accuracy was reduced.

【0004】図10を参照してその不具合について更に
解説する。図10(a)に示すように、従来の方法で
は、P点のx方向変位のみを想定して変位量δxを求め
ている。即ち、光ファイバ1の伸びによるP点の変位は
光ファイバの長手直角方向に起こると考え、歪計測値か
ら求まる伸び量δlを布設時の角度θで割り戻して変位
量δxを求めている。
[0004] The problem will be further described with reference to FIG. As shown in FIG. 10A, in the conventional method, the displacement amount δx is obtained by assuming only the displacement in the x direction at the point P. That is, it is considered that the displacement at the point P due to the extension of the optical fiber 1 occurs in the direction perpendicular to the longitudinal direction of the optical fiber, and the displacement δx is obtained by dividing the extension δl obtained from the measured strain value by the angle θ at the time of installation.

【0005】ところが、図10(b)に示すように、P
点がy方向へも変位し、そのy方向変位が光ファイバの
伸びを増加させない状況で起こった場合、伸び量δlを
布設時の角度θ1 で割り戻すため、計算で求まる変位量
δx’は実際に生じたP点変位量δxよりも小さな見か
け上の変位量となり、変位が過少評価されてしまう(逆
のケース、即ち、光ファイバの伸びがy方向変位ゼロの
ときの伸び量よりも増加する場合には、変位が過大評価
される)。
[0005] However, as shown in FIG.
Point is also displaced in the y-direction, if the y-direction displacement has occurred in the situations where increasing elongation of the optical fiber, since the rebate elongation amount δl in laying time of the angle theta 1, displacement δx which is obtained by calculation 'is The apparent displacement amount is smaller than the actually generated P point displacement amount δx, and the displacement is underestimated (in the reverse case, ie, the extension of the optical fiber is greater than the extension amount when the displacement in the y direction is zero). If so, the displacement is overestimated).

【0006】この発明は、上記の不具合を無くして変位
監視の信頼性を高めることを課題としている。
An object of the present invention is to improve the reliability of displacement monitoring by eliminating the above problems.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
め、この発明においては、下記の光ファイバ変位センサ
と変位計測方法を提供する。
In order to solve the above problems, the present invention provides the following optical fiber displacement sensor and displacement measuring method.

【0008】光ファイバセンサは、同一面内でほぼ並行
に延びる第1、第2ラインと、それ等のライン間をジグ
ザグに往来する第3ラインに沿って光ファイバを、第1
ラインが底辺になる三角形と第2ラインが底辺になる三
角形が交互に画かれる状態に布設し、その光ファイバの
第1、第2ラインと第3ラインの各交点部を第1、第2
ライン上に所定の間隔をあけて設ける固定点を共有して
監視対象部に固定し、さらに、同一固定点に光ファイバ
で結ばれて変位計測の基点となる点を第1ラインと第2
ライン上の隣り合う位置に各1箇所設け、その2点を位
置保持がなされる部材に固定して成るものである。
The optical fiber sensor includes first and second lines extending substantially in parallel in the same plane, and an optical fiber along a third line zigzag between the lines.
The optical fiber is laid in such a manner that a triangle having a base line and a triangle having a second line base are alternately drawn, and the intersections of the first, second and third lines of the optical fiber are defined as first and second intersections.
A fixed point provided at a predetermined interval on the line is shared and fixed to the monitoring target portion, and a point connected by an optical fiber to the same fixed point and serving as a base point for displacement measurement is defined as a first line and a second point.
One position is provided at each adjacent position on the line, and the two points are fixed to a member that holds the position.

【0009】このセンサは、複数個組合わせ、その複数
のセンサを各センサの第3ラインが交差するように第
1、第2ラインの長手方向に位相をずらして配置する
と、監視領域が細分され、きめ細かな監視が可能にな
る。
When a plurality of sensors are combined and arranged in such a manner that the plurality of sensors are shifted in phase in the longitudinal direction of the first and second lines so that the third line of each sensor intersects, the monitoring area is subdivided. , Detailed monitoring becomes possible.

【0010】また、1本の光ファイバを、各固定点間を
一筆書きで一巡して所定のパターンを画く状態に布設す
ると、使用する光ファイバが1本で済み、システムコス
ト面で有利になる。
When one optical fiber is laid in a state where a predetermined pattern is drawn by making a single stroke between each fixed point, only one optical fiber is used, which is advantageous in terms of system cost. .

【0011】この発明の変位計測方法は、上述したこの
発明の光ファイバ変位センサを用いて各固定点の変位を
計測する。具体的には、センサの第1、第2ライン上に
設けられた2つの基点を基準にしてそれ等の基点と各基
点に光ファイバで連結された第1固定点との間の光ファ
イバの伸び量を光ファイバに生じた伸び歪を測定して求
め、一方の基点から変位後の第1固定点までを半径とす
る円弧と、他方の基点から変位後の第1固定点までを半
径とする円弧の交点の座標を求めて変位前後の座標値か
ら第1固定点の変位量を求め、次に、第1固定点と一方
の基点を基準にして第1固定点とその第1固定点に第3
ラインを介して連結される第2固定点との間及び一方の
基点と第2固定点との間の光ファイバの伸び量から第2
固定点の変位量を上記と同様にして求め、以後、同様に
して第1、第2ライン上に順を追って交番に配置された
固定点のうち、若番側の2つの固定点を基準にして老番
側の固定点の計算変位量を求め、第1固定点以降の各固
定点については、計測の基準になる若番側の固定点の変
位量を積算して最終変位量を求めるようにしたのであ
る。
According to the displacement measuring method of the present invention, the displacement of each fixed point is measured using the above-described optical fiber displacement sensor of the present invention. Specifically, based on two reference points provided on the first and second lines of the sensor, an optical fiber between the reference points and a first fixed point connected to each reference point by an optical fiber is used. The amount of elongation is determined by measuring the elongation strain generated in the optical fiber, and an arc having a radius from one base point to the first fixed point after displacement, and a radius from the other base point to the first fixed point after displacement. The displacement of the first fixed point is obtained from the coordinate values before and after the displacement, and then the first fixed point and the first fixed point are determined with reference to the first fixed point and one of the base points. Third
From the amount of elongation of the optical fiber between the second fixed point connected through the line and between one base point and the second fixed point, the second
The displacement amount of the fixed point is obtained in the same manner as described above, and thereafter, similarly, of the fixed points alternately arranged on the first and second lines in succession, the two fixed points on the youngest side are used as a reference. To calculate the calculated displacement of the fixed point on the old side, and for each fixed point after the first fixed point, calculate the final displacement by integrating the displacement of the fixed point on the youngest side, which is the reference for measurement. It was.

【0012】なお、センサを構成する光ファイバの布設
手順は、後に述べるようにいくつか考えられるがその手
順には特にこだわらない。要は最終的な形が、第1ライ
ンと第2ラインを底辺とする相反する向きの三角形が交
互に画き出されるものになっていればよい。
There are several possible procedures for laying the optical fibers constituting the sensor as described later, but the procedure is not particularly limited. In short, it suffices that the final shape is such that triangles of opposite directions having the first line and the second line as bases are alternately drawn.

【0013】また、ここで云う固定点とは、光ファイバ
を引き留める点であり、監視対象部の動きに応じて動
く。2箇所の基点のみが実質的に固定されて位置保持が
なされる。
The term "fixed point" as used herein refers to a point at which the optical fiber is retained, and moves in accordance with the movement of the monitoring target. Only two base points are substantially fixed, and the position is maintained.

【0014】[0014]

【作用】この発明の光ファイバセンサは、第1、第2ラ
イン上の各固定点が相反する側のライン上に有る次番の
固定点及び、同一ライン上にある次々番の固定点に三角
形の2辺をなす光ファイバで結ばれるようにしたので、
上述したこの発明の方法による変位計測が行える。
According to the optical fiber sensor of the present invention, each of the fixed points on the first and second lines has a triangle at the next fixed point on the line on the opposite side and the next fixed point on the same line at the next line. Because it was made to be connected by the optical fiber that forms the two sides of
The displacement can be measured by the method of the present invention described above.

【0015】その変位計測方法によれば、三角形の2辺
の伸び量、即ち、一方の基準点から変位計測対象の固定
点に至る第1又は第2ライン上の光ファイバの伸び量
と、他方の基準点から前記固定点に至る第3ライン上の
光ファイバの伸び量から変位後の固定点の座標を求め、
変位前後の座標から変位量を計算するので、正しい計算
が行える。但し、基準となる固定点が変位しているとそ
の影響が現れて計算された変位量に狂いが出る。そこ
で、第1固定点以降の各固定点については、基準となる
点の変位を積算して最終変位量を求める。こうすると、
基準となる固定点の変位の影響が取り除かれ、各固定点
の変位量を精度良く計算することが可能になる。
According to the displacement measuring method, the amount of elongation of two sides of the triangle, that is, the amount of elongation of the optical fiber on the first or second line from one reference point to the fixed point to be measured, and the other. Finding the coordinates of the fixed point after displacement from the amount of elongation of the optical fiber on the third line from the reference point to the fixed point,
Since the displacement amount is calculated from the coordinates before and after the displacement, correct calculation can be performed. However, if the fixed point serving as a reference is displaced, the influence thereof appears and the calculated displacement amount becomes inconsistent. Therefore, for each fixed point after the first fixed point, the displacement of the reference point is integrated to obtain the final displacement. In this case,
The influence of the displacement of the reference fixed point is removed, and the displacement amount of each fixed point can be calculated with high accuracy.

【0016】[0016]

【発明の実施の形態】図1乃至図4に、この発明の光フ
ァイバ変位センサの実施形態を示す。図1及び図2の光
ファイバ変位センサ10は、基本形態を示すものであっ
て、ほぼ並行に延びる第1ライン11及び第2ライン1
2と、第1、第2ライン間をジグザグに往来する第3ラ
イン13に沿って光ファイバ1を布設し、第1、第2ラ
イン11、12と第3ライン13の各交点部を共有の固
定点として監視対象部に固定し、さらに、変位計測の原
点となす2つの基点14、15をアンカー等の部材16
に固定してその基点14、15の位置保持を行うように
している。
1 to 4 show an embodiment of an optical fiber displacement sensor according to the present invention. The optical fiber displacement sensor 10 shown in FIGS. 1 and 2 shows a basic form, and includes a first line 11 and a second line 1 extending substantially in parallel.
2 and the optical fiber 1 is laid along the third line 13 zigzag between the first and second lines, and the intersections of the first, second lines 11, 12 and the third line 13 are shared. A fixed point is fixed to the monitoring target portion, and two base points 14 and 15 which are the origins of the displacement measurement are fixed to members 16 such as anchors.
And the positions of the base points 14 and 15 are held.

【0017】図1、図2のセンサ10は、どちらも、一
筆書きで光ファイバ1が各固定点を一巡するように布設
される。丸枠付きの番号はそのときの布設手順を表わ
す。このように、布設手順は異なるが、最終的な形は両
センサとも同じになる。なお、基点14、15は、監視
対象部に不動又は不動と見なし得る点があればそこに固
定してもよく、アンカー等の使用は必要に応じて行えば
よい。
The sensors 10 shown in FIGS. 1 and 2 are both laid so that the optical fiber 1 goes around each fixed point in one stroke. The numbers with circles indicate the installation procedure at that time. Thus, the laying procedure is different, but the final shape is the same for both sensors. Note that the reference points 14 and 15 may be fixed to any point that can be regarded as immovable or immovable in the monitoring target portion, and the use of an anchor or the like may be performed as necessary.

【0018】図3及び図4のセンサ20は、図1、図2
のセンサ10をそれぞれ2個組合わせ、その2個のセン
サ10を、第3ラインの山谷の位相が半ピッチずれて第
3ラインが途中で交差するように配置したものである。
交差させて配置する2個のセンサは、1本の連続した光
ファイバで形成すると好ましい。同一エリア内で計測点
(固定点)の数を増やせばきめ細かな監視が行えるが、
光ファイバで歪を計測する場合、測定器の性能上、評価
距離が制限される。この評価距離は、現状では20km
を越えた長さを一連長として測定する場合には2mが最
短評価長であり、固定点間の距離をそれ以下に縮めても
その間の歪を正確に計測できず意味がない。なお、評価
長は、最短で10cmが可能であるが、このときには計
測可能距離が最長500mと短くなる。従って、光ファ
イバは計測距離を長くとるときには2m以上の距離をあ
けて固定することになるが、固定点間の距離が長くなる
ほど監視が粗くなる。図3、図4のセンサは、その不具
合に対処するものであって、同一構造のセンサをn個
(図はn=2であるが、nは2に限定されない)組合わ
せて設けており、図1、図2のセンサに比べて計測点の
数をn倍に増加させることができる。なお、図の丸枠付
きの符号はひとつのセンサについての光ファイバ布設手
順を示している。
The sensor 20 shown in FIG. 3 and FIG.
The two sensors 10 are combined, and the two sensors 10 are arranged such that the phases of the peaks and valleys of the third line are shifted by half a pitch and the third lines intersect in the middle.
The two sensors arranged crosswise are preferably formed of one continuous optical fiber. If you increase the number of measurement points (fixed points) in the same area, you can perform detailed monitoring,
When measuring strain with an optical fiber, the evaluation distance is limited due to the performance of the measuring instrument. This evaluation distance is currently 20km
When measuring the length exceeding the length as a series length, 2 m is the shortest evaluation length. Even if the distance between the fixed points is reduced to less than that, it is meaningless because the distortion between them cannot be measured accurately. The evaluation length can be as short as 10 cm, but at this time, the measurable distance is as short as 500 m. Therefore, the optical fiber is fixed with a distance of 2 m or more when the measurement distance is increased, but the monitoring becomes coarser as the distance between the fixed points increases. The sensors shown in FIGS. 3 and 4 deal with the problem, and are provided with a combination of n sensors having the same structure (n = 2 in the figure, but n is not limited to 2). 1 and 2, the number of measurement points can be increased n times. The symbols with circles in the figure indicate the optical fiber installation procedure for one sensor.

【0019】以下に、この発明のセンサによる変位計測
の原理を、図5を参照して説明する。
The principle of displacement measurement by the sensor according to the present invention will be described below with reference to FIG.

【0020】図5(a)は、図1のセンサ10の両端が
強固なベースに固定されたケースを想定しており、左端
から順次基点及び固定点に番号を付けるものとする。
FIG. 5 (a) assumes a case in which both ends of the sensor 10 of FIG. 1 are fixed to a strong base, and the base point and the fixed point are numbered sequentially from the left end.

【0021】今、変位計測の原点となる2つの基点のう
ち一方をNo.1、他方をNo.2とし、さらに、固定点を基点
に近い側からNo.3、No.4……としたとすると、固定点N
o.2は図5(b)に示すように、No.0の基点からL1の
距離にあり、No.1の基点からはL2の距離にあることに
なる。
Now, one of the two base points serving as the origins of the displacement measurement is No. 1, the other is No. 2, and the fixed points are No. 3, No. 4 from the side closer to the base point. Then the fixed point N
As shown in FIG. 5B, o.2 is at a distance of L1 from the base point of No. 0, and is at a distance of L2 from the base point of No. 1.

【0022】よって、固定点No.2の座標は、2つの基点
No.0、No.1を中心として半径L1とL2の円弧の交点で
表わされ、また、変位後の固定点No.2の座標は、L1が
δL1、L2がδL2伸びたときの半径(L1+δL
1)、(L2+δL2)の円弧の交点(図5(c)参
照)であると定義できる。
Therefore, the coordinates of the fixed point No. 2 are two base points.
It is represented by the intersection of the arcs of the radii L1 and L2 with No. 0 and No. 1 as the centers. The coordinates of the fixed point No. 2 after the displacement are the radius when L1 is δL1 and L2 is δL2 extended ( L1 + δL
1), (L2 + δL2) can be defined as the intersection of the arcs (see FIG. 5C).

【0023】固定点No.3の座標も、同様に、一方の基点
No.1と、固定点No.2を基準(中心)とした半径L3とL
4の円弧の交点で表わされ、変位後の固定点No.3の座標
についても半径(L3+δL3)、(L4+δL4)の
円弧の交点として定義できる。以下、同様にしてNo.4以
降の固定点の座標を求め、変位前後の座標値から変位量
を計算する。
Similarly, the coordinates of the fixed point No. 3 can be calculated using one of the base points.
No.1 and radii L3 and L with reference to fixed point No.2 (center)
4, the coordinates of the fixed point No. 3 after the displacement can be defined as the intersections of the arcs of radii (L3 + δL3) and (L4 + δL4). Hereinafter, similarly, the coordinates of the fixed points after No. 4 are obtained, and the displacement amount is calculated from the coordinate values before and after the displacement.

【0024】δL1、δL2、δL3、δL4等の伸び
は、該当区間の光ファイバの伸び歪の計測結果と、固定
点間の初期の区間長を基にして変位量として計算するこ
とができるので、歪計測器を用いて各区間の光ファイバ
の伸び歪を計測することで、精度良く変位を計測するこ
とが可能になる。
The elongation of δL1, δL2, δL3, δL4, etc. can be calculated as a displacement amount based on the measurement result of the elongation strain of the optical fiber in the corresponding section and the initial section length between the fixed points. By measuring the elongation strain of the optical fiber in each section using the strain measuring device, it is possible to measure the displacement with high accuracy.

【0025】この際の変位計算は、各固定点の変位後の
座標値から変位前の座標値を差し引きする方法で行う
が、この方法では、計算の基準にした点のうち、2つの
基点を除く各点が元の位置から変位している可能性があ
る。そこで、計測対象の固定点よりも若番側の固定点の
変位を積算して各固定点の最終変位量を求める。こうす
ると、このとき基準とした固定点の変位の影響が排除さ
れて計測精度が高まる。
The displacement calculation at this time is performed by subtracting the coordinate value before the displacement from the coordinate value after the displacement of each fixed point. In this method, two base points among the reference points of the calculation are used. Excluding points may be displaced from their original positions. Therefore, the displacement of the fixed point on the younger side than the fixed point to be measured is integrated to determine the final displacement of each fixed point. In this case, the influence of the displacement of the fixed point as a reference at this time is eliminated, and the measurement accuracy is improved.

【0026】なお、今図5(c)において、固定点No.2
の変位によりL1が元の長さよりも短くなったとする
と、δL1は負の値になるが、固定点間の光ファイバに
初期張力を加えておけば負の値のδL1も計測でき、こ
のようなケースでも支障無く変位計測が行える。
In FIG. 5C, the fixed point No. 2
If L1 becomes shorter than the original length due to the displacement of δ, δL1 becomes a negative value, but if initial tension is applied to the optical fiber between the fixed points, a negative value δL1 can be measured. Displacement measurement can be performed without any problem in the case.

【0027】以下に、図5(a)の座標(x2、y2)
で示される固定点No.2の変位量をδx2、δy2とし、
これを例に挙げて変位量の求め方について更に詳しく述
べる。
The coordinates (x2, y2) in FIG.
Let δx2 and δy2 be the displacement amounts of the fixed point No. 2 indicated by
Using this as an example, a method of obtaining the displacement will be described in more detail.

【0028】図5(a)のように座標系および各点をと
る。ここでの移動後のNo.2の座標を(x、y)、座標
(x0、y0)の基点No.0から固定点No.2までの距離を
L1、座標(x1、y1)の基点No.1から固定点No.2ま
での距離をL2、固定点No.2の変位に基づく基点No.0と
No.1との間の長さ変化(変位量)をδL1、δL2とす
ると、以下の式が成り立つ。
A coordinate system and each point are taken as shown in FIG. Here, the coordinates of No. 2 after the movement are (x, y), the distance from the base point No. 0 of coordinates (x0, y0) to the fixed point No. 2 is L1, and the base point No. of coordinates (x1, y1) L1 is the distance from .1 to the fixed point No.2, and the base point No.0 based on the displacement
Assuming that the length change (displacement amount) between No. 1 and δL1 and δL2, the following equation is established.

【0029】x=x2+δx2・・・(1) y=y2+δy2・・・(2) (x2-x0)2+(y2-y0)2=L12 ・・・(3) (x2-x1)2+(y2-y1)2=L22 ・・・(4) L1' =L1+δL1・・・(5) L2' =L2+δL2・・・(6) (x-x0)2 +(y-y0)2 =L1'2 ・・・(7) (x-x1)2 +(y-y1)2 =L2'2 ・・・(8) 上記式(7) 、(8) を展開して式(7) −式(8) の形で整理
すると、x、yの一次式を得る。
X = x2 + δx2 (1) y = y2 + δy2 (2) (x2-x0) 2 + (y2-y0) 2 = L1 2 (3) (x2-x1) 2 + (y2-y1) 2 = L2 2 ··· (4) L1 '= L1 + δL1 ··· (5) L2' = L2 + δL2 ··· (6) (x-x0) 2 + (y-y0) 2 = L1 ' 2 ... (7) (x-x1) 2 + (y-y1) 2 = L2' 2 ... (8) Expanding the above formulas (7) and (8), formula (7)-formula By rearranging in the form of (8), a linear expression of x and y is obtained.

【0030】2(x1-x0)x +2(y1-y0)y +x02 −x12 +y0
2 −y12 =L1'2−L2'2 これをyについて整理すると、下式(9) が得られる。
[0030] 2 (x1-x0) x +2 (y1-y0) y + x0 2 -x1 2 + y0
2− y1 2 = L1 ′ 2 −L2 ′ 2 When this is arranged for y, the following equation (9) is obtained.

【0031】 y=(1/(2(y1-y0){L1'2-L2'2+x12-x02 +y12-y02(x1-x0)x}・・・(9) これを(7) 式に代入してxの式として整理すると、式(1
0)が得られる。
Y = (1 / (2 (y1-y0) {L1 ′ 2 -L2 ′ 2 + x1 2 -x0 2 + y1 2 -y0 2 (x1-x0) x)) (9) Substituting into equation (7) and rearranging it as the equation for x yields equation (1
0) is obtained.

【0032】Ax2 −Bx+C=0・・・(10) ここに、 A=4{(x1-x0)2+(y1-y0)2} B=4{(2x0)(y1-y0)2 −2y0(x1-x0)(y1-y0) +L(x1-x
0)} C=4{(y1-y0)2(x02+y02-L1'2)−4y0(y1-y0)L+L2} L=(L1'2-L12+x12-x02-y12-y02) これは解析解として、 x=(B±SQRT(B 2−4AC)/(2A)・・・(11) となるが、題意より変位を微小変位とすることで、2つ
の解のうち、元の位置座標に近い方の解を選択して答え
を得る。また、yは再度式(7) より (y-y0) 2=L1'2−(x-x0)2 →y=y0±SQRT(L1'2-(x-x0)2)・・・(12) を得る。これも題意より元の位置に近い解を選択すれば
よい。
Ax 2 −Bx + C = 0 (10) where A = 4 {(x1-x0) 2 + (y1-y0) 2 BB = 4 {(2x0) (y1-y0) 2 − 2y0 (x1-x0) (y1-y0) + L (x1-x
0)} C = 4 {(y1-y0) 2 (x0 2 + y0 2 -L1 ' 2 ) -4y0 (y1-y0) L + L 2 } L = (L1' 2 -L1 2 + x1 2 -x0 2- y1 2 -y0 2 ) As an analytical solution, x = (B ± SQRT (B 2 −4AC) / (2A) (11) From the two solutions, the solution that is closer to the original position coordinates is selected to obtain the answer, and y is calculated again from equation (7) as (y-y0) 2 = L1 ' 2 − (x-x0) 2 → y = y0 ± SQRT (L1 ′ 2 − (x−x0) 2 ) (12) This is also obtained by selecting a solution closer to the original position from the idea.

【0033】この結果から、各点の自分より基点に近い
点の2点を原点として変位後の位置が計算により求めら
れる。従って、このx、yの計算値より当初の座標値を
差し引きすることで、変位量δL1、δL2を求めるこ
とができる。また、このx、yの計算値を次の固定点の
移動量を計算する値(新たな基準点の値)として用いる
ことで順次、固定点の新しい位置を求めることができ
る。
From this result, the position after the displacement is obtained by calculation using two points of each point closer to the base point than itself as the origin. Therefore, the displacement amounts δL1 and δL2 can be obtained by subtracting the initial coordinate values from the calculated values of x and y. Further, by using the calculated values of x and y as values for calculating the moving amount of the next fixed point (values of new reference points), new positions of the fixed points can be sequentially obtained.

【0034】別の区間に対しても計算により求めた位置
を基準にしてこれを順次繰り返していくことで、基点か
ら離れた各点の最終変位量δxn、δynを求めること
ができる。
By sequentially repeating this with respect to the position obtained by calculation for another section, the final displacement amounts δxn and δyn of each point away from the base point can be obtained.

【0035】なお、式(11)の結果を得るときに、解が不
定となるときには、先にyについて解き、後でxを求め
る。
When the result of equation (11) is obtained, if the solution is indeterminate, y is solved first, and x is calculated later.

【0036】具体的には基点と各固定点の座標は光ファ
イバを布設した時点で、測量して予め求めておき、L
1、L2は、光ファイバを布設した時の固定点間の距離
を上記測量結果或いは直接長さを測定することで求める
ことができる。
Specifically, the coordinates of the base point and each fixed point are measured and determined in advance at the time when the optical fiber is laid.
1, L2 can be obtained by measuring the distance between the fixed points when the optical fiber is laid, or by directly measuring the length.

【0037】そして、L1’、L2’は上記固定点間に
布設された光ファイバの歪を計測する装置の出力として
得られるから、この値を用いることになる。
Since L1 'and L2' are obtained as the output of a device for measuring the distortion of the optical fiber laid between the fixed points, these values are used.

【0038】この方法の良い点は、各固定点の座標はそ
れほど厳密に求めなくても、監視対象の最大変位量を計
算できることである。各固定点間の区間長が計測できて
おれば、光ファイバの交点から初期座標を求めることも
できるがそれが多少真値からずれていたとしても、初期
の位置が違うために最終変位後の位置はその精度に依存
して悪くはなるが、変位量そのものは精度良く計測可能
である。
The advantage of this method is that the maximum displacement of the object to be monitored can be calculated without having to obtain the coordinates of each fixed point so precisely. If the section length between each fixed point can be measured, the initial coordinates can be obtained from the intersection point of the optical fiber, but even if it deviates slightly from the true value, the initial position is different because the initial position is different. Although the position becomes worse depending on its accuracy, the displacement itself can be measured with high accuracy.

【0039】以上述べたこの発明の変位センサ及び変位
計測方法は、横滑りが起こる地滑り等の監視、垂直変位
が起こる地盤沈下や橋桁等の撓み監視などに好適に利用
できる。そのような用途への適用例を図6乃至図8に示
す。
The above-described displacement sensor and displacement measuring method of the present invention can be suitably used for monitoring a landslide or the like in which a skid occurs, monitoring for subsidence or a deflection of a bridge girder or the like in which a vertical displacement occurs. FIGS. 6 to 8 show examples of application to such an application.

【0040】図6の地滑り監視では、監視する斜面が斜
め横方向にずれるので、斜面を平面と考え、その面内に
第1〜第3の光ファイバラインと基点及び各固定点があ
るようにセンサを設置して斜面の変位を計測する。
In the landslide monitoring shown in FIG. 6, since the slope to be monitored is shifted obliquely in the horizontal direction, the slope is considered as a plane, and the first to third optical fiber lines, the base point, and each fixed point are located within the plane. Install a sensor to measure the slope displacement.

【0041】図7の地盤沈下の監視では、変位の起こり
難い岩盤等にアンカー杭4を打ち込み、センサの基点1
4、15をその杭4に固定する。また、沈下を起こす軟
弱地盤に打ち込んだ杭5(これは地盤と共に動く)の長
さ方向の2点に基点以外の固定点となる部分を固定して
光ファイバと基点及び各固定点が垂直面内に置かれるよ
うにセンサ10を設置する。
In the monitoring of the land subsidence shown in FIG. 7, the anchor pile 4 is driven into rock or the like where displacement is unlikely to occur, and the base point 1 of the sensor is set.
4 and 15 are fixed to the pile 4. In addition, a fixed point other than the base point is fixed to two points in the length direction of the pile 5 (which moves together with the ground) driven into the soft ground causing settlement, and the optical fiber, the base point, and each fixed point are perpendicular to each other. The sensor 10 is installed so as to be placed inside.

【0042】さらに、図8の橋桁の撓み監視では、基点
14、15を支柱6上にとり、橋桁7の側面に各固定点
を固定すればよい。
Further, in the deflection monitoring of the bridge girder shown in FIG. 8, the base points 14 and 15 may be set on the column 6 and the fixed points may be fixed to the side surfaces of the bridge girder 7.

【0043】[0043]

【発明の効果】以上述べたように、この発明の光ファイ
バ変位センサ及びそれを用いた変位測定方法によれば、
第1ラインを底辺とする三角形と第2ラインを底辺とす
る三角形が交互に画かれるように光ファイバを布設して
各三角形の2辺の伸びから各固定点の変位後の座標を求
め、変位前後の座標値から変位量を計算するので、ま
た、基準点の変位が考えられる固定点については、若番
側固定点の変位量を積計して最終変位量を計算するの
で、実際に生じた変位を精度良く計測することが可能に
なり、変位監視システムの信頼性を高めて変位の過少評
価による危険回避の遅れ、過大評価による無駄な対応等
を無くすことが可能になる。
As described above, according to the optical fiber displacement sensor of the present invention and the displacement measuring method using the same,
An optical fiber is laid so that a triangle having the first line as the base and a triangle having the second line as the base are alternately drawn, and the coordinates after displacement of each fixed point are obtained from the extension of the two sides of each triangle. Since the displacement is calculated from the preceding and following coordinate values, and for the fixed point where the displacement of the reference point is considered, the final displacement is calculated by integrating the displacement of the fixed point on the younger side. The displacement can be measured with high accuracy, and the reliability of the displacement monitoring system can be increased to eliminate delays in avoiding danger due to underestimation of the displacement and wasteful measures due to overestimation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の光ファイバ変位センサの基本形態を
示す図
FIG. 1 is a diagram showing a basic form of an optical fiber displacement sensor according to the present invention.

【図2】光ファイバの布設手順を代えた例を示す図FIG. 2 is a diagram showing an example in which a procedure for laying an optical fiber is changed.

【図3】複数のセンサを交差配置した例を示す図FIG. 3 is a diagram showing an example in which a plurality of sensors are arranged in a crossed manner.

【図4】複数のセンサを交差配置した例を示す図FIG. 4 is a diagram showing an example in which a plurality of sensors are arranged in a crossed manner.

【図5】(a)計測の原理を説明するためのセンサのモ
デル図 (b)固定点No.2の変位前の座標の求め方に関する解説
図 (c)固定点No.2の変位後の座標の求め方に関する解説
5A is a model diagram of a sensor for explaining the principle of measurement. FIG. 5B is a diagram illustrating a method of obtaining coordinates before displacement of fixed point No. 2 (c) After displacement of fixed point No. 2 Illustration of how to find coordinates

【図6】(a)この発明のセンサによる地滑り監視部の
断面図 (b)同上の地滑り監視部の正面図
FIG. 6A is a cross-sectional view of a landslide monitoring unit using the sensor of the present invention. FIG.

【図7】この発明のセンサによる地盤沈下監視部の斜視
FIG. 7 is a perspective view of a ground subsidence monitoring unit using the sensor of the present invention.

【図8】この発明のセンサによる橋桁の撓み監視部の側
面図
FIG. 8 is a side view of a deflection monitoring unit of a bridge girder using the sensor of the present invention.

【図9】従来の変位監視用光ファイバセンサの概要を示
す図
FIG. 9 is a diagram showing an outline of a conventional displacement monitoring optical fiber sensor.

【図10】(a)従来センサによるX方向変位の計算の
し方を示す図 (b)変位が2軸方向に起こったときの問題点の説明図
10A is a diagram showing how to calculate displacement in the X direction by a conventional sensor. FIG. 10B is an explanatory diagram of a problem when displacement occurs in two axial directions.

【符号の説明】[Explanation of symbols]

1 光ファイバ 3 歪測定器 4 アンカー杭 5 杭 6 支柱 7 橋桁 10 光ファイバ変位センサ 11 第1ライン 12 第2ライン 13 第3ライン 14、15 基点 DESCRIPTION OF SYMBOLS 1 Optical fiber 3 Strain measuring device 4 Anchor pile 5 Pile 6 Prop 7 Bridge girder 10 Optical fiber displacement sensor 11 1st line 12 2nd line 13 3rd line 14, 15 Base point

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 同一面内でほぼ並行に延びる第1、第2
ラインと、それ等のライン間をジグザグに往来する第3
ラインに沿って光ファイバを、第1ラインが底辺になる
三角形と第2ラインが底辺になる三角形が交互に画かれ
る状態に布設し、その光ファイバの第1、第2ラインと
第3ラインの各交点部を第1、第2ライン上に所定の間
隔をあけて設ける固定点を共有して監視対象部に固定
し、さらに、同一固定点に光ファイバで結ばれて変位計
測の基点となる点を第1ラインと第2ライン上の隣り合
う位置に各1箇所設け、その2点を位置保持がなされる
部材に固定して成る光ファイバ変位センサ。
A first and a second extending substantially in parallel in the same plane;
The third line zigzag between lines and between those lines
An optical fiber is laid along the line so that a triangle having the first line at the bottom and a triangle having the second line at the bottom are alternately drawn, and the first, second, and third lines of the optical fiber are arranged. The intersections are fixed to the monitoring target by sharing fixed points provided at predetermined intervals on the first and second lines, and are connected to the same fixed point by an optical fiber to be a base point for displacement measurement. An optical fiber displacement sensor in which one point is provided at each of adjacent positions on the first line and the second line, and the two points are fixed to a member that holds a position.
【請求項2】 請求項1記載のセンサを複数個組合わ
せ、その複数のセンサを各センサの第3ラインが交差す
るように第1、第2ラインの長手方向に位相をずらして
配置した光ファイバ変位センサ。
2. A light in which a plurality of sensors according to claim 1 are combined, and the plurality of sensors are arranged so as to be shifted in phase in the longitudinal direction of the first and second lines so that a third line of each sensor intersects. Fiber displacement sensor.
【請求項3】 1本の光ファイバを、各固定点間を一筆
書きで一巡して所定のパターンを画く状態に布設した請
求項1又は2記載の光ファイバセンサ。
3. The optical fiber sensor according to claim 1, wherein one optical fiber is laid in a state of drawing a predetermined pattern by making a single stroke between each fixed point.
【請求項4】 請求項1乃至3のいずれかに記載の光フ
ァイバ変位センサの第1、第2ライン上に設けられた2
つの基点を基準にしてそれ等の基点と各基点に光ファイ
バで連結された第1固定点との間の光ファイバの伸び量
を光ファイバに生じた伸び歪を測定して求め、一方の基
点から変位後の第1固定点までを半径とする円弧と、他
方の基点から変位後の第1固定点までを半径とする円弧
の交点の座標を求めて変位前後の座標値から第1固定点
の変位量を求め、次に、第1固定点と一方の基点を基準
にして第1固定点とその第1固定点に第3ラインを介し
て連結される第2固定点との間及び一方の基点と第2固
定点との間の光ファイバの伸び量から第2固定点の変位
量を上記と同様にして求め、以後、同様にして第1、第
2ライン上に順を追って交番に配置された固定点のう
ち、若番側の2つの固定点を基準にして老番側の固定点
の計算変位量を求め、第1固定点以降の各固定点につい
ては、計測の基準になる若番側の固定点の変位量を積算
して最終変位量を求めるようにした変位計測方法。
4. The optical fiber displacement sensor according to claim 1, wherein said optical fiber displacement sensor is provided on said first and second lines.
The amount of elongation of the optical fiber between those base points and the first fixed point connected to each base point by an optical fiber is determined by measuring the elongation strain generated in the optical fiber. And the coordinates of the intersection of an arc having a radius from the base point to the first fixed point after the displacement and an arc having a radius from the other base point to the first fixed point after the displacement are obtained, and the first fixed point is obtained from the coordinate values before and after the displacement. Of the first fixed point and the second fixed point connected to the first fixed point via the third line with respect to the first fixed point and one of the base points. From the amount of expansion of the optical fiber between the base point and the second fixed point, the amount of displacement of the second fixed point is obtained in the same manner as described above, and thereafter, in the same manner, the first and second lines are sequentially and alternately changed. Of the arranged fixed points, the calculated displacement of the fixed point on the old side is calculated based on the two fixed points on the young side. For each fixed point of the first and subsequent fixing point, the displacement measuring method to obtain the final displacement amount by integrating the amount of displacement of the fixing points of the young turn side becomes the reference measurement.
JP2000100816A 2000-04-03 2000-04-03 Optical fiber displacement sensor and displacement measuring method using the same Pending JP2001289616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000100816A JP2001289616A (en) 2000-04-03 2000-04-03 Optical fiber displacement sensor and displacement measuring method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000100816A JP2001289616A (en) 2000-04-03 2000-04-03 Optical fiber displacement sensor and displacement measuring method using the same

Publications (1)

Publication Number Publication Date
JP2001289616A true JP2001289616A (en) 2001-10-19

Family

ID=18614961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000100816A Pending JP2001289616A (en) 2000-04-03 2000-04-03 Optical fiber displacement sensor and displacement measuring method using the same

Country Status (1)

Country Link
JP (1) JP2001289616A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040035639A (en) * 2004-04-03 2004-04-29 이금석 Bending measurement for construction FBG
KR100461197B1 (en) * 2002-03-12 2004-12-13 (주)세기엔지니어링 Optical fiber displacement measuring sensor and appratus using the same
JP2006177822A (en) * 2004-12-22 2006-07-06 Tokyo Electric Power Co Inc:The System and method for measuring bore displacement of tunnel, and bore displacement gauge for tunnel
JP2008175675A (en) * 2007-01-18 2008-07-31 Maeda Corp Long structure soundness determination system
KR101551259B1 (en) * 2014-02-28 2015-09-10 전북대학교산학협력단 Intensity-based fiber optic sensor head
CN114894102A (en) * 2022-05-24 2022-08-12 中铁第四勘察设计院集团有限公司 Shield tunnel structure monitoring system and method based on array grating

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100461197B1 (en) * 2002-03-12 2004-12-13 (주)세기엔지니어링 Optical fiber displacement measuring sensor and appratus using the same
KR20040035639A (en) * 2004-04-03 2004-04-29 이금석 Bending measurement for construction FBG
JP2006177822A (en) * 2004-12-22 2006-07-06 Tokyo Electric Power Co Inc:The System and method for measuring bore displacement of tunnel, and bore displacement gauge for tunnel
JP4690030B2 (en) * 2004-12-22 2011-06-01 前田建設工業株式会社 Tunnel air displacement measurement system and tunnel air displacement measurement method
JP2008175675A (en) * 2007-01-18 2008-07-31 Maeda Corp Long structure soundness determination system
KR101551259B1 (en) * 2014-02-28 2015-09-10 전북대학교산학협력단 Intensity-based fiber optic sensor head
CN114894102A (en) * 2022-05-24 2022-08-12 中铁第四勘察设计院集团有限公司 Shield tunnel structure monitoring system and method based on array grating
CN114894102B (en) * 2022-05-24 2023-12-22 中铁第四勘察设计院集团有限公司 Shield tunnel structure monitoring system and method based on array grating

Similar Documents

Publication Publication Date Title
KR102151242B1 (en) Cyclical sensor array
JP2009294039A (en) Structure deformation monitoring method using distribution type optical-fiber sensing system, and device thereof
CN112064686B (en) Method for monitoring opening amount of immersed tube tunnel joint
JP2004325209A (en) Measuring device and method for structure displacement
Brock Development of roll waves in open channels
JP2001289616A (en) Optical fiber displacement sensor and displacement measuring method using the same
JP3829180B2 (en) Ground deformation measurement system using optical fiber sensor
CN107101586A (en) A kind of method and device for being used to detect CRTS II type fragment-free track slab space geometry morphemes
Liu et al. Application of 3D LiDAR scan of a bridge under static load testing
KR100879601B1 (en) Equipment for measuring displacement for construction using optical fiber sensor and Method thereof
CN111608213A (en) Method and device for measuring horizontal displacement of foundation pit supporting pile
JP2640766B2 (en) Method and apparatus for detecting relative angle in two-dimensional measurement by laser displacement meter
KR100456485B1 (en) A transformation survey method and apparatus of the underground
Qiu et al. Terrestrial laser scanning for deformation monitoring of the thermal pipeline traversed subway tunnel engineering
JP2001153623A (en) Displacement monitoring fiber sensor and displacement measuring method using the same
JPH08334420A (en) Structure and method for detecting surface temperature distribution
JP3867011B2 (en) Tunnel development plan and how to create it
JP3434207B2 (en) Installation method of optical fiber sensor for measuring circumferential strain of tunnel wall
KR101266159B1 (en) Measuring apparatus for displacement and measuring system using the same
JP4460123B2 (en) Position guidance device for slope formation
JP2004028630A (en) Method for measuring road surface form
JP3382833B2 (en) Ground and cliff deformation detection method
RU2158899C1 (en) Test structure for calibration of scanning sounding microscope
JP2023036152A (en) Method for measuring inner space displacement
RU2164575C1 (en) Device for measurement of ground cryosaltfluctuation displacement

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051102

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051124

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060320

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060405

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090630