JPS6295402A - Rotational angle detector - Google Patents

Rotational angle detector

Info

Publication number
JPS6295402A
JPS6295402A JP23602285A JP23602285A JPS6295402A JP S6295402 A JPS6295402 A JP S6295402A JP 23602285 A JP23602285 A JP 23602285A JP 23602285 A JP23602285 A JP 23602285A JP S6295402 A JPS6295402 A JP S6295402A
Authority
JP
Japan
Prior art keywords
hall elements
magnetic flux
angle
rotating shaft
magnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23602285A
Other languages
Japanese (ja)
Inventor
Tokio Sugi
時夫 杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiso Co Ltd
Original Assignee
Tokyo Keiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiso Co Ltd filed Critical Tokyo Keiso Co Ltd
Priority to JP23602285A priority Critical patent/JPS6295402A/en
Publication of JPS6295402A publication Critical patent/JPS6295402A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To measure an angle with extremely high precision by arranging two Hall elements at a proper mutual angle. CONSTITUTION:The two Hall elements 9 and 10 are fixed in the gap between magnets 7 and 8 while having magnetic flux sensitive surfaces 9a and 10a at 90 deg. to each other, and angles of theta and theta-90 deg. of magnetic flux penetrating the two Hall elements 9 and 10 vary through the rotation of a rotating shaft 5. Further, feeders 11a and 11b and signal lines 12a and 12b are connected to the Hall elements 9 and 10 respectively and the current from a current supply circuit 13 is supplied to the Hall elements 9 and 10 through the feeders 11a and 11b. A microprocessor 15 calculates the angular displacement theta of the rotating shaft from the signals from the Hall elements 9 and 10 and the angular displacement is converted by a D/A converter 19 into an analog value, which is sent out.

Description

【発明の詳細な説明】 3発1j1の詳1細な説151 〔産業上の利用分デ?〕 未発IIは液面計、温度51、圧力計等に利用可能な回
転rQ度検出奏に関する。
[Detailed description of the invention] Detailed theory of 3 shots 1j1 151 [Industrial usage? ] Unreleased II relates to a rotation rQ degree detection function that can be used for a liquid level gauge, temperature 51, pressure gauge, etc.

〔従来の技術〕[Conventional technology]

従来から液面計の回転部分、温度計のバイメタル、圧力
、41のブルドン管などの回転部分の変位角度を検出す
る装置として種々のものが用いられており、その1つと
して第4,5図番こ示すホール素子を用いたものがある
Conventionally, various devices have been used to detect the displacement angle of rotating parts such as the rotating parts of liquid level gauges, bimetallic thermometers, pressure, and Bourdon tubes. There is one using a Hall element as shown below.

これは回転u(能な一対のマグネット1.2により作ら
れる磁束3中にホール素子4を11ツけ、ホー )Lt
 素子4 (7) ’A Ijl 而4 a ニ11 
東v:Iff B、感磁面4dとの角度0の磁束を加え
、給電端子に電流Iを浣すと、出力端子A−B間に E=に・工・B 5InO@II拳e争(1)K:比例
定数 なる0に比例した起電力Eが生じることを利用している
This is the rotation u (with 11 Hall elements 4 in the magnetic flux 3 created by a pair of magnets 1 and 2) Lt
Element 4 (7) 'A Ijl 4 a d11
East v: If B, when a magnetic flux at an angle of 0 with the magnetically sensitive surface 4d is applied and a current I is applied to the power supply terminal, E=Ni・B・B 5InO@II fight ( 1) K: Uses the fact that an electromotive force E proportional to 0, which is a proportionality constant, is generated.

したがって第5図のように、感磁面4aとの角度0が可
変で、感磁面における磁束密度Bが一定であるような回
動iIT能なマグネットl、2をホール素子の外側に設
けることにより、非接触の角度検出器を得ることができ
る。
Therefore, as shown in FIG. 5, rotatable magnets 1 and 2 are provided outside the Hall element so that the angle 0 with the magnetically sensitive surface 4a is variable and the magnetic flux density B on the magnetically sensitive surface is constant. Accordingly, a non-contact angle detector can be obtained.

このような角度検出器は、構造が簡単で小型にでき、コ
ストも安価であるが、上記(1)式かられかるように、
磁束密Iff Bが変化すると出力(/i Eが影!を
うける欠点がある。
Such an angle detector has a simple structure, can be made small, and is inexpensive, but as can be seen from equation (1) above,
There is a drawback that when the magnetic flux density IffB changes, the output (/iE) is affected.

ところで現在実用に供せられているマグネットは大別し
て下記の3種類のものがある。
By the way, magnets currently in practical use can be broadly classified into the following three types.

a、希土類マグネット b、フェライトマグネット Cアルニコマグネット このうち、bは温度により大[11に磁束密度Bが変化
する。またCは温度による磁束密度の変化はきわめて小
さいが、外部からの磁気により減磁してBが小さくなる
ことがある。aは温度の影響がbより小さく、減磁もほ
とんどないので、aのマグネットを用いれば第4図の角
度検出器を実用に供することができるが、広い温度範囲
においては、Bの温度変化のために高精度の検出器を得
るのは困難である。
a, rare earth magnet b, ferrite magnet C alnico magnet Among these, b has a large magnetic flux density B that changes depending on the temperature [11]. Further, although C has a very small change in magnetic flux density due to temperature, B may become small due to demagnetization due to external magnetism. Since magnet a is less affected by temperature than b and has almost no demagnetization, the angle detector shown in Fig. 4 can be put to practical use by using magnet a, but in a wide temperature range, the temperature change of B is Therefore, it is difficult to obtain a highly accurate detector.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、ホール素子の起電力が貫通磁束角度の51n
Oに比例することにE [、i L、互いに磁束感応面
を90°ずらした2個のホール素子を設け、この2つの
起電力の比をとることで、磁束密度の変化に影響されな
い精度の高い角度検出をできるようにした。
In the present invention, the electromotive force of the Hall element is 51n of the penetrating magnetic flux angle.
E [, i L, which is proportional to O, is obtained by providing two Hall elements whose magnetic flux-sensitive surfaces are shifted by 90 degrees from each other, and by taking the ratio of these two electromotive forces, accuracy that is not affected by changes in magnetic flux density can be obtained. Enables high angle detection.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の回転角度検出器は、回転体の回転軸に取り付け
られ1回転軸の回転とともに回動可fiな一対のマグネ
ットを対峙するように配設し、同マグネットの間に互い
に磁束感応面を適当な偏位角度だけずらした2つのホー
ル素−rを設け、同ホール素子を1τ通する磁束により
発生する2つの起電力の比により回転体の回転角度を検
出する構成としである。
The rotation angle detector of the present invention includes a pair of magnets that are attached to the rotation axis of a rotating body and are rotatable with each rotation of the rotation axis, and are arranged so as to face each other, and a magnetic flux sensitive surface is provided between the magnets. Two Hall elements -r are provided which are shifted by an appropriate deflection angle, and the rotation angle of the rotating body is detected by the ratio of two electromotive forces generated by magnetic flux passing through the Hall elements for 1τ.

〔作用〕[Effect]

回転体の角度変位に伴なって、互いに80°の位相差を
もって配設された2つのホール素子の貫通磁束角度が変
化し、これにより発生する各ホール素子の起電力の比に
より回転体の変位角度を検出する。
With the angular displacement of the rotating body, the penetrating magnetic flux angle of the two Hall elements arranged with a phase difference of 80 degrees changes, and the displacement of the rotating body is determined by the ratio of the electromotive force of each Hall element generated thereby. Detect angle.

〔実施例〕〔Example〕

以下本発明の一実施例を添付図面に示す具体例により詳
細に説IJ+する。
Hereinafter, one embodiment of the present invention will be explained in detail with reference to a specific example shown in the accompanying drawings.

第1.2図において、被計測物である角度変化をする図
示にはない回転体に接続された回転軸5の先端にはコの
字型の継鉄6が接続され。
In FIG. 1.2, a U-shaped yoke 6 is connected to the tip of a rotating shaft 5 that is connected to an object to be measured, a rotating body (not shown) that changes angle.

継鉄6の端部にはN、Sが相対するようにした一対のマ
グネット7.8が取り付けられており。
A pair of magnets 7.8 with N and S facing each other are attached to the end of the yoke 6.

マグネット7からの磁束がマグネット8へ達するように
なっている。
The magnetic flux from magnet 7 reaches magnet 8.

マグネット7と8との間隙には2つのホール素子9.1
0がη二いに磁束感応面9a; 10aを90°ずらし
て固定されており、これにより回転軸5の回転によって
2つのホール素子9、IOを貫通する磁束角II Oと
0−90°が変化するようになっている。
There are two Hall elements 9.1 in the gap between magnets 7 and 8.
0 is fixed by shifting the magnetic flux sensitive surface 9a; It's about to change.

またホール素子9.10には給電線11a、llbと信
−)線12a、 +2bがそれぞれ接続され、第3図に
示すように給電線+1a、11bによって型温供給回路
13からの電流が各ホールJ: −f 9、lOへ供給
されるようになっている。
In addition, power supply lines 11a and 11b and signal lines 12a and +2b are connected to the Hall element 9.10, respectively, and as shown in FIG. J: -f 9, is designed to be supplied to lO.

さらにホールぶ了9,10からの信号線!2a、 12
bは増幅姦ロヘ接続され、増幅された電圧値はマイクロ
プロセッサ15からの制御信号によりサンプルホールド
回路1Bにラッチされるようになっており、ラッチされ
た信号はマルチプレクサ17によって順次A /’ D
コンバータ18を経てマイクロプロセッサ15に入力さ
れる。マイクロプロセッサ15では、各ホール素子9.
10からの信号より回転軸の角度変位0を演算して算出
し、 D/Aコンバータ19によってアナロ5グ変換し
て送出する。
In addition, signal lines from halls 9 and 10! 2a, 12
b is connected to the amplification circuit, and the amplified voltage value is latched into the sample and hold circuit 1B by a control signal from the microprocessor 15, and the latched signal is sequentially converted to A/'D by the multiplexer 17.
The signal is input to the microprocessor 15 via the converter 18. In the microprocessor 15, each Hall element 9.
The angular displacement 0 of the rotating shaft is calculated from the signal from 10, converted into analog 5 by the D/A converter 19, and sent.

次に未発151の動作原理について述べる。第2図にお
いて、ホール素子9の磁束感応面と心束3のなす角度を
0とすると、ii’ij記(1)式より、ホール素子9
の出力端子A2−B2間にはEz=に2・I2・B・5
1nO−・ellll(2)K2:比例定数 B:磁束密度 なる出力電圧が生じる。
Next, the principle of operation of the unreleased 151 will be described. In FIG. 2, if the angle between the magnetic flux sensitive surface of the Hall element 9 and the core flux 3 is 0, then from equation (1) in ii'ij, the Hall element 9
Ez=2・I2・B・5 between the output terminals A2 and B2 of
An output voltage of 1nO-.ellll (2) K2: proportionality constant B: magnetic flux density is generated.

一方ホール素子10は、磁束感応面が90”ずれている
から、出力端子A1−B1間にはE1= K(・Il 
e B −gin(90” −0)=K16+、・B 
−cosOe a a・・(3)に1:比例定数 なる出力電圧が生じる。
On the other hand, since the magnetic flux sensitive surfaces of the Hall element 10 are shifted by 90", E1=K(・Il
e B −gin(90” −0)=K16+,・B
-cosOe a a... (3) An output voltage of 1: proportionality constant is generated.

したがって(2) 、 (3)式より次式が成立つ。Therefore, from equations (2) and (3), the following equation holds true.

すなわち式中よりBが消去されるため、2個のホール素
子の出力電圧E1、K2の比を求めて角度を算出すれば
、角度はマグネットの磁束密度Bに無関係となり、たと
えBが変化しても角度の検出を高精度で行なうことがで
きる。
In other words, since B is eliminated from the equation, if the angle is calculated by finding the ratio of the output voltages E1 and K2 of the two Hall elements, the angle becomes irrelevant to the magnetic flux density B of the magnet, even if B changes. The angle can also be detected with high precision.

なお(4)または(5)式の分母が分子にくらべて著し
く小さいと演算精度のうえで好ましくないので、K2<
<Elならば(5)式を、K2>>Elならば(4)式
を用いるとよい。
Note that if the denominator of equation (4) or (5) is significantly smaller than the numerator, it is undesirable in terms of calculation accuracy, so K2<
If <El, then equation (5) should be used, and if K2>>El, equation (4) should be used.

最終的に0を求めるには、 tan Oまたはcoto
からOを求める演算が必要なので、第3図のように電気
信すをデジタル量に変換し、マイクロプロセッサ等でデ
ジタル演算を行なう。
To finally find 0, use tan O or coto
Since it is necessary to perform an operation to obtain O from the above, the electrical signal is converted into a digital quantity as shown in FIG. 3, and the digital operation is performed using a microprocessor or the like.

また、(4) 、 (5)式では0の範囲はO≦0≦ 
180゜ となるが、El、K2の正負によって表1に小す区分け
をすれば、O〜 360°の連続測定ができる。
Also, in equations (4) and (5), the range of 0 is O≦0≦
The angle is 180°, but if the angle is divided into smaller sections according to the positive and negative values of El and K2 as shown in Table 1, continuous measurement from 0 to 360° can be performed.

なお、K1、K2はホール素子に固有の定数で、やはり
温;■による影響をうけるが、゛1刊毎回路においてに
1・II、に2・■2が使用品If R凹円で一定にな
るように°電気回路を設計すれば問題ない。
In addition, K1 and K2 are constants specific to the Hall element, and are also affected by temperature. There will be no problem if you design the electrical circuit so that.

表  1 〔未発IIの効果〕 以上のように未発IIによれば、2つのホールに子を互
いに適当な角度だけずらして配こしたことにより、温度
等による磁束の変化、外部磁界の影響を相殺することが
でき、非常に高精度の角度A11l定が可能となる。
Table 1 [Effects of Unreleased II] As described above, according to Unreleased II, by arranging the children in the two holes so that they are shifted from each other by an appropriate angle, changes in magnetic flux due to temperature etc. and the influence of external magnetic fields are reduced. can be canceled out, making it possible to determine the angle A11l with very high accuracy.

またホール;に子は消費電力も少なく、装置全体を小型
化でき、しかも磁束角度の変化に対する応答性も良いた
め1時間Rれのない角度測定が可能となる。
In addition, Hall Niko consumes less power, allows the entire device to be miniaturized, and has good responsiveness to changes in magnetic flux angle, making it possible to measure angles without R deviation for one hour.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る回転角度検出器の一例を示す斜視
図、第2図はマグネットとホール素子との角度関係を示
す図、第3図はホール素子−からの信りを処理する回路
のブロック図、第4図と第5図はは従来の角度検出器の
ホールJ2 i’−とマグネットとの関係を示す図であ
る。 λ中 1.2.8、?−・マグネット 3・・・磁束1.9.
10・・・ホール素子4a、9a、10a−磁束感応面
5・・・・・回転軸  6・・・継鉄 1 la、 llb  11 − 給 1M、  線 
       12a 、 12b  會  争 信 
() 線13・・・電流供給回路  14 ・・・増幅
器15目・マイクロプロセッサ 16・ロサンプルホールド回路 17111I・マルチプレクサ 18・・・A/Dコンバータ 19・自・D/Aコンバータ 20・・・軸受
Fig. 1 is a perspective view showing an example of the rotation angle detector according to the present invention, Fig. 2 is a diagram showing the angular relationship between the magnet and the Hall element, and Fig. 3 is a circuit for processing the feedback from the Hall element. FIGS. 4 and 5 are block diagrams showing the relationship between the hole J2 i'- of the conventional angle detector and the magnet. 1.2.8 in λ? -・Magnet 3...Magnetic flux 1.9.
10... Hall elements 4a, 9a, 10a - magnetic flux sensitive surface 5... rotating shaft 6... yoke 1 la, llb 11 - supply 1M, wire
12a, 12b Conflict
() Line 13... Current supply circuit 14... Amplifier 15, Microprocessor 16, Loss sample hold circuit 17111I, Multiplexer 18... A/D converter 19, Self, D/A converter 20... Bearing

Claims (1)

【特許請求の範囲】[Claims] 回転体の回転軸に取り付けられ、回転軸の回転とともに
回動可能な一対のマグネットを対峙するように配設し、
同マグネットの間に互いに磁束感応面を適当な偏位角度
だけずらした2つのホール素子を設け、同ホール素子を
貫通する磁束により発生する2つの起電力の比により回
転体の回転角度を検出することを特徴とする回転角度検
出器。
A pair of magnets that are attached to the rotating shaft of the rotating body and can rotate as the rotating shaft rotates are arranged so as to face each other,
Two Hall elements whose magnetic flux-sensitive surfaces are shifted by an appropriate deviation angle are provided between the same magnets, and the rotation angle of the rotating body is detected by the ratio of the two electromotive forces generated by the magnetic flux passing through the Hall elements. A rotation angle detector characterized by:
JP23602285A 1985-10-21 1985-10-21 Rotational angle detector Pending JPS6295402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23602285A JPS6295402A (en) 1985-10-21 1985-10-21 Rotational angle detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23602285A JPS6295402A (en) 1985-10-21 1985-10-21 Rotational angle detector

Publications (1)

Publication Number Publication Date
JPS6295402A true JPS6295402A (en) 1987-05-01

Family

ID=16994603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23602285A Pending JPS6295402A (en) 1985-10-21 1985-10-21 Rotational angle detector

Country Status (1)

Country Link
JP (1) JPS6295402A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01173604U (en) * 1988-05-25 1989-12-08
JPH06241765A (en) * 1993-02-19 1994-09-02 Makome Kenkyusho:Kk Displacement sensor
JPH07243804A (en) * 1994-03-01 1995-09-19 Japan Servo Co Ltd Noncontact potentiometer
US7030608B2 (en) 2004-05-14 2006-04-18 Denso Corporation Rotational angle sensing device and assembling method thereof
US7233139B2 (en) 2004-06-14 2007-06-19 Denso Corporation Method and apparatus for sensing angle of rotation which compensates an output signal from a magnetic sensor element irrespective of the range of rotational angles of a target object
US7268540B1 (en) 2006-02-14 2007-09-11 Denso Corporation Rotational angle detector
JP2007286059A (en) * 2006-04-12 2007-11-01 Valeo Vision Method and device for measuring rotation angle position of headlight by several magnetic field determining means
US7355391B2 (en) 2005-09-21 2008-04-08 Denso Corporation Electromechanical conversion device
US7671585B2 (en) 2006-09-26 2010-03-02 Denso Corporation Rotation angle detecting device with a selecting means for selecting a pair of output signals of the magneto-sensing elements
US7893458B2 (en) 2006-09-01 2011-02-22 Denso Corporation Semiconductor device having lateral MOS transistor and zener diode
JP2012198048A (en) * 2011-03-18 2012-10-18 Tokyo Keiso Co Ltd Method for correcting detection signal of angle sensor
JP2014100079A (en) * 2012-11-19 2014-06-05 Shimano Inc Electric reel
JP2017190975A (en) * 2016-04-12 2017-10-19 株式会社デンソー Location detection device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58168913A (en) * 1982-03-31 1983-10-05 Toshiba Corp Detector for rotating position

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58168913A (en) * 1982-03-31 1983-10-05 Toshiba Corp Detector for rotating position

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01173604U (en) * 1988-05-25 1989-12-08
JPH06241765A (en) * 1993-02-19 1994-09-02 Makome Kenkyusho:Kk Displacement sensor
JPH07243804A (en) * 1994-03-01 1995-09-19 Japan Servo Co Ltd Noncontact potentiometer
US7030608B2 (en) 2004-05-14 2006-04-18 Denso Corporation Rotational angle sensing device and assembling method thereof
US7233139B2 (en) 2004-06-14 2007-06-19 Denso Corporation Method and apparatus for sensing angle of rotation which compensates an output signal from a magnetic sensor element irrespective of the range of rotational angles of a target object
US7355391B2 (en) 2005-09-21 2008-04-08 Denso Corporation Electromechanical conversion device
DE102007000086B4 (en) * 2006-02-14 2020-11-05 Denso Corporation Rotation angle detection device
US7268540B1 (en) 2006-02-14 2007-09-11 Denso Corporation Rotational angle detector
JP2007286059A (en) * 2006-04-12 2007-11-01 Valeo Vision Method and device for measuring rotation angle position of headlight by several magnetic field determining means
US7893458B2 (en) 2006-09-01 2011-02-22 Denso Corporation Semiconductor device having lateral MOS transistor and zener diode
US7671585B2 (en) 2006-09-26 2010-03-02 Denso Corporation Rotation angle detecting device with a selecting means for selecting a pair of output signals of the magneto-sensing elements
JP2012198048A (en) * 2011-03-18 2012-10-18 Tokyo Keiso Co Ltd Method for correcting detection signal of angle sensor
JP2014100079A (en) * 2012-11-19 2014-06-05 Shimano Inc Electric reel
JP2017190975A (en) * 2016-04-12 2017-10-19 株式会社デンソー Location detection device
US10732008B2 (en) 2016-04-12 2020-08-04 Denso Corporation Position detecting device

Similar Documents

Publication Publication Date Title
JPS6295402A (en) Rotational angle detector
KR101737765B1 (en) Apparatus and method for the redundant, absolute position determination of a movable body
US6484751B2 (en) Position detection for rotary control valves
GB1385189A (en) Remote angle measurement
WO2012111646A1 (en) Rotation angle detection device
JPH02245629A (en) Method of measuring stress of steel utilizing magnetostrictive effect
KR20020006452A (en) Rotation angle sensor
JP2003240598A (en) Digital angle measuring system
JPH0457964B2 (en)
JPS6344730Y2 (en)
JPS5856408B2 (en) magnetic sensor
JPH10122810A (en) Magnetic turning angle sensor
JPS63212803A (en) Measuring device for displacement
US2994037A (en) Phase comparator utilizing hall effect
JPH0211022B2 (en)
US3281684A (en) Null type and direct reading meter with continuously adjustable range having meter scale coupled to potentiometer arm
Tang et al. Design and simulation of a self-calibration based high precision angular displacement sensor
JPH0121903B2 (en)
RU2307427C2 (en) Magnetoresistive field sensor
JPH03226625A (en) Rotation positioner
JPS63158477A (en) Measuring element for three-dimensional magnetic field vector
JP2000055930A (en) Acceleration sensor
JP2576136B2 (en) Magnetic direction measurement device
JPH0211023B2 (en)
JP3422184B2 (en) Magnetic rotation angle sensor