JPS6294942A - Manufacture of thin film - Google Patents

Manufacture of thin film

Info

Publication number
JPS6294942A
JPS6294942A JP23574785A JP23574785A JPS6294942A JP S6294942 A JPS6294942 A JP S6294942A JP 23574785 A JP23574785 A JP 23574785A JP 23574785 A JP23574785 A JP 23574785A JP S6294942 A JPS6294942 A JP S6294942A
Authority
JP
Japan
Prior art keywords
silicon nitride
nitride film
film
substrate
iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23574785A
Other languages
Japanese (ja)
Inventor
Asako Jitsukawa
實川 朝子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP23574785A priority Critical patent/JPS6294942A/en
Publication of JPS6294942A publication Critical patent/JPS6294942A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the oxygen concentration in a silicon nitride film also reducing the interfacial level of silicon nitride film/III-V compound by a method wherein, when the silicon nitride film is formed by plasma chemical vapor growing process on a III-V compound semiconductor substrate, the substrate is impressed with bias voltage. CONSTITUTION:A GaAs wafer e.g. loaded on a carbon susceptor 3 to be heated by a heater 11 is arranged in a quartz reaction tube 1. The inside of quartz tube 1 is pressure-reduced to be exhausted by a rotary pump 4. To deposit a silicon nitride film, silane gas and ammonium gas are led into the quartz tube 1 at the flow ratio of 15:1 through a stainless pipe 5 to be plasma-excited by a high-frequency power supply 6 and a high-frequency coil 8. At this time, the wafer 2 is impressed with bias voltage of -100--200V to form the silicon nitride film.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、膜中不純物の極めて少ない窒化シリコン膜
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a silicon nitride film with extremely low impurities in the film.

〔従来の技術〕[Conventional technology]

従来より■−■族化合物半導体表面に対する安定化膜と
して、プラズマ化学気相成長法により窒化シリコン膜の
形成が試みられてきた。
Conventionally, attempts have been made to form a silicon nitride film by plasma chemical vapor deposition as a stabilizing film on the surface of a ■-■ group compound semiconductor.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

l−かし、プラズマ化学気相成長法により製造された窒
化シリコン膜は膜中不純物として数原子パーセントの酸
素が含まれており、このことが、例えば砒化ガリウム基
板上に窒化シリコン膜を形成させることにより得られる
MIS(Metal−Insulator−8のm1c
onductor)構造トランジスタでは、界面準位密
度を増大させ、特性を低下させる要因の一つとなってい
る(アイイーイーイートランスアクションエレクトロン
デバイス(IEEE、Trans、ED−26゜185
4、1979) )。
However, silicon nitride films manufactured by plasma chemical vapor deposition contain several atomic percent of oxygen as an impurity in the film, and this makes it difficult to form silicon nitride films on, for example, gallium arsenide substrates. MIS (Metal-Insulator-8 m1c) obtained by
In a transistor with a conductor structure, this increases the interface state density, which is one of the factors that deteriorates the characteristics (IEEE, Trans, ED-26°185
4, 1979)).

本発明の目的はこの問題点を解決した窒化シリコン膜の
製造方法を提供することにある。
An object of the present invention is to provide a method for manufacturing a silicon nitride film that solves this problem.

〔問題点を解決するための手段〕[Means for solving problems]

この発明の要旨とするところは、■−v族化合物半導体
基板上にプラズマ化学気相成長法によシ窒化シリコン膜
を形成する際に、基板に/(イアスを印加するものであ
る。
The gist of the present invention is to apply /(ias) to the substrate when a silicon nitride film is formed on the substrate of a -V group compound semiconductor by plasma chemical vapor deposition.

〔作 用〕[For production]

バイアス印加された基板面にはプラズマ中のイオンの一
部が流入し、膜形成過程でも基板面がイオンによシ衝撃
され、形成された膜表面に吸着される不純物ガスをたた
き出し、膜の純化が行われる。(薄膜作成の基礎、P2
S5.1981、日刊工業新聞社)。
Some of the ions in the plasma flow into the bias-applied substrate surface, and during the film formation process, the substrate surface is bombarded with ions, knocking out impurity gases adsorbed on the formed film surface and purifying the film. will be held. (Basics of thin film creation, P2
S5.1981, Nikkan Kogyo Shimbunsha).

〔実施例〕〔Example〕

以下、この発明を実施例に基づき説明する。 Hereinafter, this invention will be explained based on examples.

第1図は、石英反応管1中に■−v族化合物半導体、例
えばGaAgウェーハ2をカーピンサセプタ3上にのせ
た状態を示している。サセプタ3はヒーター1で加熱さ
れる。石英反管1の内部は減圧排気用ロータリーポンf
4で減圧排気を行なう、窒た 化シリコン膜の堆積に「ってはシランガスとアンモニア
ガスとを流量比15対1の比率でステンレス管5より導
入し、かつ高周波電源6と高周波コイル8によりプラズ
マ励起させる。このとき、直流電源9によりウェーハ2
に−100〜−200vのバイアス電圧を印加する。な
お、膜形成時の基板温度は300℃とした。膜の成長速
度は反応ガス圧1torrで200X/分である。
FIG. 1 shows a state in which a ■-v group compound semiconductor, such as a GaAg wafer 2, is placed on a carpin susceptor 3 in a quartz reaction tube 1. In FIG. The susceptor 3 is heated by the heater 1. Inside the quartz tube 1 is a rotary pump f for depressurizing exhaust.
To deposit a silicon nitride film, evacuate under reduced pressure in step 4, silane gas and ammonia gas are introduced through a stainless steel tube 5 at a flow rate ratio of 15:1, and plasma is generated using a high frequency power source 6 and a high frequency coil 8. At this time, the wafer 2 is excited by the DC power supply 9.
A bias voltage of -100 to -200v is applied to. Note that the substrate temperature during film formation was 300°C. The film growth rate is 200X/min at a reaction gas pressure of 1 torr.

以上の工程によシ砒化がリウム基板上に窒化シリコン膜
を形成させた。次の表は本方法によシ形成させた窒化シ
リコン膜中に含まれる酸素濃度及び該窒化シリコン膜と
砒化ガリウム界面の界面準位密度を評価した結果である
。比較して従来法により作製した窒化シリコン膜の場合
も示す。
Through the above steps, a silicon nitride film was formed on the arsenic lithium substrate. The following table shows the results of evaluating the oxygen concentration contained in the silicon nitride film formed by this method and the interface state density at the interface between the silicon nitride film and gallium arsenide. For comparison, the case of a silicon nitride film produced by a conventional method is also shown.

膜製法 膜中酸素濃度(at%)  界面準位密度(α
−2)従来法   5.6       〜1012本
方法   0.60       〜1011膜中酸素
濃度は二次イオン質量分析法により、界面準位密度はC
v法によシ測定した結果である。本方法による窒化シリ
コン膜では膜中酸素濃度は従来法よシー桁減少し、また
、界面準位密度もやはシー桁減少していた。
Film manufacturing method Oxygen concentration in film (at%) Interface state density (α
-2) Conventional method 5.6 ~ 1012 Current method 0.60 ~ 1011 The oxygen concentration in the film was determined by secondary ion mass spectrometry, and the interface state density was determined by C
This is the result of measurement using the v method. In the silicon nitride film produced by this method, the oxygen concentration in the film was reduced by a C order compared to the conventional method, and the interface state density was also reduced by a C order.

したがって、得られた窒化シリコン膜は膜中酸素濃度及
び界面準位密度が、従来の方法による膜に比べ大幅に減
少していることが分る。
Therefore, it can be seen that the oxygen concentration in the film and the interface state density of the obtained silicon nitride film are significantly reduced compared to films made by the conventional method.

〔発明の効果〕〔Effect of the invention〕

この発明はこのようにm−v族化合物基板上に形成させ
る窒化シリコン膜中の酸素濃度を減少させ、窒化シリコ
ン膜/m−V族化合物の界面準位密度を減少させる事が
できる効果を有するものである。
The present invention has the effect of reducing the oxygen concentration in the silicon nitride film formed on the m-v group compound substrate and reducing the interface state density of the silicon nitride film/m-v group compound. It is something.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例に用いたプラズマCVD法により窒化シ
リコン膜を形成させるための装置の概略図である。 1は石英反応管、2はG1Asウェーハ、3はカービン
サセプタ、4はロータリーポンプ、5は原料ガス導入用
ステンレス管、6は高周波電源、7は冷却水、8は高周
波コイル、9は基板バイアス電圧町加用直流電源、10
は基板バイアス印加用電極、11は基板加熱用ヒーター
である。
FIG. 1 is a schematic diagram of an apparatus for forming a silicon nitride film by the plasma CVD method used in the example. 1 is a quartz reaction tube, 2 is a G1As wafer, 3 is a carbine susceptor, 4 is a rotary pump, 5 is a stainless steel tube for introducing raw material gas, 6 is a high frequency power supply, 7 is a cooling water, 8 is a high frequency coil, 9 is a substrate bias voltage DC power supply for town use, 10
1 is an electrode for applying a substrate bias, and 11 is a heater for heating the substrate.

Claims (1)

【特許請求の範囲】[Claims] (1)III−V族化合物半導体基板上にプラズマ化学気
相成長法により窒化シリコン膜を形成する際に、基板に
バイアスを印加することを特徴とする窒化シリコン膜の
製造方法。
(1) A method for manufacturing a silicon nitride film, which comprises applying a bias to the substrate when forming the silicon nitride film on a III-V compound semiconductor substrate by plasma chemical vapor deposition.
JP23574785A 1985-10-21 1985-10-21 Manufacture of thin film Pending JPS6294942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23574785A JPS6294942A (en) 1985-10-21 1985-10-21 Manufacture of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23574785A JPS6294942A (en) 1985-10-21 1985-10-21 Manufacture of thin film

Publications (1)

Publication Number Publication Date
JPS6294942A true JPS6294942A (en) 1987-05-01

Family

ID=16990625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23574785A Pending JPS6294942A (en) 1985-10-21 1985-10-21 Manufacture of thin film

Country Status (1)

Country Link
JP (1) JPS6294942A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021031425A1 (en) * 2019-08-16 2021-02-25 中国科学院上海微系统与信息技术研究所 High-throughput vapor deposition apparatus and vapor deposition method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021031425A1 (en) * 2019-08-16 2021-02-25 中国科学院上海微系统与信息技术研究所 High-throughput vapor deposition apparatus and vapor deposition method

Similar Documents

Publication Publication Date Title
US20210225643A1 (en) Method for deposition of silicon nitride layer using pretreatment, structure formed using the method, and system for performing the method
US10199211B2 (en) Atomic layer deposition of silicon carbon nitride based materials
JP3529989B2 (en) Film forming method and semiconductor device manufacturing method
CN111593329A (en) Cyclical deposition method comprising a processing step and device therefor
EP0015694A2 (en) Method for forming an insulating film on a semiconductor substrate surface
JP2789587B2 (en) Manufacturing method of insulating thin film
US5336361A (en) Method of manufacturing an MIS-type semiconductor device
US5045346A (en) Method of depositing fluorinated silicon nitride
JPS6294942A (en) Manufacture of thin film
JPH01321625A (en) Thin film formation and device therefor
CN110808282A (en) Method for preparing silicon carbide MOSFET gate dielectric layer
CN106711020B (en) Nitridation method of substrate and preparation method of gallium nitride buffer layer
JPS6348817A (en) Epitaxial growth method
JPS60254621A (en) Thin film forming method
KR100966388B1 (en) Method for metal silicate film formation and recording medium
JPS6281032A (en) Manufacture of semiconductor device
JPH0243720A (en) Molecular beam epitaxial growth method
JPS635533A (en) Formation of insulating film
JPH03173421A (en) Impurities doping method
JP3112796B2 (en) Chemical vapor deposition method
JPH02194529A (en) Formation of thin film and apparatus therefor
JPH07235530A (en) Formation of insulating film
JP3063317B2 (en) Vapor growth method of semiconductor thin film
JPS643339B2 (en)
JPS6294943A (en) Manufacture of thin film