JPH01321625A - Thin film formation and device therefor - Google Patents

Thin film formation and device therefor

Info

Publication number
JPH01321625A
JPH01321625A JP15342488A JP15342488A JPH01321625A JP H01321625 A JPH01321625 A JP H01321625A JP 15342488 A JP15342488 A JP 15342488A JP 15342488 A JP15342488 A JP 15342488A JP H01321625 A JPH01321625 A JP H01321625A
Authority
JP
Japan
Prior art keywords
thin film
substrate
vacuum chamber
wall surface
torr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15342488A
Other languages
Japanese (ja)
Inventor
Takeshi Watanabe
渡辺 猛志
Masahiro Tanaka
政博 田中
Kazufumi Azuma
和文 東
Mitsuo Nakatani
中谷 光雄
Tadashi Sonobe
園部 正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15342488A priority Critical patent/JPH01321625A/en
Publication of JPH01321625A publication Critical patent/JPH01321625A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce inclusion of impurities mixing into a film to be formed and enable formation of a semiconductor thin film excellent in characteristics at high speed and low temperature by performing evacuation of a vacuum room to attain a high vacuum while heating its wall surface when performing plasma chemical deposition, and maintaining the evacuation at the specified pressure while cooling the wall surface when forming a film on a substrate. CONSTITUTION:When supplying carrier gas to produce discharge and material gas for film formation onto the specified substrate 6 arranged in a vacuum room 3 so as to cause electron cyclrotron resonance by microwaves and magnetic field to perform plasma chemical deposition, the vacuum room 3 is evacuated into a high vacuum room 3 below 10<-3>Torr while being heated for the wall face. And when forming a film on the substrate by plasma treatment of material gas for thin film formation, the exhaust is maintained at 10<-4>-10<-2>Torr while cooling the wall face. Hereby, gas concentration in vapor phase of H2O, CO2, O2, N2, etc., at the time of film formation can be lowered by one degree of magnitude or below from a conventional device, and according to it the amounts of impurity, etc., such as O, C, N, etc., mixing into the film lowers, and it becomes possible to form a thin film excellent in characteristics.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はプラズマCVDを利用した薄膜形成方法及び薄
膜形成装置に係り、特に電子サイクロトロン共鳴プラズ
マを利用したプラズマ化学蒸着方法に好適な薄膜形成方
法及び薄膜形成装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a thin film forming method and a thin film forming apparatus using plasma CVD, and particularly a thin film forming method suitable for a plasma chemical vapor deposition method using electron cyclotron resonance plasma. and a thin film forming apparatus.

〔従来の技術〕[Conventional technology]

従来の電子サイクロトロン共鳴プラズマ化学蒸着による
薄膜の形成は、例えば半導体薄膜の形成例として特開昭
56−155535号、特開昭61−47628号に記
載のように、プラズマ処理室内を当初10−6〜10−
’ T orr程度まで排気後、10−3〜10弓T 
orrの減圧下で成膜を行っており、成膜時の圧力と当
初のプラズマ処理前の排気後における圧力差は10−2
〜10−’ Torr程度で行っていた。
Formation of thin films by conventional electron cyclotron resonance plasma chemical vapor deposition has been described, for example, in JP-A-56-155535 and JP-A-61-47628 as examples of semiconductor thin film formation. ~10-
' After exhausting to about T orr, 10-3 to 10 bow T
The film is formed under a reduced pressure of orr, and the difference between the pressure during film formation and the pressure after evacuation before the initial plasma treatment is 10-2.
It was performed at about ~10-' Torr.

また、プラズマ処理室は導電性中空容器で構成されてお
り、処理室を構成する壁面については特別配慮はされて
いない。
Further, the plasma processing chamber is composed of a conductive hollow container, and no special consideration is given to the walls forming the processing chamber.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、形成される薄膜中に処理室内からのガ
ス不純物混入の点について何ら配慮されておらず、特に
半導体薄膜等の特性がこの〜ガス不純物の混入によって
大きく影響される薄膜を形成する場合に特性低下を起こ
すことについて十分な検討がなされていない。例えばプ
ラズマ処理する前段の処理室内の真空度にしても高々1
0−■Torr程度の排気であり、また成膜中の圧力は
10”3〜10”” T orrで、その間の圧力差は
10−” 〜10−’程度であり、不純物ガス圧として
は不十分であった。
The above-mentioned conventional technology does not give any consideration to the incorporation of gas impurities from the processing chamber into the formed thin film, and in particular, forms thin films whose characteristics, such as semiconductor thin films, are greatly affected by the incorporation of gas impurities. Sufficient consideration has not been given to the deterioration of characteristics in some cases. For example, the vacuum level in the processing chamber before plasma processing is at most 1.
The exhaust pressure is about 0-■ Torr, and the pressure during film formation is 10"3 to 10" Torr, and the pressure difference between them is about 10-" to 10-', which is an impurity gas pressure. That was enough.

しかも排気系については油拡散ポンプが用いられており
、油は有機物が一般的であることからも、不純ガス濃度
の高い条件下で成膜が行われる構成となっていた。良好
な薄膜を形成するためには、この不純物の成膜中への混
入を最小限度に押える必要があり、発明が解決しようと
する課題は正にこの点にある。本発明者らは、この不純
物の混入経路につき詳細な実験検討を行った結果、比較
的単純な方法で解決できる知見を得た。本発明は、この
知見に基づいて成されたものであり、その目的とすると
ころは、上記課題を解決することにあリ、第1の目的は
改良された電子サイクロトロン共鳴プラズマ化学蒸着に
よる薄膜形成方法を提供することにあり、第2の目的は
それを実施するための薄膜形成装置を提供することにあ
る。
Moreover, an oil diffusion pump is used for the exhaust system, and since the oil is generally an organic substance, the film formation is performed under conditions with a high concentration of impure gas. In order to form a good thin film, it is necessary to minimize the incorporation of impurities into the film, and this is precisely the problem that the invention aims to solve. The present inventors conducted a detailed experimental study on the route of contamination of this impurity, and as a result, obtained knowledge that the problem could be solved by a relatively simple method. The present invention has been made based on this knowledge, and its purpose is to solve the above-mentioned problems.The first purpose is to form a thin film by improved electron cyclotron resonance plasma chemical vapor deposition. It is an object of the present invention to provide a method, and a second object is to provide a thin film forming apparatus for carrying out the method.

〔課題を解決するための手段〕[Means to solve the problem]

上記本発明の第1の目的は、(1)真空室内に配置され
た所定の基板上に、放電を生じさせるキャリアガスと薄
膜形成用原料ガスとを供給しマイクロ波と磁場とで電子
サイクロトロン共鳴を起こしてプラズマ化学蒸着するに
際し、上記真空室の壁面を加熱しなから10−” T 
orr以下の高真室に排気する第1の排気処理工程と、
上記薄膜形成用原料ガスのプラズマ処理による上記基板
への成膜時には前記壁面を冷却しながら10−4〜10
”” T orrに排気維持する第2の排気処理工程と
を有して成ることを特徴とする薄膜形成方法により、ま
た(2)上記基板が誘電体もしくは半導体基板から成り
、上記薄膜形成用原料ガスが少なくとも半導体構成元素
を含み、前記基板上に半導体薄膜を形成することを特徴
とする薄膜形成方法により、また(3)上記半導体構成
元素として少なくともシリコンを含み、上記基板上にシ
リコン系半導体薄膜を形成することを特徴とする薄膜形
成方法により、また(4)上記半導体構成元素が化合物
半導体構成元素から成り、上記基板上に化合物半導体薄
膜を形成することを特徴とする薄膜形成方法により、ま
た(5)上記真空室の壁面の加熱温度を100〜200
℃とすると共に成膜時の上記冷却温度を室温以下とした
ことを特徴とする薄膜形成方法により、また(6)上記
基板が半導体基板から成り、上記半導体構成元素が、前
記基板と異なる構成元素を含み、前記基板上に超格子構
造を有する半導体薄膜を形成することを特徴とする薄膜
形成方法により、また(7)上記基板を誘電体で構成す
ると共に、上記半導体構成元素として少なくともシリコ
ンを含み、前記誘電体基板上にアモルファスシリコン薄
膜を形成することを特徴とする薄膜形成方法により達成
される。
The first object of the present invention is to (1) supply a carrier gas that causes discharge and a raw material gas for thin film formation onto a predetermined substrate placed in a vacuum chamber, and perform electron cyclotron resonance using microwaves and a magnetic field; When performing plasma chemical vapor deposition, the walls of the vacuum chamber must be heated to 10-" T.
a first exhaust treatment step of exhausting the air to a high vacuum chamber below orr;
When forming a film on the substrate by plasma treatment of the raw material gas for forming a thin film, while cooling the wall surface,
and (2) the substrate is made of a dielectric or a semiconductor substrate, and the thin film forming raw material is A thin film forming method characterized in that the gas contains at least a semiconductor constituent element, and a semiconductor thin film is formed on the substrate, and (3) the gas contains at least silicon as the semiconductor constituent element, and a silicon-based semiconductor thin film is formed on the substrate. (4) The semiconductor constituent element is composed of a compound semiconductor constituent element, and a compound semiconductor thin film is formed on the substrate. (5) Set the heating temperature of the wall of the vacuum chamber to 100 to 200.
℃ and the cooling temperature during film formation is below room temperature, and (6) the substrate is a semiconductor substrate, and the semiconductor constituent element is a different constituent element from the substrate. (7) The substrate is made of a dielectric material, and at least silicon is included as the semiconductor constituent element. This is achieved by a thin film forming method characterized by forming an amorphous silicon thin film on the dielectric substrate.

上記本発明の第2の目的は、(1)内部に所定の薄膜を
形成するための試料基板を載置保持する手段を備えてい
る真空室の少なくとも一部に電子サイクロトロン共鳴を
起こすべく磁場形成手段とマイクロ波供給手段とが設け
られていると共に、上記真空室内に放電を生じさせるた
めのキャリアガスと薄膜形成用原料ガスとを導入する手
段が備えられて成る電子サイクロトロン共鳴プラズマ化
学蒸着装置であって、上記真空室の壁面には前記壁面を
加熱する手段と冷却する手段とがそれぞれ併設されると
共に前記真空室の真空排気系として、真空度を少なくと
も10”” Torr以下の高真空に排気可能な排気能
力の大なる排気系と、10−2〜10−4T orrに
維持する小なる排気系とを具備して成ることを特徴とす
る薄膜形成装置により、また(2)上記真空室の壁面を
加熱する手段を通電によるヒータで構成すると共に、上
記併設された冷却手段を壁面に冷却媒体を循環する通路
の設けられた2重隔壁で構成し、しかも前記壁面の加熱
手段は。
The second object of the present invention is to (1) form a magnetic field to cause electron cyclotron resonance in at least a portion of a vacuum chamber that is equipped with means for placing and holding a sample substrate for forming a predetermined thin film therein; An electron cyclotron resonance plasma chemical vapor deposition apparatus comprising: a means for supplying microwaves; and a means for introducing a carrier gas and a raw material gas for forming a thin film into the vacuum chamber to generate an electric discharge. A means for heating the wall surface and a means for cooling the wall surface are respectively installed on the wall surface of the vacuum chamber, and as an evacuation system for the vacuum chamber, the degree of vacuum is evacuated to a high vacuum of at least 10'' Torr or less. By means of a thin film forming apparatus characterized in that it is equipped with an exhaust system with a large exhaust capacity and a small exhaust system that maintains the exhaust capacity at 10-2 to 10-4 Torr, and (2) The means for heating the wall surface is constituted by a heater using electricity, and the cooling means provided in parallel therewith is constituted by a double partition wall provided with a passage for circulating a cooling medium in the wall surface, and the means for heating the wall surface is constituted by a double partition wall provided with a passage for circulating a cooling medium in the wall surface.

排気能力の大なる排気系を動作させ上記真空室内を10
’″@Torr以下の高真空に排気する第1の排気処理
期間中に動作させ、一方前記壁面の冷却手段は排気能力
の小なる排気系を動作させて真空度を10−4〜10−
2Torrに排気維持する成膜中における第2の排気処
理期間中に動作させるよう前記壁面の加熱手段と冷却手
段とを第1.第2の排気処理期間に連動させて切り換え
る手段を設けて成ることを特徴とする薄膜形成装置によ
り、また(3)上記試料基板を載置保持する手段に、基
板を所定温度に加熱する手段を設けると共に少なくとも
導電性を有する試料台で構成し、しかも上記真空室に対
し電気的に浮遊状態とさせるか、もしくは負の電位を印
加する手段を設けて成ることを特徴とする薄膜形成装置
によって達成される。
Operate the exhaust system with a large exhaust capacity to vacuum the vacuum chamber for 10 minutes.
'''@Torr is operated during the first evacuation treatment period for evacuation to a high vacuum below Torr, while the cooling means for the wall surface is operated by an evacuation system with a small evacuation capacity to reduce the degree of vacuum to 10-4 to 10-
The heating means and the cooling means for the wall surface are operated during the second evacuation treatment period during film formation to maintain evacuation at 2 Torr. The thin film forming apparatus is characterized in that it is provided with means for switching in conjunction with the second exhaust treatment period, and (3) the means for mounting and holding the sample substrate is provided with means for heating the substrate to a predetermined temperature. Achieved by a thin film forming apparatus characterized in that it is provided with at least a conductive sample stage, and is further provided with means for electrically floating in the vacuum chamber or for applying a negative potential. be done.

上記排気系としては油を用いない排気系として例えばタ
ーボ分子ポンプが好ましく、また、排気能力も大なる排
気系は少なくとも排気速度が350Q/s以上あるもの
が好ましい。また、真空室の高い真空度を維持するため
に、各部品のシール面は従来装置のようにゴム系のもの
を使用せず、例えば銅や金などの金属ガスケットでシー
ルすることが望ましい。このような構成により、本発明
の真空室の気密性をHeリーク速度による気密性テスト
で10−”Torr、 Q/s以下とすることができ、
在来装置の10−’ T orr 、Ω/Sに比較して
4桁も高い気密性を維持することができる。また、本発
明の成膜時における真空室内の圧力とキャリアガスや成
膜の原料ガス等のガス導入前の圧力との差は前述のとお
り10−’ Torr以下、好ましくはto−■Tor
r程度とすることが望ましい。
As the above-mentioned exhaust system, a turbo molecular pump, for example, is preferable as an exhaust system that does not use oil, and an exhaust system with a large exhaust capacity is preferably one having an exhaust speed of at least 350 Q/s or more. Furthermore, in order to maintain a high degree of vacuum in the vacuum chamber, it is desirable that the sealing surfaces of each component be sealed with metal gaskets, such as copper or gold, instead of using rubber-based materials as in conventional devices. With such a configuration, the airtightness of the vacuum chamber of the present invention can be reduced to 10-" Torr, Q/s or less in an airtightness test using He leak rate,
It is possible to maintain airtightness that is four orders of magnitude higher than the 10-' Torr, Ω/S of the conventional device. Further, the difference between the pressure in the vacuum chamber during film formation of the present invention and the pressure before introducing gases such as carrier gas and raw material gas for film formation is 10-' Torr or less, preferably to-■ Torr, as described above.
It is desirable to set it to about r.

さらにまた、本発明においては、試料基板を真空室内に
出し入れするため減圧排気可能なロードロック室を真空
室に接続することにより、さらに真空室内に混入するガ
ス分子量を低減させることができる。
Furthermore, in the present invention, by connecting a load-lock chamber that can be depressurized and evacuated to the vacuum chamber in order to take the sample substrate in and out of the vacuum chamber, it is possible to further reduce the molecular weight of gas mixed into the vacuum chamber.

このような各種手段をとることにより、成膜時に膜中に
混入する不純物を極力減少させることができる。
By taking such various measures, impurities mixed into the film during film formation can be reduced as much as possible.

〔作用〕[Effect]

本発明で真空室の到達真空度を10−’ T orr以
下にする事によって、成膜時のN20.Co2,02゜
N2等の気相中のガス濃度を従来の装置より1桁以上低
下させると、それに応じて膜中に混入する0、C,N等
の不純物量も低下する事ができる。
In the present invention, by setting the ultimate vacuum degree of the vacuum chamber to 10-' Torr or less, N20. When the concentration of gases such as Co2, 02°N2, etc. in the gas phase is lowered by one order of magnitude or more than in conventional devices, the amount of impurities such as 0, C, and N mixed into the film can be reduced accordingly.

その結果、特性の良い薄膜を形成する事が可能となる。As a result, it becomes possible to form a thin film with good characteristics.

具体的には本発明で真空室の側面を加熱手段で加熱脱着
し、吸着分子を減少させる機構を備える事により真空室
壁面のN20.Co2等の吸着ガス分子量を低減させ、
さらに好ましくは各種真空室との接続部のシール面を金
属ガスケットでシールした真空室とする事によりゴム○
リングシール面を必要最小限にとどめ真空室のリークを
低減させる。この壁面の加熱温度は通常100〜200
℃に加熱すればよく、この状態で排気能力の大きな排気
系で減圧すれば、 10−’ Torr以下の高真空が
実現できる。また減圧排気可能なロードロック室を利用
して試料の装脱着をする事によって真空室内に混入する
ガス分子量を低減させる。また真空室のHeリーク速度
をIFloT orrQ/ s以下とする事によって真
空室内に混入するガス分子量を低減させる。電子サイク
ロトロン共鳴マイクロ波プラズマ化学蒸着法では通常1
0−4〜10−2Torrの圧力域で成膜を行うが、○
、C,N等の不純物の混入が少なく、特性の良い例えば
半導体膜を得るためには、キャリアガス(放電ガス)お
よび成膜原料ガス(反応ガス)等のガス導入前の圧力が
、成膜時における圧力の10−4以下とする事が望まし
く、このためには真空室の気密性とともに排気速度の大
きな排気機構を備える事が必要である。このための排気
装置の排気速度は350Q/s以上大きいものが好まし
いが、成膜時にこの排気速度の大きい排気装置を共用し
ようとすると成膜速度の制御性に問題が生じるので、真
空室には排気速度の大きい排気専用の排気装置と成膜時
用の排気装置を備える事が望ましい。あるいは、排気能
力の大なる一つの排気系を共用し、排気弁に口径の大き
いものと小さいものとを並列に設け、この弁を切り換え
て使用してもよい。上記排気装置は排気原理に油を用い
ないものである事が、薄膜中へのCの混入を減少させる
ために望ましい。具体的にはターボ分子ポンプがこの用
途に好適である。
Specifically, in the present invention, the N20. Reduces the molecular weight of adsorbed gases such as Co2,
More preferably, the sealing surfaces of the connection parts with various vacuum chambers are sealed with metal gaskets, so that rubber ○
The ring seal surface is kept to the minimum necessary to reduce leaks in the vacuum chamber. The heating temperature of this wall is usually 100 to 200
℃, and if the pressure is reduced in this state using an exhaust system with a large exhaust capacity, a high vacuum of 10-' Torr or less can be achieved. In addition, by loading and unloading a sample using a load-lock chamber that can be evacuated, the molecular weight of gas that enters the vacuum chamber is reduced. Furthermore, by setting the He leak rate in the vacuum chamber to IFloT orrQ/s or less, the molecular weight of gas mixed into the vacuum chamber is reduced. In electron cyclotron resonance microwave plasma chemical vapor deposition, usually 1
Film formation is performed in a pressure range of 0-4 to 10-2 Torr, but ○
In order to obtain, for example, a semiconductor film with good characteristics and less contamination of impurities such as , C, and N, the pressure before introducing gases such as carrier gas (discharge gas) and film-forming raw material gas (reactant gas) must be adjusted to It is desirable to keep the pressure at 10 -4 or lower than the current pressure, and for this purpose, it is necessary to make the vacuum chamber airtight and to provide an exhaust mechanism with a high exhaust speed. The exhaust speed of the exhaust device for this purpose is preferably 350 Q/s or more, but if you try to share the exhaust device with a high exhaust speed during film formation, there will be problems in controlling the film formation speed, so the vacuum chamber is not suitable for this purpose. It is desirable to have a dedicated exhaust system with a high exhaust speed and an exhaust system for use during film formation. Alternatively, one exhaust system with a large exhaust capacity may be shared, and exhaust valves with large and small diameters may be provided in parallel, and these valves may be used by switching. It is desirable that the above-mentioned exhaust system does not use oil in its exhaust principle in order to reduce the incorporation of C into the thin film. Specifically, turbomolecular pumps are suitable for this application.

試料基板(以下単に基板と略称する)を保持する支持台
は少なくとも一部が導電性材料からなり、真空室に対し
電気的に非接続(浮遊)状態にあるか、または真空室に
対し負の電位に印加可能とする事は良好な特性の半導体
特性を得るために必要である。この楕成とする事により
、基板表面はプラズマ放電時にプラズマ電位に対し負電
位となるが、この電界によりプラズマ中のイオン種が基
板面に入射し膜質向上に寄与するためである。特開昭第
56−155535号および特開昭第61−47628
号では基板の加熱は不要としているが基板を保持する支
持台が、基板を加熱する機構を有し、基板を加熱した状
態で成膜を行う事が、良好な特性の半導体薄膜を得るた
めに必要である。
The support base that holds the sample substrate (hereinafter simply referred to as the substrate) is at least partially made of a conductive material, and is either electrically disconnected (floating) with respect to the vacuum chamber or in a negative state with respect to the vacuum chamber. Being able to apply a potential is necessary to obtain good semiconductor properties. Due to this elliptical configuration, the substrate surface has a negative potential with respect to the plasma potential during plasma discharge, and this electric field causes ion species in the plasma to enter the substrate surface and contribute to improving film quality. JP-A-56-155535 and JP-A-61-47628
Although heating of the substrate is not required in this issue, it is important to note that the support stand that holds the substrate has a mechanism for heating the substrate, and that film formation is performed with the substrate heated in order to obtain a semiconductor thin film with good properties. is necessary.

しかし、成膜中に基板が加熱されると、その熱の影響で
、真空室が加熱され、成膜中に分解生成し隔壁に吸着さ
れた○、、N、、H,O等のガス分子が脱着され、基板
上の薄膜中に混入するため。
However, when the substrate is heated during film formation, the vacuum chamber is heated due to the influence of the heat, and gas molecules such as ○, N, H, O, etc. are decomposed and produced during film formation and adsorbed on the partition walls. is desorbed and mixed into the thin film on the substrate.

本発明においては、この成膜期間中は真空室の壁面に設
けた冷却手段が壁面を冷却し、これらの吸着ガス分子が
脱着するのを防止する作用を果す。
In the present invention, during this film-forming period, the cooling means provided on the wall of the vacuum chamber cools the wall and serves to prevent these adsorbed gas molecules from being desorbed.

冷却温度は成膜条件により選択するとになるが、水や液
体窒素などが冷媒として用いられる。
The cooling temperature is selected depending on the film forming conditions, and water, liquid nitrogen, or the like is used as the coolant.

半導体薄膜の形成は不純物混入の少ない上述の形成装置
を用いて行うが、成膜時の圧力は10′″4〜10−2
Torrである事が望ましい。この圧力域においてプラ
ズマ中電子の平均自由行程が特定され、プラズマ中電子
のエネルギが特定されて、反応ガスの分解に好適なエネ
ルギとなる。
The semiconductor thin film is formed using the above-mentioned forming apparatus with less contamination of impurities, but the pressure during film formation is 10'4 to 10-2.
It is desirable that it be Torr. In this pressure region, the mean free path of the electrons in the plasma is specified, and the energy of the electrons in the plasma is specified, which becomes the energy suitable for decomposing the reactant gas.

基板を保持する支持台の少なくとも一部を導電性材料と
し、真空室に対し電気的に非接続状態としプラズマ放電
を開始すると基板表面はプラズマ電位に対し10〜30
Vの負電位となる。この状態もしくは真空室に対し5〜
100vの負の電位を支持台に印加した状態で成膜する
と、プラズマ中のイオン種が基板面に入射し成膜面に適
度のエネルギを供給し膜質向上に寄与する。
At least a part of the support base that holds the substrate is made of a conductive material, and when plasma discharge is started by making it electrically disconnected from the vacuum chamber, the surface of the substrate is 10 to 30% higher than the plasma potential.
It becomes a negative potential of V. 5~ for this state or vacuum chamber
When a film is formed with a negative potential of 100 V applied to the support base, ion species in the plasma enter the substrate surface, supplying appropriate energy to the film forming surface and contributing to improving film quality.

成膜時に基板を加熱する事は、多結晶半導体薄膜や単結
晶半導体薄膜の形成時のみならず、アモルファス半導体
薄膜や微結晶半導体薄膜の形成時にも特性向上のために
重要である。成膜時の基板の加熱は生成する欠陥密度を
減少させる効果を有する。
Heating the substrate during film formation is important for improving properties not only when forming polycrystalline semiconductor thin films and single crystal semiconductor thin films, but also when forming amorphous semiconductor thin films and microcrystalline semiconductor thin films. Heating the substrate during film formation has the effect of reducing the density of generated defects.

上述の半導体薄膜の形成方法は基板の加熱を必要とする
もののその加熱温度は通常の熱化学蒸着法やラジオ波域
の高周波放電を利用するRFプラズマ化学蒸着法の場合
と比較すると50℃以上低く設定する事が可能となる。
Although the method for forming semiconductor thin films described above requires heating of the substrate, the heating temperature is more than 50°C lower than that of normal thermal chemical vapor deposition or RF plasma chemical vapor deposition that uses high-frequency discharge in the radio wave range. It is possible to set.

また電子サイクロトロン共鳴プラズマ化学蒸着法では高
速の膜形成が可能であり基板の加熱時間が縮少でき、半
導体薄膜装置の熱履歴を少なくする事ができる。したが
ってドーパント等の熱拡散等の熱履歴に起因する問題の
少ない高特性の半導体薄膜装置が得られる。
Further, the electron cyclotron resonance plasma chemical vapor deposition method enables high-speed film formation, reduces the heating time of the substrate, and reduces the thermal history of the semiconductor thin film device. Therefore, a semiconductor thin film device with high characteristics can be obtained with fewer problems caused by thermal history such as thermal diffusion of dopants and the like.

〔実施例〕〔Example〕

実施例1゜ 以下、本発明の薄膜形成装置の例を第1図を用いて説明
する。第1図は装置の要部構成を示した一部断面説明用
概略図である。同図において、1はマグネトロンであり
、通常0.1〜10GHzのマイクロ波を発生させる。
Example 1 Hereinafter, an example of the thin film forming apparatus of the present invention will be explained with reference to FIG. FIG. 1 is a partially cross-sectional explanatory schematic diagram showing the main structure of the apparatus. In the figure, 1 is a magnetron, which normally generates microwaves of 0.1 to 10 GHz.

発生したマイクロ波は導波管2によって真空室3の一部
に設けられたマイクロ波放電部4゛に導かれる。4は放
電管でありマイクロ波を通すため絶縁物で構成されるが
、この例では石英ガラスで形成されている。5は真空室
内に磁場を形成するためのソレノイドコイルであ為。
The generated microwaves are guided by a waveguide 2 to a microwave discharge section 4' provided in a part of the vacuum chamber 3. Reference numeral 4 denotes a discharge tube, which is made of an insulator to transmit microwaves, and in this example, it is made of quartz glass. 5 is a solenoid coil for creating a magnetic field in the vacuum chamber.

6は試料基板であり、7は加熱機構としてヒータ(図示
せず)の内蔵された試料台である。8はキャリアガスと
しての放電ガス導入管、9は原料ガスとしての反応ガス
導入管であるが、放電ガス導入管8のガス放出部81は
マイクロ波が供給される放電管4の矢印方向にガスを放
出する構成となっており、反応ガス導入管9のガス放出
部91は試料基板6の矢印方向にガスを放出する構成と
なっている。10.11はそれぞれ放電ガスおよび反応
ガスのストップバルブである。12.13は真空室の排
気口に接続するゲートバルブであり、ターボ分子ポンプ
14.15が接続されている。第1のターボ分子ポンプ
14の排気速度は35012/s以上の能力があり、第
2のターボ分子ポンプ15の排気速度は150Q/sと
した。16は試料基板6の出し入れに利用するロードロ
ック室であり、ゲートバルブ17を介して真空室3に接
続されている。18はロードロック室の排気のためのタ
ーボ分子ポンプである。
6 is a sample substrate, and 7 is a sample stage having a built-in heater (not shown) as a heating mechanism. 8 is a discharge gas introduction tube as a carrier gas, and 9 is a reaction gas introduction tube as a raw material gas. The gas discharge portion 91 of the reaction gas introduction tube 9 is configured to discharge gas in the direction of the arrow of the sample substrate 6. 10 and 11 are stop valves for discharge gas and reaction gas, respectively. 12.13 is a gate valve connected to the exhaust port of the vacuum chamber, and a turbo molecular pump 14.15 is connected thereto. The pumping speed of the first turbomolecular pump 14 was 35012/s or higher, and the pumping speed of the second turbomolecular pump 15 was 150Q/s. A load lock chamber 16 is used for loading and unloading the sample substrate 6, and is connected to the vacuum chamber 3 via a gate valve 17. 18 is a turbo molecular pump for exhausting the load lock chamber.

なお、真空室3は上部に放電部41を構成する放電管4
と導電性の中空容器30から成るプラズマ処理部31か
ら構成されており、この中空容器30はこの例ではステ
ンレス製で、隔壁32が2重構造となっており、中空部
33内には水や液体窒素等の冷媒がその出入口33a、
 33bから循環し冷却手段34を構成している。19
は隔壁32を加熱するための加熱手段で、この別ではヒ
ータで構成され、壁面を100〜200℃に加熱して吸
着ガスを脱着できるようになっている。また、本装置は
放電管4と中空容器30との接続部及び真空ゲージのシ
ール部以外(いずれも図面省略)のシール面には金属ガ
スケットでシールし、真空室のHeリーク速度は10−
”T orrΩ/S以下としである。加熱手段19を利
用して真空室3の壁面を焼出し、ターボ分子ポンプ14
で排気した場合の到達真空度は10−’ T orr以
下であり、10””Torrで成膜を行うとしても、放
電ガスおよび反応ガス導入前の圧力は成膜時における圧
力の10−4以下となる気密性と排気機構を有している
。また試料台7は真空室3から電気的に非接続とし、こ
の状態で成膜を行うか、あるいは真空室3に対し負の電
位を印加して成膜を行う構成となっている。
Incidentally, the vacuum chamber 3 has a discharge tube 4 constituting a discharge section 41 in the upper part.
and a conductive hollow container 30. In this example, the hollow container 30 is made of stainless steel and has a double wall structure with partition walls 32. A refrigerant such as liquid nitrogen flows through the inlet/outlet 33a,
It circulates from 33b and constitutes the cooling means 34. 19
1 is a heating means for heating the partition wall 32, which is composed of a heater, and is capable of heating the wall surface to 100 to 200° C. and desorbing the adsorbed gas. In addition, in this device, the sealing surfaces other than the connecting part between the discharge tube 4 and the hollow container 30 and the sealing part of the vacuum gauge (all of which are omitted from the drawings) are sealed with metal gaskets, and the He leak rate of the vacuum chamber is 10-
The heating means 19 is used to bake out the wall surface of the vacuum chamber 3, and the turbo molecular pump 14
When evacuated at It has airtightness and an exhaust mechanism. Further, the sample stage 7 is electrically disconnected from the vacuum chamber 3, and the film formation is performed in this state, or the film formation is performed by applying a negative potential to the vacuum chamber 3.

さらにまた、上記加熱手段19と冷却手段34とは排気
系14.15のターボ分子ポンプとそれぞれ連動する構
成(図面省略)となっている。すなわち、加熱手段19
が隔壁32を加熱している時は、排気能力の大なる第1
のターボ分子ポンプ14が作動して真空室内を10””
 T orr以下の真空度を達成し、その後バルブ10
.11が開いてガスが真空室内に供給され、電子サイク
ロトロン共鳴を起こして成膜が開始される条件下におい
ては、壁面の加熱を冷却に切り換えると共に排気系も排
気能力の大なる第1のターボ分子ポンプから小なる第2
のターボ分子ポンプ15に切り換え、壁面を冷却しなが
ら10−”〜10−’ T orrの減圧下で成膜が進
行する。
Furthermore, the heating means 19 and the cooling means 34 are configured to respectively operate in conjunction with turbomolecular pumps of the exhaust system 14.15 (not shown). That is, the heating means 19
is heating the partition wall 32, the first
The turbomolecular pump 14 operates to pump the vacuum chamber 10""
Achieve a vacuum level below T orr, then close the valve 10.
.. 11 is opened and gas is supplied into the vacuum chamber to cause electron cyclotron resonance and start film formation, the heating of the wall is switched to cooling and the exhaust system is also operated by the first turbo molecule with a large exhaust capacity. Small second from pump
Switching to the turbo molecular pump 15, film formation proceeds under a reduced pressure of 10-'' to 10-' Torr while cooling the wall surface.

なお、第2図は排気系の他の例を示したもので、ターボ
分子ポンプ14を大なる能力のもので構成し、排気コン
ダクタンスの大きなバルブ12と小さなバルブ13とを
ポンプ14に並列に接続し、バルブ12゜13の切換え
で排気速度を制御しようとするものである。このような
構成とすることにより1個のポンプと2つのコンダクタ
ンスの異なるバルブの切換えだけで容易に対応すること
ができる。
Note that FIG. 2 shows another example of the exhaust system, in which the turbo molecular pump 14 is configured with a large capacity one, and a valve 12 with a large exhaust conductance and a valve 13 with a small exhaust conductance are connected to the pump 14 in parallel. However, the exhaust speed is controlled by switching the valves 12 and 13. With such a configuration, it is possible to easily handle the situation by simply switching one pump and two valves with different conductances.

この薄膜形成装置の実際の動作については次に示す薄膜
形成方法の実施例の中で具体的に説明する。
The actual operation of this thin film forming apparatus will be specifically explained in the following embodiment of the thin film forming method.

実施例2゜ 次に本装置を用いてSi系アモルファス膜および微結晶
膜を形成した場合について述べる。成膜にかかる前に、
排気速度の大きな第1のターボ分子ポンプ14によって
排気しながら加熱手段19および試料台7内蔵のヒータ
を利用して真空室のベーキングを行い、加熱手段19に
よる加熱をしない条件での真空室内圧力を10−■To
rr以下とする。ロードロック室16に試料基板を導入
し10−’ T orrまで排気後ゲートバルブ17を
開け、試料台7上に試料基板6を載置し200℃に加熱
する。このとき排気速度の大きなターボ分子ポンプ14
による排気を行い真空室3内の圧力を10−”Torr
以下とした後。
Example 2 Next, a case will be described in which an Si-based amorphous film and a microcrystalline film are formed using this apparatus. Before starting film formation,
The vacuum chamber is baked using the heating means 19 and the heater built into the sample stage 7 while being evacuated by the first turbo-molecular pump 14 with a high pumping speed, and the pressure in the vacuum chamber is maintained under the condition that no heating is performed by the heating means 19. 10-■To
rr or less. A sample substrate is introduced into the load lock chamber 16, and after evacuation reaches 10-' Torr, the gate valve 17 is opened, and the sample substrate 6 is placed on the sample stage 7 and heated to 200°C. At this time, the turbo molecular pump 14 with a large pumping speed
The pressure inside the vacuum chamber 3 is reduced to 10-” Torr.
After doing the following.

ガス供給管8からHeまたはNeまたはArまたは水素
等の放電ガスを供給し、ガス供給管9からモノシランガ
ス等の原料ガスを供給する。ゲートバルブ12を閉じて
排気速度の大きなターボ分子ポンプ14による排気をや
め、排気速度の小さな第2のターボ分子ポンプ15によ
る排気に切り換え、真空室3内の圧力を10−4〜10
−’ Torrとする。磁気コイル5によって放電管4
の部分の最大磁束密度を1800Gaussとし、2.
45G Hzのマイクロ波100Wをマグネトロン1に
よって生成し、導波管2によって放電管4に導き、プラ
ズマ放電を生成させて成膜を行う。このとき試料台は電
気的にフローテングまたは真空室に対し一5〜100v
とした。アモルファス膜を形成する場合はガス供給管8
から供給する放電ガスは必ずしも必要ではなく、原料ガ
スに対する放電ガスの流量比(体積比=放電ガス/原料
ガス)は0〜10程度とする。原料ガスはモノシラン、
ジシラン、ゲルマン、メタン等の水素化ガスおよびこれ
らの水素をハロゲンで置換したガスが利用される。アモ
ルファス膜は10人/S以上の高速で形成可能である。
A discharge gas such as He, Ne, Ar, or hydrogen is supplied from the gas supply pipe 8, and a raw material gas such as monosilane gas is supplied from the gas supply pipe 9. The gate valve 12 is closed, the exhaust by the turbo molecular pump 14 with a high exhaust speed is stopped, and the exhaust is switched to the exhaust by the second turbo molecular pump 15 with a low exhaust speed, and the pressure in the vacuum chamber 3 is reduced to 10-4 to 10
−' Torr. Discharge tube 4 by magnetic coil 5
The maximum magnetic flux density of the part is 1800 Gauss, and 2.
A 45 GHz microwave of 100 W is generated by a magnetron 1, guided to a discharge tube 4 by a waveguide 2, and a plasma discharge is generated to form a film. At this time, the sample stage is electrically set at -5 to 100 V to the floating or vacuum chamber.
And so. When forming an amorphous film, use gas supply pipe 8
The discharge gas supplied from the source gas is not necessarily required, and the flow rate ratio of the discharge gas to the source gas (volume ratio=discharge gas/source gas) is about 0 to 10. The raw material gas is monosilane,
Hydrogenated gases such as disilane, germane, and methane, and gases in which hydrogen is replaced with halogen are used. Amorphous films can be formed at a high speed of 10 people/s or more.

微結晶膜を形成する場合は放電ガスを水素とし、原料ガ
スに対する放電ガスの流量比を10以上とする。原料ガ
ス、放電ガスの種類及び流量比に応じて目的とする水素
含有アモルファスシリコン膜、 *結晶シリコン膜。
When forming a microcrystalline film, the discharge gas is hydrogen, and the flow rate ratio of the discharge gas to the source gas is 10 or more. Depending on the type and flow rate ratio of source gas and discharge gas, the desired hydrogen-containing amorphous silicon film, *crystalline silicon film.

シリコン−ゲルマニウム合金膜、シリコン炭素合金膜等
が得られる。上述の方法で作成したアモルファスシリコ
ン膜中の酸素不純物濃度は3X10”aI−’程度であ
り、真空室の圧力を10−’ T orr程度までしか
排気しない従来装置の場合に較べ1X30程度に減少で
きた。炭素、窒素等の不純物量も1X10程度に減少で
きた。これら不純物量の低減によって膜中の空間電荷密
度及びダングリングボンドによるスピン密度を1/2以
下に低減できた。
A silicon-germanium alloy film, a silicon carbon alloy film, etc. are obtained. The oxygen impurity concentration in the amorphous silicon film prepared by the above method is about 3×10"aI-', which can be reduced to about 1×30 compared to the case of a conventional device that exhausts the pressure in the vacuum chamber only to about 10-' Torr. The amount of impurities such as carbon and nitrogen was also reduced to about 1×10.By reducing the amount of these impurities, the space charge density in the film and the spin density due to dangling bonds were reduced to 1/2 or less.

実施例3゜ 本発明の装置は不純物濃度の低い多結晶膜、単結晶膜の
形成にも利用できる事が確認された。この実施例では放
電ガスに水素を用い原料ガス(シラン)に対する流量比
を10以上とし、圧力10−4T orr 、基板温度
350℃以上で電子移動度4al+2/v−5程度の微
結晶シリコン膜が、基板温度450℃以上でSiのエピ
タキシャル成長膜が形成可能であった。この場合試料基
板を保持する支持台の電位を真空室に対し−50〜−1
00Vとする事は微結晶化温度やエピタキシャル成長温
度の低下に有効であった。
Example 3 It was confirmed that the apparatus of the present invention can be used to form polycrystalline films and single crystal films with low impurity concentrations. In this example, hydrogen is used as the discharge gas, the flow rate ratio to the source gas (silane) is set to 10 or more, and a microcrystalline silicon film with an electron mobility of about 4al+2/v-5 is formed at a pressure of 10-4 Torr and a substrate temperature of 350°C or more. It was possible to form an epitaxially grown Si film at a substrate temperature of 450° C. or higher. In this case, the potential of the support stand that holds the sample substrate is set to -50 to -1 with respect to the vacuum chamber.
Setting the voltage to 00V was effective in lowering the microcrystalization temperature and epitaxial growth temperature.

実施例4゜ この例は化合物半導体薄膜形成の例で、GaAs基板を
用い、原料ガスにトリメチルガリウム及びアルシンを用
い基板温度を450℃以上とすることにより上記実施例
と同様の手法で単結晶を成長させた。得られたGaAs
薄膜は電子線回折で結晶状態を調べたところ単結晶膜で
あることが確認された。
Example 4 This example is an example of forming a compound semiconductor thin film. A GaAs substrate is used, and a single crystal is formed using the same method as in the above example by using trimethyl gallium and arsine as source gases and setting the substrate temperature to 450°C or higher. Made it grow. The obtained GaAs
When the crystalline state of the thin film was examined by electron beam diffraction, it was confirmed that it was a single crystal film.

実施例5゜ この例はSi単結晶基板上に、結晶格子定数の異なる5
i−Geの超格子構造を有する薄膜形成の例である。上
記実施例3のSiエピタキシャル膜の形成と同様な条件
で、ただし原料ガスをシラン及びゲルマンに切り換えて
高速で形成することができた。これは原料ガスの滞留時
間が短い条件で成膜可能なためである。
Example 5゜This example shows five samples with different crystal lattice constants on a Si single crystal substrate.
This is an example of forming a thin film having an i-Ge superlattice structure. The Si epitaxial film could be formed at high speed under the same conditions as those for forming the Si epitaxial film in Example 3, except that the source gases were switched to silane and germane. This is because the film can be formed under conditions where the residence time of the raw material gas is short.

実施例6゜ この例はGaAs基板上に、InGaAs超格子構造を
有する薄膜形成の例である。実施例4と同様の手法によ
り、ただし原料ガスとして更にトリメチルインジウムを
導入し、基板温度を450℃以上とすることにより目的
とする薄膜を形成することができた。
Example 6 This example is an example of forming a thin film having an InGaAs superlattice structure on a GaAs substrate. By using the same method as in Example 4, but by further introducing trimethylindium as a raw material gas and setting the substrate temperature to 450° C. or higher, the desired thin film could be formed.

超格子構造を有する薄膜の形成は、分子線エピタキシー
が有力であったが、成膜速度及び基板の低温化の点で本
件発明の成膜方法の方が量産化により適しており、今後
の発展が期待される。
Molecular beam epitaxy has been effective in forming thin films with a superlattice structure, but the film formation method of the present invention is more suitable for mass production in terms of film formation speed and lower temperature of the substrate, and is expected to be further developed in the future. There is expected.

以上種々の半導体薄膜の形成を例に説明したが、本発明
はこれらに限らず、その他の例えば磁性合金などの金属
の薄膜形成に有効であることは云うまでもない。
Although the formation of various semiconductor thin films has been described above as an example, the present invention is not limited to these, and it goes without saying that the present invention is effective for forming thin films of other metals such as magnetic alloys.

〔発明の効果〕〔Effect of the invention〕

以上述べた様に本発明の薄膜形成方法及び装置によれば
、形成される膜中への不純物混入が低下でき、特性の良
い半導体薄膜の高速低温成膜が可能となり、薄膜半導体
装置の生産性向上の効果があるとともに、薄膜半導体装
置の不純物混入による特性劣化及び加熱劣化が低減でき
る効果がある。
As described above, according to the thin film forming method and apparatus of the present invention, it is possible to reduce the amount of impurities mixed into the formed film, and it is possible to form a semiconductor thin film with good characteristics at high speed and low temperature, thereby increasing the productivity of thin film semiconductor devices. This has the effect of improving the performance of the thin film semiconductor device, and also has the effect of reducing characteristic deterioration and heat deterioration due to impurity contamination of the thin film semiconductor device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の一実施例の薄膜形成装置の
構成説明図である。 図において、 1・・・マグネトロン   2・・・導波管3・・・真
空室      4・・・石英放電管5・・・ソレノイ
ドコイル 6・・・試料基板7・・・試料台     
 8・・・放電ガス供給管9・・・原料ガス供給管  
10.11・・・ストップバルブ12、13.17・・
・ゲートバルブ 14、15.18・・・ターボ分子ポンプ16・・・ロ
ードロック室  19・・・ヒータ(加熱手段)30・
・・中空容器     32・・・隔壁34・・・冷却
手段 代理人弁理士  中 村 純之助
FIGS. 1 and 2 are explanatory diagrams of the configuration of a thin film forming apparatus according to an embodiment of the present invention. In the figure, 1... Magnetron 2... Waveguide 3... Vacuum chamber 4... Quartz discharge tube 5... Solenoid coil 6... Sample substrate 7... Sample stand
8...Discharge gas supply pipe 9...Raw material gas supply pipe
10.11...Stop valve 12, 13.17...
・Gate valve 14, 15.18...Turbo molecular pump 16...Load lock chamber 19...Heater (heating means) 30・
...Hollow container 32...Partition wall 34...Cooling means Representative patent attorney Junnosuke Nakamura

Claims (1)

【特許請求の範囲】 1、真空室内に配置された所定の基板上に、放電を生じ
させるキャリアガスと薄膜形成用原料ガスとを供給しマ
イクロ波と磁場とで電子サイクロトロン共鳴を起こして
プラズマ化学蒸着するに際し、上記真空室の壁面を加熱
しながら10^−^■Torr以下の高真室に排気する
第1の排気処理工程と、上記薄膜形成用原料ガスのプラ
ズマ処理による上記基板への成膜時には前記壁面を冷却
しながら10^−^4〜10^−^2Torrに排気維
持する第2の排気処理工程とを有して成ることを特徴と
する薄膜形成方法。 2、上記基板が誘電体もしくは半導体基板から成り、上
記薄膜形成用原料ガスが少なくとも半導体構成元素を含
み、前記基板上に半導体薄膜を形成することを特徴とす
る請求項1記載の薄膜形成方法。 3、上記半導体構成元素として少なくともシリコンを含
み、上記基板上にシリコン系半導体薄膜を形成すること
を特徴とする請求項2記載の薄膜形成方法。 4、上記半導体構成元素が化合物半導体構成元素から成
り、上記基板上に化合物半導体薄膜を形成することを特
徴とする請求項2記載の薄膜形成方法。 5、上記真空室の壁面の加熱温度を100〜200℃と
すると共に成膜時の上記冷却温度を室温以下としたこと
を特徴とする請求項1記載の薄膜形成方法。 6、上記基板が半導体基板から成り、上記半導体構成元
素が、前記基板と異なる構成元素を含み、前記基板上に
超格子構造を有する半導体薄膜を形成することを特徴と
する請求項2、請求項3もしくは請求項4記載の薄膜形
成方法。 7、上記基板を誘電体で構成すると共に、上記半導体構
成元素として少なくともシリコンを含み、前記誘電体基
板上にアモルファスシリコン薄膜を形成することを特徴
とする請求項2記載の薄膜形成方法。 8、内部に所定の薄膜を形成するための試料基板を載置
保持する手段を備えている真空室の少なくとも一部に電
子サイクロトロン共鳴を起こすべく磁場形成手段とマイ
クロ波供給手段とが設けられていると共に、上記真空室
内に放電を生じさせるためのキャリアガスと薄膜形成用
原料ガスとを導入する手段が備えられて成る電子サイク
ロトロン共鳴プラズマ化学蒸着装置であって、上記真空
室の壁面には前記壁面を加熱する手段と冷却する手段と
がそれぞれ併設されると共に前記真空室の真空排気系と
して、真空度を少なくとも10^−^■Torr以下の
高真空に排気可能な排気能力の大なる排気系と、10^
−^2〜10^−^4Torrに維持する小なる排気系
とを具備して成ることを特徴とする薄膜形成装置。 9、上記真空室の壁面を加熱する手段を通電によるヒー
タで構成すると共に、上記併設された冷却手段を壁面に
冷却媒体を循環する通路の設けられた2重隔壁で構成し
、しかも前記壁面の加熱手段は、排気能力の大なる排気
系を動作させ上記真空室内を10^−■Torr以下の
高真空に排気する第1の排気処理期間中に動作させ、一
方前記壁面の冷却手段は排気能力の小なる排気系を動作
させて真空度を10^−^4〜10^−^2Torrに
排気維持する成膜中における第2の排気処理期間中に動
作させるよう前記壁面の加熱手段と冷却手段とを第1、
第2の排気処理期間に連動させて切り換える手段を設け
て成ることを特徴とする請求項8記載の薄膜形成装置。 10、上記試料基板を載置保持する手段に、基板を所定
温度に加熱する手段を設けると共に少なくとも導電性を
有する試料台で構成し、しかも上記真空室に対し電気的
に浮遊状態とさせるか、もしくは負の電位を印加する手
段を設けて成ることを特徴とする請求項8もしくは請求
項9記載の薄膜形成装置。
[Claims] 1. Plasma chemistry is performed by supplying a carrier gas that causes discharge and a raw material gas for forming a thin film onto a predetermined substrate placed in a vacuum chamber, and causing electron cyclotron resonance with microwaves and a magnetic field. During vapor deposition, a first exhaust treatment step is performed in which the wall surface of the vacuum chamber is heated and the vacuum chamber is evacuated to a high vacuum chamber of 10 Torr or less, and the thin film forming raw material gas is deposited on the substrate by plasma treatment. A method for forming a thin film, comprising a second exhaust treatment step in which the wall surface is cooled and the exhaust gas is maintained at 10^-^4 to 10^-^2 Torr during film formation. 2. The thin film forming method according to claim 1, wherein the substrate is made of a dielectric or a semiconductor substrate, the raw material gas for thin film formation contains at least a semiconductor constituent element, and a semiconductor thin film is formed on the substrate. 3. The thin film forming method according to claim 2, wherein the semiconductor constituent element includes at least silicon, and a silicon-based semiconductor thin film is formed on the substrate. 4. The thin film forming method according to claim 2, wherein the semiconductor constituent element is a compound semiconductor constituent element, and a compound semiconductor thin film is formed on the substrate. 5. The thin film forming method according to claim 1, wherein the heating temperature of the wall surface of the vacuum chamber is set to 100 to 200°C, and the cooling temperature during film formation is set to below room temperature. 6. Claim 2, wherein the substrate is a semiconductor substrate, the semiconductor constituent element includes a constituent element different from that of the substrate, and a semiconductor thin film having a superlattice structure is formed on the substrate. 5. The thin film forming method according to claim 3 or claim 4. 7. The method of forming a thin film according to claim 2, wherein the substrate is made of a dielectric material, contains at least silicon as the semiconductor constituent element, and an amorphous silicon thin film is formed on the dielectric substrate. 8. Magnetic field generating means and microwave supplying means are provided in at least a part of the vacuum chamber, which is equipped with means for placing and holding a sample substrate for forming a predetermined thin film therein, in order to cause electron cyclotron resonance. An electron cyclotron resonance plasma chemical vapor deposition apparatus comprising means for introducing a carrier gas for causing discharge into the vacuum chamber and a raw material gas for forming a thin film into the vacuum chamber, A means for heating the wall surface and a means for cooling the wall surface are respectively provided, and as an evacuation system for the vacuum chamber, an evacuation system with a large evacuation capacity capable of evacuation to a high vacuum of at least 10 Torr or less is provided. And 10^
A thin film forming apparatus characterized by comprising a small exhaust system that maintains the pressure at -^2 to 10^-^4 Torr. 9. The means for heating the wall surface of the vacuum chamber is constituted by a heater powered by electricity, and the cooling means provided therein is constituted by a double partition wall provided with a passage for circulating a cooling medium on the wall surface; The heating means is operated during a first evacuation process period in which an evacuation system with a large evacuation capacity is operated to evacuate the vacuum chamber to a high vacuum of 10^-■ Torr or less, while the cooling means for the wall surface is operated with a large evacuation capacity. The heating means and the cooling means for the wall surface are operated during the second evacuation treatment period during film formation in which a small evacuation system is operated to maintain the degree of vacuum at 10^-^4 to 10^-^2 Torr. and first,
9. The thin film forming apparatus according to claim 8, further comprising means for switching in conjunction with the second exhaust treatment period. 10. The means for mounting and holding the sample substrate is provided with a means for heating the substrate to a predetermined temperature, and is composed of at least a conductive sample stage, and is electrically suspended with respect to the vacuum chamber; 10. The thin film forming apparatus according to claim 8 or 9, further comprising means for applying a negative potential.
JP15342488A 1988-06-23 1988-06-23 Thin film formation and device therefor Pending JPH01321625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15342488A JPH01321625A (en) 1988-06-23 1988-06-23 Thin film formation and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15342488A JPH01321625A (en) 1988-06-23 1988-06-23 Thin film formation and device therefor

Publications (1)

Publication Number Publication Date
JPH01321625A true JPH01321625A (en) 1989-12-27

Family

ID=15562206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15342488A Pending JPH01321625A (en) 1988-06-23 1988-06-23 Thin film formation and device therefor

Country Status (1)

Country Link
JP (1) JPH01321625A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03246973A (en) * 1990-02-23 1991-11-05 Toshiba Corp Thin film transistor and its manufacture
EP0562035A1 (en) 1990-12-11 1993-09-29 Lam Research Corporation Minimization of particle generation in cvd reactors and methods
US5451259A (en) * 1994-02-17 1995-09-19 Krogh; Ole D. ECR plasma source for remote processing
US5453125A (en) * 1994-02-17 1995-09-26 Krogh; Ole D. ECR plasma source for gas abatement
WO1996013621A1 (en) * 1994-10-31 1996-05-09 Krogh Ole D An ecr plasma source
JP2012509831A (en) * 2008-11-25 2012-04-26 カーネギー インスチチューション オブ ワシントン Production of single crystal CVD diamond at rapid growth rate.
JP2014131036A (en) * 2007-08-17 2014-07-10 Semiconductor Energy Lab Co Ltd Deposition apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03246973A (en) * 1990-02-23 1991-11-05 Toshiba Corp Thin film transistor and its manufacture
EP0562035A1 (en) 1990-12-11 1993-09-29 Lam Research Corporation Minimization of particle generation in cvd reactors and methods
EP0562035B2 (en) 1990-12-11 2001-09-05 Lam Research Corporation Minimization of particle generation in cvd reactors and methods
US5451259A (en) * 1994-02-17 1995-09-19 Krogh; Ole D. ECR plasma source for remote processing
US5453125A (en) * 1994-02-17 1995-09-26 Krogh; Ole D. ECR plasma source for gas abatement
WO1996013621A1 (en) * 1994-10-31 1996-05-09 Krogh Ole D An ecr plasma source
JP2014131036A (en) * 2007-08-17 2014-07-10 Semiconductor Energy Lab Co Ltd Deposition apparatus
JP2016076715A (en) * 2007-08-17 2016-05-12 株式会社半導体エネルギー研究所 Method of manufacturing display device
JP2012509831A (en) * 2008-11-25 2012-04-26 カーネギー インスチチューション オブ ワシントン Production of single crystal CVD diamond at rapid growth rate.

Similar Documents

Publication Publication Date Title
JP6272934B2 (en) Epitaxial deposition process and apparatus
US4146774A (en) Planar reactive evaporation apparatus for the deposition of compound semiconducting films
JPH01321625A (en) Thin film formation and device therefor
CN115074825B (en) Silicon carbide epitaxial structure, pulse type growth method and application thereof
JP2004519108A (en) Member manufacturing method and vacuum processing system
JP2002008994A (en) Manufacturing method for thin film
CN111519186B (en) Ferromagnetic/graphene epitaxial interface and low-temperature preparation method thereof
JPS62228471A (en) Formation of deposited film
JP2001077028A (en) System and device manufacture semiconductor
JP2870774B2 (en) Method for forming single crystal film
JPS6348817A (en) Epitaxial growth method
JPH01295413A (en) Method and apparatus for plasma vapor growth
JPS6369220A (en) Manufacture of group iv semiconductor thin film
JPH0645257A (en) Method for forming semiconductor thin film
JPS6390138A (en) Method for cleaning semiconductor surface
JPH02263799A (en) Base plate heating device and its operation
JPH0637355B2 (en) Method for producing silicon carbide single crystal film
JPH04175295A (en) Production of semiconductive diamond
JPS62136814A (en) Epitaxial film growing method
JPH01295412A (en) Plasma vapor growth apparatus
JPH0243720A (en) Molecular beam epitaxial growth method
JPH0637356B2 (en) Method for producing silicon carbide single crystal film
JP2521953B2 (en) Method for producing semiconducting carbon thin film
JP3728538B2 (en) Thin film growth apparatus and thin film growth method
JPS61168592A (en) Method of crystal growth by molecular beam