JPS6293904A - Manufacture of zinc oxide type arrestor device - Google Patents

Manufacture of zinc oxide type arrestor device

Info

Publication number
JPS6293904A
JPS6293904A JP60235702A JP23570285A JPS6293904A JP S6293904 A JPS6293904 A JP S6293904A JP 60235702 A JP60235702 A JP 60235702A JP 23570285 A JP23570285 A JP 23570285A JP S6293904 A JPS6293904 A JP S6293904A
Authority
JP
Japan
Prior art keywords
zinc oxide
temperature
oxide type
lightning arrester
holding temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60235702A
Other languages
Japanese (ja)
Inventor
正洋 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60235702A priority Critical patent/JPS6293904A/en
Publication of JPS6293904A publication Critical patent/JPS6293904A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、酸化亜鉛形避雷器素子の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing a zinc oxide type lightning arrester element.

さらに詳しくは、高課電率で使用してち課電特性が安定
している酸化亜鉛形避雷器素子の製造方法に関する。
More specifically, the present invention relates to a method of manufacturing a zinc oxide type lightning arrester element whose charging characteristics are stable even when used at a high charging rate.

[従来の技術] 酸化亜鉛形避雷器素子(以下単に「素子」ということが
ある)の特徴は、その電圧−電流特性を概念的に第2図
の曲線(A)に示すように、優れた電圧−電流非直線性
にある。
[Prior Art] Zinc oxide type lightning arrester elements (hereinafter sometimes simply referred to as "elements") are characterized by their excellent voltage and current characteristics, as conceptually shown by curve (A) in Figure 2. - Current non-linearity.

従来、避雷器素子の電気特性の改良は、主に素子の組成
を工夫することによって常規対地電圧(Va)、印加時
のもれ電流(Ia)、雷電流(Ie) 、通電時の素子
電極間電圧(Vf)(以下「制限電圧」という)が小さ
くなるように行なわれている。
Conventionally, the electrical characteristics of lightning arrester elements have been improved mainly by modifying the composition of the element to improve the normal voltage to ground (Va), leakage current (Ia) when applied, lightning current (Ie), and between the element electrodes when energized. This is done so that the voltage (Vf) (hereinafter referred to as "limited voltage") is reduced.

また、酸化亜鉛形避雷器素子を用いた避雷器は、雷電流
に対する優れた保護特性を有するため、従来形の避雷器
で使用されていたギャップを取り除いて使用されること
がある。そのばあいには、第2図におけるもれ電流(I
a)が常時素子を流れることになる。素子が常時課電さ
れたばあいの、素子を流れるもれ電流の経時変化(課電
特性)を概念的に第3図に示す。第3図で曲線(C)は
もれ電流が時間とともに増加して発熱が大きくなり、つ
いには素子が破壊するパターンを示す。一方、曲線(D
)は課電に対してもれ電流が時間的に増加しない安定な
パターンを示す。
Further, since a lightning arrester using a zinc oxide type lightning arrester element has excellent protection characteristics against lightning current, it is sometimes used without the gap used in a conventional type lightning arrester. In that case, the leakage current (I
a) always flows through the element. FIG. 3 conceptually shows the change over time in the leakage current flowing through the element (electrification characteristics) when the element is constantly energized. In FIG. 3, curve (C) shows a pattern in which the leakage current increases with time, heat generation increases, and the element eventually breaks down. On the other hand, the curve (D
) indicates a stable pattern in which the leakage current does not increase over time with respect to power application.

通常用いられている酸化ビスマスを含む酸化並船形避雷
器素子では、約10amの大きさの、酸化亜鉛を主成分
としたグレインと、それらグレイン間を埋める酸化ビス
マスを主成分とした粒界層とによって形成されることを
特徴とする内部構造を有する。
In the normally used oxidized boat type surge arrester element containing bismuth oxide, grains of about 10 am in size mainly composed of zinc oxide and a grain boundary layer mainly composed of bismuth oxide that fills in between the grains are used. It has an internal structure characterized by being formed.

この酸化ビスマスを主成分とする粒界層が、素子の電圧
−電流非直線性に重要な役割を演じていることは、例え
ばジャパニーズ ジャーナル オブ アプライド フィ
ジックス(JapaneseJournal  of 
Applied Physics)  10、736頁
、1971などによって広く知られているところである
The fact that this grain boundary layer mainly composed of bismuth oxide plays an important role in the voltage-current nonlinearity of the device is shown in, for example, the Japanese Journal of Applied Physics (Japanese Journal of Applied Physics).
Applied Physics) 10, p. 736, 1971.

また、粒界層を形成する酸化ビスマスの結晶相をガンマ
(γ)型にすれば、電圧印加時のもれ電流が印加時間に
対して増加しない安定な傾向く第3図の曲線(D))を
示すことも例えばジャパニーズジャーナル オブ アプ
ライド フィジックス(Japanese Journ
al of Applied Physics) 15
.1847頁、1976などによって広く知られている
ところである。
In addition, if the crystal phase of bismuth oxide that forms the grain boundary layer is made into a gamma (γ) type, the leakage current during voltage application has a stable tendency that does not increase with the application time, as shown by curve (D) in Figure 3. ) can also be shown, for example, in the Japanese Journal of Applied Physics.
al of Applied Physics) 15
.. It is widely known from pages 1847 and 1976.

γ型酸化ビスマスの分布について、酸化ビスマスのγ型
酸化ビスマスへの変態率を10〜90%とし、γ型酸化
ビスマスの素子内分布を均一化すると索子の課電特性が
向上することは特願昭59−34526号に示されてい
る。
Regarding the distribution of γ-type bismuth oxide, it is particularly clear that when the transformation rate of bismuth oxide to γ-type bismuth oxide is set to 10 to 90% and the distribution of γ-type bismuth oxide in the device is made uniform, the charging characteristics of the cables are improved. It is shown in Japanese Patent Application No. 59-34526.

このように素子の課電特性の向上、あるいはもっと広く
素子の電気特性の向上は、素子の内部構造における粒界
制御のいかんにかかっているといえる。粒界層の性質は
酸化亜鉛形素子の製造条件とくに熱処理条件によって左
右されるため、素子の製造条件の設定が粒界制御のため
に重要な要素となる。
In this way, it can be said that improving the charging characteristics of an element, or more broadly improving the electrical characteristics of an element, depends on grain boundary control in the internal structure of the element. Since the properties of the grain boundary layer are influenced by the manufacturing conditions of the zinc oxide type element, especially the heat treatment conditions, setting the manufacturing conditions of the element is an important factor for grain boundary control.

第4図は素子の製造方法の一例として特開昭58−20
0508号公報に開示された熱処理工程を示す。
Figure 4 shows an example of the device manufacturing method published in Japanese Patent Application Laid-open No. 58-20.
The heat treatment process disclosed in Publication No. 0508 is shown.

同図では焼結された酸化亜鉛形素子のその俄の熱処理工
程を示している。同工程は2つの段階にわかれ、酸化ビ
スマスの融解温度は約850℃であるから、第1段階の
熱処理で酸化ビスマスは融解される。第2段階の熱処理
によって酸化ビスマスはγ型に変態されると考えられる
。また、保持時間1〜2時間は酸化ビスマスを融解し、
γ型の酸化ビスマスを充分に生成させるための時間であ
ると考えられる。
This figure shows the heat treatment process of the sintered zinc oxide type element. The process is divided into two stages, and since the melting temperature of bismuth oxide is about 850°C, the bismuth oxide is melted in the heat treatment in the first stage. It is believed that bismuth oxide is transformed into the γ type by the second heat treatment. In addition, for a holding time of 1 to 2 hours, bismuth oxide is melted,
This is considered to be the time required to sufficiently generate γ-type bismuth oxide.

[発明が解決しようとする問題点] しかし、前記熱処理工程の第1段階で保持温度を酸化ビ
スマスが融解する温度まで上げることは、素子から酸化
ビスマスが蒸発、減吊し、素子内での酸化ビスマスの分
布を不均一にし、素子の特性を変化させ、不安定にする
という問題がある。
[Problems to be Solved by the Invention] However, raising the holding temperature to a temperature at which bismuth oxide melts in the first stage of the heat treatment process causes bismuth oxide to evaporate and reduce the amount of oxidation within the element. There is a problem in that the distribution of bismuth becomes non-uniform, changing the characteristics of the device and making it unstable.

また、保持時間1〜2時間という条件は、例えば直径1
106a厚さ401r1mといった人形の素子に対して
は不十分であることは、特願昭60−86763号で示
されているとおりである。
In addition, the condition of holding time 1 to 2 hours is, for example, a diameter of 1 to 2 hours.
As shown in Japanese Patent Application No. 60-86763, this is insufficient for doll elements such as 106a and 401r1m in thickness.

本発明は前記のような従来の製造方法の欠点を解消する
ためになされたものであり、高課電率で使用しても課電
特性の安定な酸化亜鉛形避雷器素子の製造方法を提供す
ることを目的としている。
The present invention has been made in order to eliminate the drawbacks of the conventional manufacturing method as described above, and provides a method for manufacturing a zinc oxide type lightning arrester element that has stable charging characteristics even when used at a high charging rate. The purpose is to

F問題点を解決するための手段] 本発明の酸化亜鉛形避雷器素子の製造方法は素子を構成
する一要素である酸化ビスマスの融解温度よりも低い温
度範囲に素子を4時間以J二保持ずる処理を1回以上く
り返して行なう工程を含むことを特徴とするものである
Means for Solving Problem F] The method for manufacturing a zinc oxide lightning arrester element of the present invention involves maintaining the element in a temperature range lower than the melting temperature of bismuth oxide, which is one of the elements constituting the element, for 4 hours or more. This method is characterized by including a step of repeating the treatment one or more times.

[作用] 本発明の製造方法によって製造された素子内の酸化ビス
マス結晶相は、素子内でほぼ均一にγ型に変態する。こ
のγ型酸化ビスマスは、電圧を印加したばあい、印加時
間に対しもれ電流が増加しない安定な傾向を示す。した
がって、素子内のどの部分のもれ電流も、長時e1にわ
たって増加することのない安定した状態が続くことにな
る。
[Function] The bismuth oxide crystal phase within the device manufactured by the manufacturing method of the present invention transforms into the γ type almost uniformly within the device. This γ-type bismuth oxide exhibits a stable tendency in which the leakage current does not increase with respect to the application time when a voltage is applied. Therefore, the leakage current in any part of the element remains stable for a long time e1 without increasing.

U実施例〕 以下、本発明の一実施例について説明する。U example] An embodiment of the present invention will be described below.

酸化亜鉛を主成分とし、添加物としてそれぞれ0.1〜
2モル%の酸化ビスマス、酸化アンチモン、酸化コバル
ト、酸化マンガン、酸化クロム、酸化シリコン、および
それぞれ0.001〜0.1モル%のほう酸、硝酸アル
ミニウムを選び、粉砕、混合、造粒、成形した後、12
00℃で焼成し、直径106M、厚さ40Mの素子を得
た。
The main component is zinc oxide, and each additive is 0.1~
2 mol% bismuth oxide, antimony oxide, cobalt oxide, manganese oxide, chromium oxide, silicon oxide, and 0.001 to 0.1 mol% each of boric acid and aluminum nitrate were selected, crushed, mixed, granulated, and molded. After, 12
It was fired at 00°C to obtain an element with a diameter of 106M and a thickness of 40M.

これらの試料を第1図に示すように保持温度500〜6
00℃、保持時間5時間、昇降温速度100℃/11r
で1回熱処理を行なった。ここで試料を2つのグループ
に分け、第1のグループはそのままとし、第2のグルー
プは再び第2回目の熱処理を保持温度5oo= eoo
℃保持時間5時間、冒降温速度100℃/Hrで行なっ
た。両グループの素子の表面を研磨し、電極を設け、そ
の電圧−電流特性を測定した。
These samples were held at a holding temperature of 500 to 6
00℃, holding time 5 hours, temperature increase/decrease rate 100℃/11r
Heat treatment was performed once. Here, the samples are divided into two groups, the first group is left as is, and the second group is again subjected to a second heat treatment at a holding temperature of 5oo = eoo
The heating time was 5 hours, and the cooling rate was 100°C/Hr. The surfaces of the devices in both groups were polished, electrodes were provided, and their voltage-current characteristics were measured.

そのばあい、素子の始動電圧は3.4x 10−5 A
/c、jの電流を素子に通電したときの素子N極間の電
圧とした。
In that case, the starting voltage of the element is 3.4x 10-5 A
The voltage between the north and south poles of the device was taken as the voltage when a current of /c,j was applied to the device.

つぎに、これら素子の課電特性を調べるために素子の周
囲温度を130℃に保ち、課電率(始動電圧に対する割
合) 80%で素子に電圧印加したときの、素子を流れ
るもれ電流の経時変化を40時間にわたって測定した。
Next, in order to examine the charging characteristics of these devices, we maintained the ambient temperature of the devices at 130°C and applied a voltage to the devices at a charging rate (ratio to the starting voltage) of 80%. Changes over time were measured over 40 hours.

第1表に各種熱処理を実施した素子の測定された課電特
性を示す。
Table 1 shows the measured charging characteristics of the elements subjected to various heat treatments.

第  1  表 第1表で、数値は1時間後のもれ電流(1+ )に対す
る40時間後のもれ電流(■@)の比I ao / I
 +を示す。この値が大きいほどもれ電流が増加傾向に
あり、課電特性は悪いことになる。熱処理を実施しない
素子が熱暴走したのは、もれ電流の経時変化が第3図(
C)の形となったことを示す。第1回目の熱処理によっ
て、素子は熱暴走しない第3図(D)の形に近づいたこ
とがわかる。第2回目の熱処理によって課電特性はさら
に安定してくることがわかる。
Table 1 In Table 1, the numerical value is the ratio of the leakage current after 40 hours (■@) to the leakage current after 1 hour (1+) I ao / I
Indicates +. The larger this value is, the more the leakage current tends to increase, and the charging characteristics become worse. The thermal runaway of the device without heat treatment is due to the change in leakage current over time, as shown in Figure 3 (
This shows that the shape is C). It can be seen that by the first heat treatment, the element approached the shape shown in FIG. 3(D) in which thermal runaway did not occur. It can be seen that the charging characteristics become more stable after the second heat treatment.

課電特性を測定した後、素子の周辺部より中心部に向っ
てγ型酸化ビスマス(γ−Bi2o3)の分布をX線回
折法によって分析した。
After measuring the charging characteristics, the distribution of γ-type bismuth oxide (γ-Bi2o3) from the periphery to the center of the device was analyzed by X-ray diffraction.

本実施例の配合の酸化亜鉛形M71を器素子では、酸化
ビスマス相はベータ(β)型とγ型のものが生成する。
In the element containing zinc oxide type M71 with the formulation of this example, beta (β) type and γ type bismuth oxide phases are produced.

それぞれの最強ピークは、X線回折角度2θが28゛の
付近にあり、重なり合っている。
The respective strongest peaks are located near an X-ray diffraction angle 2θ of 28° and overlap.

そこでγ−Bi2O3相を検出するため、2θが33、
0”の付近にみられる(321)ピークに注目した。
Therefore, in order to detect the γ-Bi2O3 phase, 2θ is 33,
We focused on the (321) peak seen near 0''.

第5図に、熱処理しなかったもののγ−Bi2O3のピ
ーク強度から求めた変態率を(1)、500℃で1回熱
処理したもののピーク強度から求めた変!g率を(2:
J、500℃で熱処理後600℃で2回目の熱処理をし
たもののそれを(3)、600℃で1回熱処理を実施し
たもののそれを(4)として、それぞれX線回折法で分
析した結果を示す。第5図より、熱処理をしなかったも
のでは7−Bi2O3が生成していないこと、500℃
で1回熱処理したものでは、γ−Bi2O3が生成する
が、素子周辺部におけるほうが中心部よりも多く生成し
ていることがわかる。
FIG. 5 shows the transformation rate (1) determined from the peak intensity of γ-Bi2O3 for the sample that was not heat-treated, and the transformation rate determined from the peak intensity for the sample that was heat-treated once at 500°C. g rate (2:
J, heat treated at 500°C and then a second heat treatment at 600°C as (3), heat treated once at 600°C as (4), and the results of analysis using X-ray diffraction method. show. From Figure 5, 7-Bi2O3 was not generated in the case that was not heat-treated at 500°C.
When heat-treated once, γ-Bi2O3 is produced, but it is seen that more is produced at the periphery of the element than at the center.

2回熱処理を実施する(500℃→600℃)とγ−B
i2O3が素子内に均一に生成することがわかる。60
0℃で熱処理したものではγ−Bi2O3の生成は進む
が、その分布がやや不均一になり始めていることがわか
る。
When heat treatment is performed twice (500℃→600℃), γ-B
It can be seen that i2O3 is generated uniformly within the element. 60
It can be seen that in the case of the sample heat-treated at 0° C., the production of γ-Bi2O3 progresses, but its distribution begins to become somewhat non-uniform.

したがって、γ型酸化ごスマスを熱処理によって均一に
生成する手段として、複数回にわたる熱処理が有効であ
ることがわかる。
Therefore, it can be seen that multiple heat treatments are effective as a means to uniformly generate γ-type oxidized sulfur by heat treatment.

このようにXPJ回折分析したデータを第1表の?JI
電特性を表わすデータと比較してみると、γ−Bi2O
3が素子内で均一に生成しているものほど、素子の3電
特性が優れていることがわかる。
The data from this XPJ diffraction analysis are shown in Table 1. J.I.
When compared with the data representing the electrical properties, γ-Bi2O
It can be seen that the more uniformly 3 is generated within the element, the better the 3-electrical characteristics of the element.

また、第5図より、1回目に行なった600℃の熱処理
の効果と2回目に行なった600℃の熱処理の効果は、
異なっていることがわかる。1回目に600℃の熱処理
を行なったもののほうが酸化ビスマスのγ型への変態率
が大きい。
Also, from Figure 5, the effect of the first heat treatment at 600°C and the effect of the second heat treatment at 600°C are as follows:
You can see that they are different. The transformation rate of bismuth oxide to the γ type is higher in the case of the one subjected to the first heat treatment at 600°C.

[発明の効果〕 以上のように、本発明によれば、熱処理工程を酸化ビス
マスの融解温度よりも低い温度範囲で、充分な時間保持
し、かつそれをくり返すことにより、7−Bi2030
分布が均一で、課電特性が安定している素子を製造する
ことができるという効果がある。
[Effects of the Invention] As described above, according to the present invention, 7-Bi2030
This has the effect that it is possible to manufacture an element with uniform distribution and stable charging characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例による熱処理工程を示す概
念図、第2図は酸化亜鉛形避雷器素子の電圧−電流特性
を示す概念図、第3図は酸化亜鉛形避雷器素子の課電特
性を示す概念図、第4図は従来技術による熱処理工程の
一実施例を示す概念図、第5図は本発明により製造した
酸化亜鉛形避雷器素子内におけるγ−Bi2O3の分布
を示す図である。
Fig. 1 is a conceptual diagram showing the heat treatment process according to an embodiment of the present invention, Fig. 2 is a conceptual diagram showing the voltage-current characteristics of a zinc oxide type arrester element, and Fig. 3 is a conceptual diagram showing the voltage-current characteristics of a zinc oxide type arrester element. FIG. 4 is a conceptual diagram showing an example of the heat treatment process according to the prior art; FIG. 5 is a diagram showing the distribution of γ-Bi2O3 in the zinc oxide type lightning arrester element manufactured according to the present invention. .

Claims (5)

【特許請求の範囲】[Claims] (1)酸化ビスマスを含む酸化亜鉛形避雷器素子の原料
成形物を焼成した後熱処理を施す工程において、酸化ビ
スマスの融解温度よりも低い保持温度に焼成した原料成
形物を4時間以上保持する工程を少なくとも1つ含むこ
とを特徴とする酸化亜鉛形避雷器素子の製造方法。
(1) In the process of firing and then heat-treating the raw material molded product of zinc oxide type lightning arrester element containing bismuth oxide, the fired raw material molded product is held at a holding temperature lower than the melting temperature of bismuth oxide for 4 hours or more. A method for manufacturing a zinc oxide type lightning arrester element, the method comprising at least one zinc oxide type lightning arrester element.
(2)前記保持温度が500〜600℃の温度範囲内に
ある特許請求の範囲第1項記載の酸化亜鉛形避雷器素子
の製造方法。
(2) The method for manufacturing a zinc oxide type lightning arrester element according to claim 1, wherein the holding temperature is within a temperature range of 500 to 600°C.
(3)前記保持温度に焼成した原料成形物を4時間以上
保持する工程の数が2である特許請求の範囲第1項記載
の酸化亜鉛形避雷器素子の製造方法。
(3) The method for manufacturing a zinc oxide type lightning arrester element according to claim 1, wherein the number of steps of holding the raw material molded product fired at the holding temperature for 4 hours or more is 2.
(4)第1回目の保持温度が500〜600℃の温度範
囲内にあり、第2回目の保持温度が500〜600℃の
温度範囲内にあり、しかも第2回目の保持温度が第1回
目の保持温度よりも高い温度である特許請求の範囲第1
項記載の酸化亜鉛形避雷器素子の製造方法。
(4) The first holding temperature is within the temperature range of 500 to 600°C, the second holding temperature is within the temperature range of 500 to 600°C, and the second holding temperature is the same as the first holding temperature. Claim 1, which is a temperature higher than the holding temperature of
A method for manufacturing a zinc oxide type lightning arrester element as described in .
(5)第1回目の保持温度が500〜600℃の温度範
囲内にあり、第2回目の保持温度が500〜600℃の
温度範囲内にあり、しかも第2回目の保持温度が第1回
目の保持温度よりも低い温度である特許請求の範囲第1
項記載の酸化亜鉛形避雷器素子の製造方法。
(5) The first holding temperature is within the temperature range of 500 to 600°C, the second holding temperature is within the temperature range of 500 to 600°C, and the second holding temperature is the same as the first holding temperature. Claim 1, which is a temperature lower than the holding temperature of
A method for manufacturing a zinc oxide type lightning arrester element as described in .
JP60235702A 1985-10-21 1985-10-21 Manufacture of zinc oxide type arrestor device Pending JPS6293904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60235702A JPS6293904A (en) 1985-10-21 1985-10-21 Manufacture of zinc oxide type arrestor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60235702A JPS6293904A (en) 1985-10-21 1985-10-21 Manufacture of zinc oxide type arrestor device

Publications (1)

Publication Number Publication Date
JPS6293904A true JPS6293904A (en) 1987-04-30

Family

ID=16989956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60235702A Pending JPS6293904A (en) 1985-10-21 1985-10-21 Manufacture of zinc oxide type arrestor device

Country Status (1)

Country Link
JP (1) JPS6293904A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461214A (en) * 1977-09-26 1979-05-17 Gen Electric Method of making zinc oxide varistor
JPS56115502A (en) * 1980-02-18 1981-09-10 Tokyo Shibaura Electric Co Method of manufacturing nonnlinear resistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461214A (en) * 1977-09-26 1979-05-17 Gen Electric Method of making zinc oxide varistor
JPS56115502A (en) * 1980-02-18 1981-09-10 Tokyo Shibaura Electric Co Method of manufacturing nonnlinear resistor

Similar Documents

Publication Publication Date Title
JPH01212264A (en) Varistor material and production thereof
JPS6293904A (en) Manufacture of zinc oxide type arrestor device
US3533966A (en) Process for making current limiting devices
US4243622A (en) Method for manufacturing zinc oxide varistors having reduced voltage drift
JPS61245503A (en) Zinc oxide type arrestor element and manufacture thereof
JPH0142613B2 (en)
JPH0552642B2 (en)
JPS644651B2 (en)
JPH068211B2 (en) Manufacturing method of varistor material
JPS6113603A (en) Voltage nonlinear resistor
JP2816258B2 (en) Method of manufacturing voltage non-linear resistor and lightning arrester
JPS61294803A (en) Manufacture of voltage non-linear resistor
JPH0216003B2 (en)
CA1129561A (en) Method for manufacturing zinc oxide varistors having reduced voltage drift
JPS6236246Y2 (en)
JPH0795482B2 (en) Varistor manufacturing method
KR910001109B1 (en) Making process for varistor
JPS5858704A (en) Method of producing nonlinear resistor
JPS5967607A (en) Method of producing nonlinear resistor
KR960002486B1 (en) Low resistance ceramic ptc element manufacturing method
JPH0136681B2 (en)
JPS6390804A (en) Voltage nonlinear resistor
JPS63281404A (en) Voltage nonlinear resistance material
JPH04186702A (en) Manufacture of voltage dependent nonlinear resistor and arrestor
JPS6390802A (en) Voltage nonlinear resistor