JPS6293833A - Radiator for magnetron - Google Patents

Radiator for magnetron

Info

Publication number
JPS6293833A
JPS6293833A JP23367085A JP23367085A JPS6293833A JP S6293833 A JPS6293833 A JP S6293833A JP 23367085 A JP23367085 A JP 23367085A JP 23367085 A JP23367085 A JP 23367085A JP S6293833 A JPS6293833 A JP S6293833A
Authority
JP
Japan
Prior art keywords
fin
air flow
anode
section
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23367085A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Tanaka
博由 田中
Ryutaro Akutagawa
竜太郎 芥川
Shinichi Aso
阿曽 伸一
Hirozo Takegawa
武川 博三
Masaaki Adachi
安立 正明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23367085A priority Critical patent/JPS6293833A/en
Publication of JPS6293833A publication Critical patent/JPS6293833A/en
Pending legal-status Critical Current

Links

Landscapes

  • Microwave Tubes (AREA)

Abstract

PURPOSE:To construct fins having good radiation performance by folding the side section of a radiation fin parallel with the air flow while arranging a plurality of band type raising sections, where the sides facing against the air flow are raised and opened on the radiation fin around the side and the rear section of the anode side section, and fixing them to the folded side section of the fin. CONSTITUTION:Since raising sections 11 are provided, the pressure loss of the air flow passing through said sections 11 will increase while simultaneously the air flow will decrease thereby the wind flow at the section provided with no raising sections 11 will increase correspondingly. Consequently, the air flow toward the center of a radiation fin 9 is induced gradually at the rear stream side of an anode or a fin collar thus the dead water area 13 reduces considerably. Since the foot part of the raising section 11 has obliquely constructed joint side 14 to provide an elevation angle against the air flow, the air flow will vary abruptly at the foot part to cause turbulence, increasing the heat conductivity. While since the raising sections 11 are connected to the side section 10 of the fin, the efficiency of fin radiation is improved, lowering the entire thermal resistance of the fin 9 resulting in reduction of the temperature nonuniformity around the anode.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高周波加熱調理器等に用いられる高周波発生装
置の放熱フィンに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a radiation fin for a high frequency generator used in a high frequency cooking device or the like.

従来の技術 従来、この様な高周波発生装置(以下マグネトロンと略
記)は、第4図に示す様に、主としてアンテナ11、磁
石2 a T  2 b 、アノード3、放熱フィン4
、ヨーク5からなる。入力された電気はアノード3内部
で電磁波に変換され、アンテナ1から放出され、その電
磁波によって加熱調理がなされる。しかし入力された電
気の何割かは電磁波に変換されず熱として発生しアノー
ド3が高温となるため、アノード3の周囲に、垂直に複
数の板状の放熱フィン4を取りつけ、そのフィン4間に
外気を流入させることで冷却する。
BACKGROUND ART Conventionally, such a high frequency generator (hereinafter abbreviated as magnetron) mainly consists of an antenna 11, a magnet 2aT2b, an anode 3, and a radiation fin 4, as shown in FIG.
, yoke 5. The input electricity is converted into electromagnetic waves inside the anode 3 and emitted from the antenna 1, and the electromagnetic waves heat and cook the food. However, some of the input electricity is not converted into electromagnetic waves and is generated as heat, causing the anode 3 to reach a high temperature. Cool by letting outside air flow in.

第3図は、この様な放熱フィン4の一枚を斜視図にして
示したものである。一般に放熱フィン4はアルミ、銅等
の金属により作られ、アノード3に嵌合されており、ア
ノード3により発生する熱はフィンカラー5からフィン
4へと伝わって行くがフィン4間には外気6aが流動し
ているため、フィン4面と気流8b、6Cとの間で熱交
換が生じ、その結果アノード3で発生した熱は気流8b
FIG. 3 shows a perspective view of one such radiation fin 4. As shown in FIG. Generally, the radiation fins 4 are made of metal such as aluminum or copper, and are fitted to the anode 3. Heat generated by the anode 3 is transmitted from the fin collar 5 to the fins 4, but outside air 6a is placed between the fins 4. is flowing, heat exchange occurs between the fin 4 surface and the airflows 8b and 6C, and as a result, the heat generated at the anode 3 is transferred to the airflow 8b.
.

6Cへ持ち去られ、アノード3は冷却されることになる
6C and the anode 3 will be cooled.

発明が解決しようとする問題点 以上の様に放熱フィンは、アノードで発生する熱を外気
へ捨て、アノードを冷却しているのであるが、空気流は
、アノードにより左右に、分岐されるためにアノードの
後流側に大きな止水域(第3図、斜線部7)が生ずる。
Problems to be Solved by the Invention As mentioned above, the heat dissipation fin dissipates the heat generated in the anode to the outside air and cools the anode, but since the airflow is branched left and right by the anode, A large water stop area (hatched area 7 in FIG. 3) is created on the downstream side of the anode.

この止水域は、気流の滞留部であり、放熱フィン面から
熱が放出されにくく、高温となる。このためアノードか
ら発生する熱の放出効率が悪化するだけでなく、アノー
ドの円周方向に数十度の温度分布を生じるため、アノー
ドは熱歪みを起こす。この熱歪みは、放熱フィンとアノ
ードの接触熱抵抗を増加させるだけでなく、マグネトロ
ンの寿命を低下させているのが現状である。
This water stop area is an airflow retention area, and heat is difficult to be released from the radiation fin surface, resulting in a high temperature. This not only deteriorates the efficiency of dissipating heat generated from the anode, but also causes a temperature distribution of several tens of degrees in the circumferential direction of the anode, causing thermal distortion in the anode. Currently, this thermal strain not only increases the contact thermal resistance between the radiation fins and the anode, but also shortens the life of the magnetron.

問題点を解決するための手段 本発明は上記の問題点を解決するために、放熱フィンの
気流と平行な側辺部を折り曲げると共に、アノード側部
から後部の放熱フィン上に、気流と対向する辺が切り起
こされかつ開口された複数の帯状の切り起こしを設け、
かつ、その切り起こしが、折り曲げたフィン側辺部と接
合される様構成したものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention bends the side portions of the radiation fins that are parallel to the airflow, and also bends the sides of the radiation fins that are parallel to the airflow from the anode side to the rear radiation fins, facing the airflow. A plurality of belt-shaped cut-and-raised sides with cut-raised and open sides are provided,
Further, the cut and raised portion is configured to be joined to the bent side portion of the fin.

作用 本発明は上記方法によって、マグネトロンのアノード後
流側の止水域を減少させると共て、境界層前縁効果によ
って、アノード後流域の熱伝達率を増加させ、放熱フィ
ン全体の放熱量を増加させると共に、アノード外壁の温
度を均一化しアノードの熱歪みを低減する。
The present invention uses the method described above to reduce the cut-off area on the downstream side of the anode of the magnetron, increase the heat transfer coefficient in the downstream area of the anode by the boundary layer leading edge effect, and increase the amount of heat dissipated from the entire heat dissipation fin. At the same time, it also equalizes the temperature of the anode outer wall and reduces thermal distortion of the anode.

実施例 以下第1図に示した本発明の一実施例に従って本発明を
説明する。
EXAMPLE The present invention will be explained below according to an example of the present invention shown in FIG.

第1図aは本発明によるマグネトロン装置の放熱フィン
一枚の斜視図であり、bはXX断面である。
FIG. 1a is a perspective view of one radiation fin of the magnetron device according to the present invention, and FIG. 1b is a cross section XX.

第1図に於て、アルミ、銅等で作らnた放熱フィン9は
、その気流12と平行な側辺部1Qが折り曲げられてお
り、その側辺部1oに接合辺15と有する複数の帯状の
切り起こし11が設けられている。この切り起こし11
のもう一方の接合辺14は、気流方向と斜めになる様に
構成され、切り起こし脚韻も流れに対し迎角を有してい
る。また、この切り起こし11は、後流て行く知従って
しだいにその開口する2側辺、つまり気流と対向する切
辺の長さが長くなる様に構成している。
In FIG. 1, a heat dissipating fin 9 made of aluminum, copper, etc. has a bent side 1Q parallel to the air flow 12, and a plurality of band-shaped parts having a joint side 15 on the side 1o. A cut-and-raised portion 11 is provided. This cut-up 11
The other joint side 14 is configured to be oblique to the airflow direction, and the cut and raised rhyme also has an angle of attack with respect to the flow. Further, the cut and raised portion 11 is configured so that as the air flows downstream, the length of its two open sides, that is, the cut side facing the airflow, gradually becomes longer.

この様に切り起こし11を設けているために、切り起こ
し11を通過する空気流の圧損が増し、同時に空気流量
が低下するためその低下量に見合う分だけ、切り起こし
11の設けていない部分の風量が増加する。その結果ア
ノード(図示せず)もしくはフィンカラー8の後流側で
しだいに放熱フィン9の中央に向う気流の流れが誘起さ
れ、止水域13が著しく減少する。また、切り起こし1
1の脚部は接合辺14を斜めに構成し空気流に対して迎
角をもたせているため、流れの変化が脚部で急激に起き
、乱′i′1.を生じて熱伝達率を増加させる。
Since the raised cut 11 is provided in this way, the pressure loss of the air flow passing through the raised cut 11 increases, and at the same time, the air flow rate decreases. Air volume increases. As a result, an airflow is gradually induced toward the center of the radiation fins 9 on the downstream side of the anode (not shown) or the fin collar 8, and the cutoff area 13 is significantly reduced. Also, cut and raise 1
Since the joint side 14 of the leg section 1 is formed obliquely and has an angle of attack with respect to the air flow, a sudden change in the flow occurs at the leg section, causing turbulence 'i'1. and increase the heat transfer coefficient.

この熱伝達率の増加及び、切り起こしの境界層前縁効果
による熱伝達率の増加によって、アノード後流の放熱フ
ィン9の表面熱抵抗は大巾に低減される。また一方、切
り起こし11は、放熱フィンの側辺部10と接続されて
いるため、フィン効率が高い。これによってフィン9の
全体的な熱抵抗が低下するとともに、アノード周囲の温
度むらが低減される。本実施例に於ては、第1図すのご
とく、切り起こし11が放熱フィン9の一方向にのみ構
成され、かつ、放熱フィン9と平行に並べられた例?示
したが、この形状の変形は様々考えられる。第2図a、
  b、  cは第1図に於るXX断面と同位置の断面
を他の実施例について示したものである。第2図aの’
1a+  11a’は切り起こしであり、放熱フィンの
上下知設けている。こ九によって、最下部及び最上部の
放熱フィンと磁石の間に生じる空間を有効に利用できる
。bは切り起こし11b、11b′を下流側へわずかづ
つづらし−で設けたものであり前方の切り起こしによっ
て生じるウェイタを避けることができるので熱伝達率を
向上させることができる。Cは切り起こし110をねじ
ったものであり、これてより渦と誘起し、有効な熱伝達
率?得ることができる。
Due to this increase in heat transfer coefficient and the increase in heat transfer coefficient due to the leading edge effect of the cut and raised boundary layer, the surface thermal resistance of the radiation fins 9 downstream of the anode is greatly reduced. On the other hand, since the cut and raised portions 11 are connected to the side portions 10 of the radiation fins, the fin efficiency is high. This lowers the overall thermal resistance of the fins 9 and reduces temperature unevenness around the anode. In this embodiment, as shown in FIG. 1, the cut-and-raised portions 11 are formed only in one direction of the radiation fins 9, and are arranged parallel to the radiation fins 9. However, various modifications of this shape are possible. Figure 2a,
b and c show cross sections at the same position as the XX cross section in FIG. 1 for other embodiments. Figure 2 a'
1a+11a' is cut and raised, and the upper and lower sides of the radiation fins are provided. This makes it possible to effectively utilize the space created between the lowermost and uppermost radiation fins and the magnet. The cut-and-raised portions 11b and 11b' are provided so as to be slightly offset toward the downstream side, and it is possible to avoid the waiter caused by the front cut-and-raised portion, thereby improving the heat transfer coefficient. C is a twisted cut-and-raised 110, which induces a vortex and has an effective heat transfer coefficient. Obtainable.

以上の実施例によって第1の実施例以上にフィンの熱抵
抗が低減さへよりアノード温度を低下させ、熱歪みも少
くすることができるのである。
In the above embodiment, the thermal resistance of the fins is reduced more than in the first embodiment, so that the anode temperature can be lowered and thermal distortion can also be reduced.

発明の効果 以上のように本発明のマグネトロン装置は、気流と平行
な側辺部を折り曲げ、アノード後流の放熱フィン上に複
数の帯状の切り起こしを側辺部とつながる様に設けてい
るために■アノード止水域へ空気の流動が誘起され、有
効な放熱面積が増加する。■境界層前縁効果によりフィ
ンの表面の熱伝達率が増加する。■側辺部への熱の回り
込みによってフィン効率が増加する。等の効果がありそ
の結果として、放熱性能の良い放熱フィンを構成するこ
とができると共に、アノード周囲の温度むらが減少し、
温度むらから起きる熱歪みを低減でき、アノードの寿命
を伸ばすことができるばかりでなく、効率の高いマグネ
トロン装置を得ることができるものである。
Effects of the Invention As described above, the magnetron device of the present invention bends the side portion parallel to the airflow, and provides a plurality of band-shaped cut and raised portions on the radiation fins downstream of the anode so as to be connected to the side portion. ■ Air flow is induced to the anode stop area, increasing the effective heat dissipation area. ■The heat transfer coefficient on the fin surface increases due to the boundary layer leading edge effect. ■Fin efficiency increases due to the circulation of heat to the sides. As a result, it is possible to construct a heat dissipation fin with good heat dissipation performance, and the temperature unevenness around the anode is reduced.
This not only makes it possible to reduce thermal distortion caused by temperature unevenness and extend the life of the anode, but also makes it possible to obtain a highly efficient magnetron device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aは本発明マグネトロン用放熱フィンの一実施例
の斜視図、第1図すは第1図aのXX断面図、第2図a
、b、cはそ九ぞれ本発明の他の実施例におけるマグネ
トロン用放熱フィンの断面図、第3図はマグネトロン用
放熱フィンの従来例の斜視図、第4図は同マグネトロン
の正面図である。 1・・・・・・アンテナ、3・・・・・・アノード、4
. 9・・・・・・放熱フィン、11・・・・・・切り
起こし。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名B−
−−美う− 11−切りシこし くゐ) 第2図 //b (C) 第3図 3−−一気赤4 /−−−アンテナ ?−−−虫石 3−−−アノード 4−一一方η熱プイン 5−−−ヨー7
Fig. 1a is a perspective view of an embodiment of a heat dissipation fin for a magnetron according to the present invention, Fig. 1 is a XX sectional view of Fig. 1a, Fig. 2a
, b, and c are respectively sectional views of heat dissipating fins for magnetrons according to other embodiments of the present invention, FIG. 3 is a perspective view of a conventional example of heat dissipating fins for magnetrons, and FIG. 4 is a front view of the same magnetron. be. 1... Antenna, 3... Anode, 4
.. 9... Heat dissipation fin, 11... Cut and raise. Name of agent: Patent attorney Toshio Nakao and one other person B-
--Beautiful- 11-Kirishikoshikui) Figure 2//b (C) Figure 3 3--Red 4/---Antenna? --- Insect stone 3 --- Anode 4 -- One side η heat pin 5 --- Yo 7

Claims (3)

【特許請求の範囲】[Claims] (1)円筒上のアノードに垂直に取りつけられた複数の
平行板の気流と平行な側辺部を曲折し、アノード側部か
ら後部へ、気流と対向する2辺が開口し他の辺が平行板
に接合する複数の帯状の切り起こしを設け、前記切り起
こしの前記接合辺の一方が、前記曲折した側辺部上に設
けられたマグネトロン用放熱器。
(1) The sides parallel to the airflow of multiple parallel plates attached perpendicular to the cylindrical anode are bent, and from the anode side to the rear, two sides facing the airflow are open and the other sides are parallel. A radiator for a magnetron, wherein a plurality of band-shaped cut and raised parts are provided to be joined to a plate, and one of the joining sides of the cut and raised parts is provided on the bent side part.
(2)切り起こしの開口する辺が下流へ行くに従ってし
だいに長く構成された特許請求の範囲第1項記載のマグ
ネトロン用放熱器。
(2) The heat radiator for a magnetron according to claim 1, wherein the cut-and-raised opening side gradually becomes longer as it goes downstream.
(3)前記切り起こしの前記接合部の一方が気流方向と
斜めになる様に構成された特許請求の範囲第1項記載の
マグネトロン用放熱器。
(3) The heat radiator for a magnetron according to claim 1, wherein one of the joint portions of the cut and raised joints is configured to be oblique to the airflow direction.
JP23367085A 1985-10-18 1985-10-18 Radiator for magnetron Pending JPS6293833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23367085A JPS6293833A (en) 1985-10-18 1985-10-18 Radiator for magnetron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23367085A JPS6293833A (en) 1985-10-18 1985-10-18 Radiator for magnetron

Publications (1)

Publication Number Publication Date
JPS6293833A true JPS6293833A (en) 1987-04-30

Family

ID=16958688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23367085A Pending JPS6293833A (en) 1985-10-18 1985-10-18 Radiator for magnetron

Country Status (1)

Country Link
JP (1) JPS6293833A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0628984A (en) * 1991-12-16 1994-02-04 Gold Star Co Ltd Structure of radiating fin of magnetron
US5331248A (en) * 1991-05-03 1994-07-19 Goldstar Co., Ltd. Cooling apparatus of magnetron
CN100385601C (en) * 2004-01-14 2008-04-30 电子科技大学 Forced-convection asymmetrical radiator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5331248A (en) * 1991-05-03 1994-07-19 Goldstar Co., Ltd. Cooling apparatus of magnetron
JPH0628984A (en) * 1991-12-16 1994-02-04 Gold Star Co Ltd Structure of radiating fin of magnetron
US5412282A (en) * 1991-12-16 1995-05-02 Goldstar Co., Ltd. Radiation fin structure of a magnetron
CN100385601C (en) * 2004-01-14 2008-04-30 电子科技大学 Forced-convection asymmetrical radiator

Similar Documents

Publication Publication Date Title
US6615910B1 (en) Advanced air cooled heat sink
JPS63183391A (en) Heat exchanger of fin tube type
JP2009099740A (en) Cooling device for housing
JP2008171987A (en) Fin-type liquid-cooled heat sink
CN107910162B (en) Wind-water exchange high-power intermediate frequency transformer
JPS6293833A (en) Radiator for magnetron
CN207050199U (en) A kind of air conditioner heat radiator device
CN207261103U (en) Energy-efficient automobile radiator
CN206609008U (en) A kind of liquid-cooling heat radiation electromagnetic oven
CN109209610A (en) Energy-efficient automobile radiator
CN115013287A (en) Compressor heat radiation structure
CN207353232U (en) A kind of rib film-type radiator with strip of paper used for sealing
JP3449605B2 (en) Heat dissipation housing for electronic equipment
JP2963332B2 (en) Cooling structure of high heating element
KR200303493Y1 (en) fin for radiation
CN220232373U (en) GPU heat radiation structure capable of changing wind flow direction
CN220965472U (en) High-efficient radiating aluminium alloy
CN218439678U (en) Compressor heat radiation structure
CN113613416B (en) Anti-interference microwave amplifier
JPS62285344A (en) Magnetron device
CN218939377U (en) Dry-type transformer convenient to heat dissipation
CN216253725U (en) Heat radiation structure
CN112332588B (en) Motor end cover radiator
CN210199679U (en) Water-cooling radiator with aRGB light efficiency
CN209133833U (en) Laser reciprocation cycle cooling heat sink